Средства и приемы обработки видео

Дмитрий Ватолин

Московский Государственный Университет CS MSU Graphics&Media Lab

- ◆ ММХ технология
- ◆ Программа VirtualDub
- ◆ Программа AviSynth
- ◆ Программа Mathcad

MMXTM Technology

Потоковая обработка данных. Средство существенного увеличения скорости работы видеофильтров.

В слайдах использованы рисунки из курса по MMX компании Intel, который настоятельно рекомендуется пройти.

Курс можно скачать по адресу:

http://graphics.cs.msu.su/courses/mdc2004/library/mintro.exe

(размер: 14 МБ)

http://graphics.cs.msu.su/courses/mdc2004/library/runcbt.exe

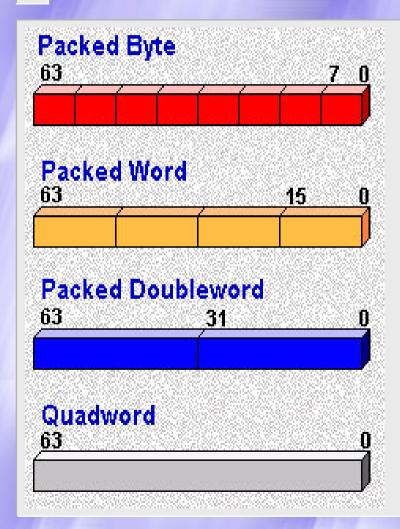
(размер: 2,7 МБ)

Технология ММХ была разработана компанией Intel и является своего рода развитием команд процессора.

Технология базируется на архитектуре процессора Pentium® и позволяет ускорить вычисления за счет параллельной обработки данных.

Где применяется технология ММХ^{ТМ}?

Технология ММХ используется во многих мультимедийных приложениях, например при обработке видео, звука и графики (ускорение цифровой обработки сигналов и данных). Забавно, что ММХ команды сегодня применяются даже при заполнении и копировании буферов операционной системы.



- 1. В технологии ММХ применяются инструкции использующие особенности архитектуры нового процессора.
- 2. ММХ инструкции работают как со знаковой так и с беззнаковой арифметикой.
- 3. Появились 8 новых регистров с соответствующими именами MM0...MM7.

Типы данных в ММХТМ

В 64 бита можно поместить от 8 «переменных» размером по 8 бит (байтов) и до одной «переменной» размером в 64 бита.

Система команд ММХТМ

Система команд ММХ состоит из 57 команд, сгруппированных в следующие категории:

- Команды передачи данных
- Арифметические команды
- Команды сравнения
- Команды преобразования
- Логические команды
- Команды двига
- Команда освободить MMXTM состояние (EMMS)

Семантика инструкций ММХТМ

<команда>[dest,src]

- <команда> записывается по следующим правилам:
- 1) Команда начинается с "Р" (кроме movd, movq)
- 2) "US" работа с без знаковой арифметикой
- 3) "S" или "SS" работа со знаковой арифметикой
- 4) "В", "W", "D", "Q" соответственно обозначают тип с которым работает инструкция

Арифметика с насыщением

MMX технология поддерживает арифметику с насыщением (saturated arithmetics).

- В режиме с насыщением, результаты операции, которые переполняются сверху или снизу отсекаются к границе datarange соответствующего типа данных
- В режиме без насыщения, результаты, которые переполняются как в обычной процессорной арифметике (см. курсы по С и ассемблеру).

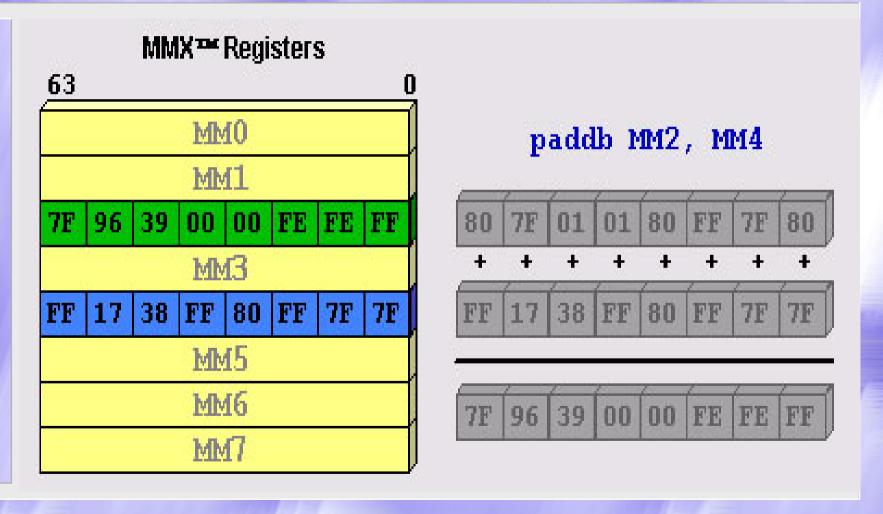
Таблица

Тип данных	Нижний	предел	Верхний	і предел
	Шестн адцат.	Десяти чн.	Шестн адцат.	Десати чн.
Знаковый байт	80H	-128	7FH	127
Знаковое слово	H0008	-32768	7FFFH	32767
Беззнаковый байт	00H	0	FFH	255
Беззнаковое слово	0000H	0	FFFFH	65535

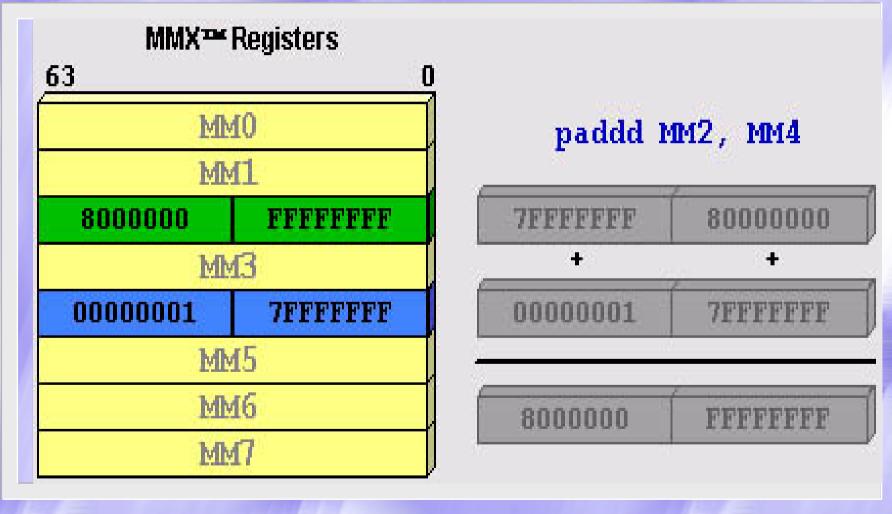
Команды передачи данных (пример)

МОVD (Переместить 32 Бита) передает 32 бита упакованных данных из памяти в регистры ММХ и обратно, или из целочисленных регистров в регистры ММХ и обратно.

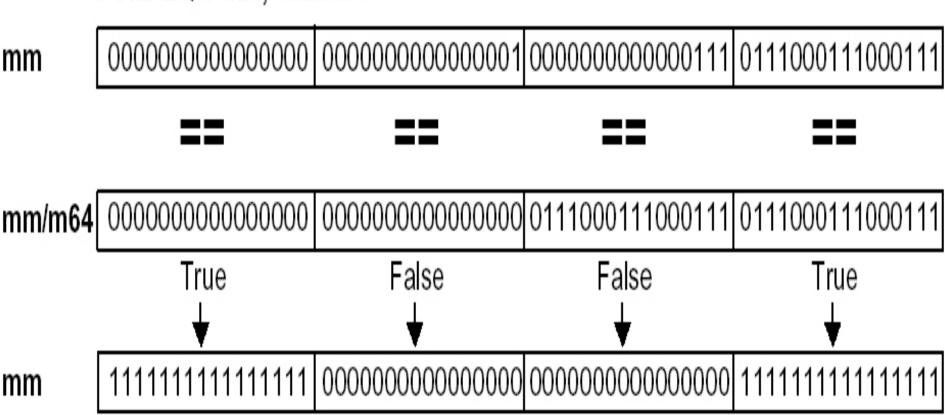
MOVQ (Переместить 64 Бита) передает 64 бита упакованных данных из памяти в регистры ММХ и обратно, или между регистрами ММХ.


Пример арифметических инструкций

Арифметичес-	Wraparound	Знаковая	Без
кие			знаковая
Сложение	PADD	PADDS	PADDUS
Вычитание	PSUB	PSUBS	PSUBUS
Умножение	PMULL/H		
Умножение и сложение	PMADD		


Пример для сложения типа Byte

Пример для сложения типа Word



Пример для сравнения

PCMPEQW mm, mm/m64

mm


```
1 movq MM0, [a_vector]
```

- 2 movq MM1, [b_vector]
- 3 pmaddwd MM0, MM1
- 4 paddd MM7, MM0
- 5 add [a vector], 8
- 6 add [b_vector], 8
- 7 sub [count], 4
- 8 jnz loop
- 9 movq MM0, MM7
- 10 psrlq MM7, 32
- 11 paddd MM7, MM0
- 12 movd mem vdp, MM7

Расчет скалярного произведения:

$$\sum a(i)*b(i)$$


```
1 movq MM0, [a_vector]
```

2 movq MM1, [b_vector]

A vector

•••	a5	a4	a3	a2	a1	a0
						l

a3	a2	a1	a0

3 pmaddwd MM0, MM1

MM0

|--|

pmadwd

MM1

b3	b2	b1	b0

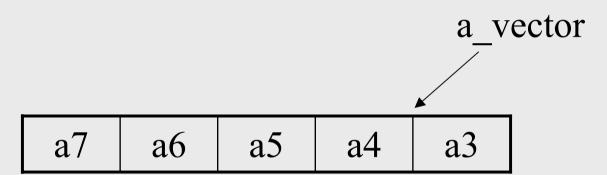
4 paddd MM7, MM0

MM7

00000000 00000000

paddd

MM0


a3*b3+a2*b2 | a1*b1+b0*a0

MM7

a3*b3+a2*b2 | a1*b1+b0*a0


```
5 add [a_vector], 8
6 add [b_vector], 8
```


7 sub [count], 4

Счетчик уменьшаем на 4. Уже обработано 4 элемента

8 jnz loop

Продолжается цикл если ещё осталось что обрабатывать

9 movq MM0, MM7

10 psrlq MM7, 32

MM7

a11*b11+a10*b10+a7*b7+	a9*b9+a8*b8+a5*b5+a4*b
	4+a1*b1+a0*b0

shift

00000000	a11*b11+a10*b10+a7*b7+ a6*b6+a3*b3+a2*b2

11 paddd MM7, MM0

MM7

a11*b11+a10*b10+a7*b7	A9*b9+a8*b8+a5*b5+a4
+a6*b6+a3*b3+a2*b2	*b4+a1*b1+a0*b0

paddd

MM0

00000000	a11*b11+a10*b10+a7*b7
	+a6*b6+a3*b3+a2*b2

a11*b11+a10*b10+a7*b7	Наш результат
+a6*b6+a3*b3+a2*b2	

- ♦ ММХ технология
- ◆ Программа VirtualDub
- ◆ Программа AviSynth
- ◆ Программа Mathcad

VirtualDub

Лучшая программа для работы с потоковым видео

План

- ✓ О программе VirtualDub
- ✓ Как писать фильтры
- ✓ Пример
- ✓ Итоги

VirtualDub является бесплатно распространяемой программой.

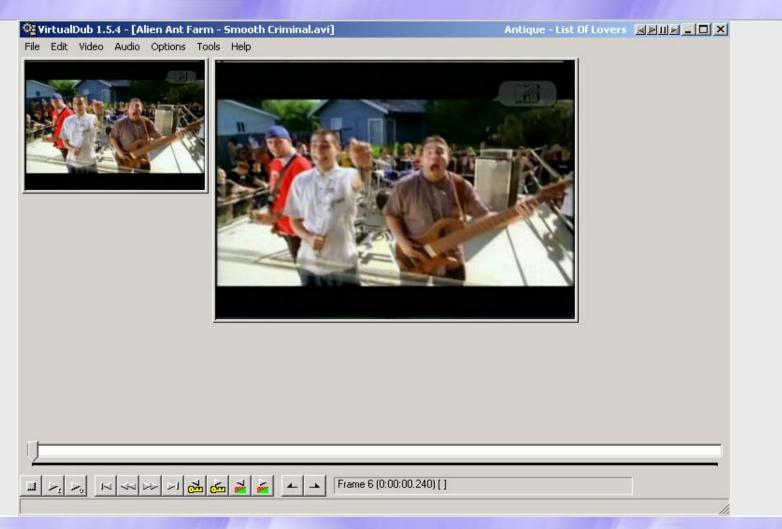
Это САМАЯ распространенная программа для поточной обработки видео (в т.ч. Подготовки MPEG-4 фильмов с DVD).

У неё открытые исходники, что позволяет модифицировать исходный код программы.

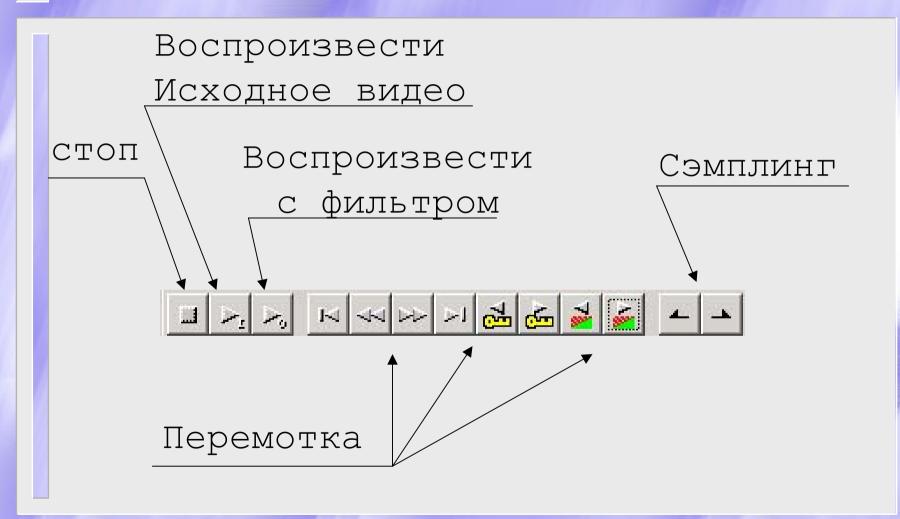
Где можно скачать и узнать о VirtualDub

http://virtualdub.org/

Это официальный сайт VirtualDub. Здесь можно скачать последние версии и документацию по использованию.


Область применения

- Осуществляет просмотр и базовое редактирование видео
- Позволяет конвертировать в разные форматы видео и аудио треки
- Обрабатывает видео (и аудио) с использованием фильтров
- Осуществляет восстановление файлов
- Позволяет указывать в скрипте автоматическую обработку фильмов
- Осуществляет качественный захват видео с камеры


Внешний вид VirtualDub

Панель управления

Меню File

Open video file	Ctrl+O
Append AVI segment	
Preview input	Space
Preview filtered	Enter
Preview output from start	F5
Save as AVI	F7
Save old format AVI	Shift+F7
Save segmented AVI	
Close video file	Ctrl-W
File Information	
Save striped AVI	
Save stripe master	
Save image sequence	
Save WAV	
Load processing settings	Ctrl+L
Save processing settings	Ctrl+5
Start frame server	
Capture AVI	
Run script	
Job control	F4
1 battle.avi	
2 Alien Ant Farm - Smooth Criminal.avi	
31.BMP	
4 015.AVI	
Ouit	

Работа с файлами: сохранение, загрузка, сохранение скриптов и т.п.

Работа Job – создание последовательных указаний для VirtualDub

Меню Edit

Beginning	Ctrl+Left
End	Ctrl+Right
Previous frame	Left
Next frame	Right
Previous keyframe	Shift+Left
Next keyframe	Shift+Right
Back 50 frames	Alt+Left
Forward 50 frames	Alt+Right
Previous drop frame	{
Next drop frame	}
Previous range	<
Next range	>
Move to selection start	[
Move to selection end]
Go to	Ctrl-G
Delete selection	Del

Set selection start

Set selection end

Mask selected frames Unmask selected frames

Reset frame subset

Более обширные возможности по перемотки видео вплоть до перехода на указанный номер кадра.

Работа с сэмплингами в расширенном режиме.

Home

End

Меню Video

Filters... Ctrl+F

Frame Rate... Ctrl+R

Color Depth... Ctrl+D

Compression... Ctrl+C

Select Range...

Direct stream copy

Fast recompress

Normal recompress

Full processing mode

Copy source frame to clipboard Ctrl+1

Copy output frame to clipboard Ctrl+2

Scan video stream for errors....

Error mode...

Обработка видео с использованием фильтров. Подключение и указание параметров

Проверка на наличие ошибочных кадров в видео потоке.

Меню Audio

Interleaving...

Ctrl+I

Compression...

Use advanced filtering

Filters,...

Conversion...

Ctrl+A

Volume...

No audio

- Source audio
 WAV Audio...
- Direct stream copy
 Full processing mode

Error mode...

Установка параметров звука и фильтров которые будут подключены в момент обработки.

Установка режима:

- •Прямое копирование потока
- •Режим полной обработки

Меню Option

Show log	F8
Show real-time profiler	Shift-F8
Performance	
Dynamic Compilation	
Preferences	
✓ Display input video	F9
✓ Display output video	F10
Display decompressed output	Shift-F10
✓ Show status window	
Swap input/output panes	
Synchronous blit	
Vertical display	
Histograms	
✓ Sync to audio	
Drop frames when behind	
Enable DirectDraw acceleration	ĺ
Preview field mode	4

- 1. Просмотр Log файлов
- 2. Установка параметров кодеков
- 3. Отображение потоков видео
- 4. Формат отображаемой информации
- 5. Расположения окон

Как писать фильтры для VirtualDub

Фильтр для VirtualDub представляет собой DLL библиотеку которая имеет вид:

<имя>. vdf

После этого можно скопировать его в папку Plugins и подключить в программе как фильтр.

Файл должен содержать минимальный набор функций для работы. Те функции которые используются должны быть описаны в специальной структуре. Если функция не используется, то в поле должно стоять NULL.


```
typedef struct FilterDefinition{
  FilterInitProc
                          initProc;
  FilterDeinitProc
                          deinitProc;
  FilterRunProc
                          runProc;
  FilterParamProc
                          paramProc;
  FilterConfigProc
                          configProc;
  FilterStringProc
                          stringProc;
  FilterStartProc
                          startProc;
                          endProc;
  FilterEndProc
  FilterScriptStrProc
                          fssProc;
 FilterDefinition;
```

Пример

Разберем пример программы которая Blue компоненту уменьшает в два раза, а Green оставляет без изменения.

int runProc(const FilterActivation *fa,
const FilterFunctions *ff);

Это аналог процедуры main() в C++, VirtualDub начнет действия с вызова этой функции при обработке кадра (не учитываем вызов инетфейса).

RunProc

Фильтр, уменьшающий Blue в два раза

```
src = (Pixel32 *)fa->src.data;
dst = (Pixel32 *)fa->dst.data;
h = fa->src.h;
do {
       w = fa->src.w:
       do {    old pixel = *src++;
               new pixel = (old pixel & 0xFF0000) +
                ((old pixel \& 0x0000FE)>>1) +
               0x008000:
               *dst++ = new pixel; }
       while (--w);
       src = (Pixel32 *)((char *)src +
       fa -> src.modulo);
       dst = (Pixel32 *)((char *)dst +
       fa -> dst.modulo);
while (--h);
return 0;
```


Служебные функции

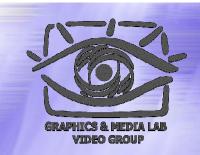
Для VirtualDub надо включить 2 функции они служебные и не несут большой смысловой нагрузки, но их надо указывать для совместимости с VirtualDub:

```
extern "C" int __cdecl
    VirtualdubFilterModuleInit2(FilterModule *fm,
    const FilterFunctions *ff, int& vdfd_ver, int&
    vdfd_compat);
extern "C" void __cdecl
    VirtualdubFilterModuleDeinit(FilterModule *fm,
    const FilterFunctions *ff);
```


Описание структуры

Описание атрибутов относящиеся к интерфейсу фильтра, подсказка для пользователя при подключении фильтра.

Описание структуры


```
//Описание используемых функций.
  NULL,
                     // initProc
                  // deinitProc
  NULL,
  tutorialRunProc, // runProc
                     // paramProc
  NULL,
                     // configProc
  NULL,
                     // stringProc
  NULL,
                     // startProc
  NULL,
                     // endProc
  NULL,
  NULL,
                    // script obj
                    // fssProc };
  NULL,
```

Компиляция

- После компиляции файл будет иметь вид *.dll
- Переименовать файл в *.vdf (мы создавали проект для написания DLL библиотеки)
- Поместить его в папку Plugins
- Подключить в опциях VirtualDub фильтр

Итоги

Плюсы:

- Программа является бесплатной и с открытыми исходниками
- Все проблемы с открытием видео и его сохранением уже решены
- Возможность загрузки фильтров
- Программирование ведется на C++ что позволяет пользоваться весьма гибким аппаратом для реализации своих алгоритмов

- ♦ ММХ технология
- ◆ Программа VirtualDub
- ◆ Программа AviSynth
- ◆ Программа Mathcad

AviSynth

Скриптовый язык потоковой обработки видео

План

- ✓ О программе AviSynth
- ✓ Операторы
- ✓ Семантика и прагматика операций:
 - логические
 - математические
- ✓ Классификаций функций AviSynth
- ✓ Использование Plugins
- ✓ Итоги

Что это такое?

AviSynth является программойисточником (FrameServer) которую используют различные приложения для обработки видео.

Также AviSynth обладает развитым скриптовым языком и механизмом Plug-In, позволяющим в потоке обрабатывать фильмы.

Использование AviSynth состоит из двух этапов:

- создается простой текстовый документ который содержит последовательность команд скрипт;
- запускается приложением обрабатывающее видео, например, можно запустить его VirtualDub или Windows Media Player.

Почему удобен AviSynth

AviSynth является открытым и свободно распространяющимся проектом. Исходники можно исправлять и вносить в них те изменения, которые вам нужны. Этот проект только стартовал, и есть уникальная возможность поучаствовать в нём.

Где можно скачать и узнать о AviSynth

Официальный сайт AviSynth:

http://www.avisynth.org/

Здесь можно вносить свои предложения, а также предложена весьма интересная идея — корректировать сайт вместе с разработчиками.

Типы доступные в AviSynth

Семантика типов данных	Прагматика
clip	Переменная хранящая параметры видео/аудио клипа
string	Строковая переменная
int	Целочисленная переменная
float	Переменная с плавающей точкой
bool	Булевская переменная

Логические операции AviSynth

Семантика	Прагматика
==	Равенство
! =	Неравно
	Логическое Или (OR)
& &	Логическое И (AND)

Логические операции AviSynth

Семантика	Прагматика
+	Сложение
_	Вычитание
*	Умножение
/	Деление
%	Mod (Операция в кольце)
>=(<=)	Больше/меньше или равно
>	Больше
<	Меньше

В эквивалентном виде:

Классификация функций в AviSynth

- 1. Численные функции
- 2. Строковые функции
- 3. Функции перевода
- 4. Проверочные функции
- 5. Другие типы функций

Остановимся на некоторых из их подробнее. Все эти функции а также многие другие приведены на сайте.

Численные функции

Переводит float в int до ближайшего снизу

Round (float)

Переводит float в int округляя результат

Round(1.2) = 1

Round (1.6) = 2

Round (-1.2) = -1

Round (-1.6) = -2

Численные функции

Стандартные математические функции:

```
Sin (float)
Cos (float)
Pi ()
Log (float)
Exp (float)
Pow (float base, float power)
Sqrt (float)
```


Численные функции

```
Spline (float X, x1,y1, x2,y2, ..., bool "cubic")
```

Пример:

```
Spline(5, 0,0, 10,10, 20,0, false) = 5
Spline(5, 0,0, 10,10, 20,0, true) = 7
```


UCase ("AviSynth") Буквы в верхний регистр

LCase ("AviSynth") Буквы в нижний регистр

RevStr("AviSynth") Инверсия букв

StrLen("AviSynth") Длина строки

Пример


```
UCase("AviSynth") = "AVISYNTH"

LCase("AviSynth") = "avisynth"

RevStr("AviSynth") = "htnySivA"

StrLen("AviSynth") = 8
```


Value (string) - Переводит строку в int

Пример:

Value ("-2.7") =
$$-2.7$$

Функции проверки типа

```
Функции проверки типа переменных:
IsBool (var)
IsInt (var)
IsFloat (var)
IsString (var)
IsClip (var)
```



```
a = AVISource("d:\capture.00.avi")
b = AVISource("d:\capture.01.avi")
c = AVISource("d:\capture.02.avi")
sound_track=AVSource("d:\audio.wav")
AudioDub(a+b+c, sound_track)
```

В переменные а,b,c записываются параметры трех видео роликов. Которые потом будут показаны последовательно друг за другом с общей звуковой дорожкой которую мы тоже предварительно загрузили.

Фильтры

В AviSynth можно использовать фильтры написанные уже раньше. Для этого их надо подключить специальной функцией:

LoadPlugin ("filename"[,...])

Фильтры в AviSynth имеют вид:

<un><uns</td>

Фильтры

AviSynth позволяет подключить фильтры написанные в VirtualDub. Единственное ограничение — необходимый формат видео RGB32. Но если будет другой формат можно воспользоваться встроенными в AviSynth функциями для перевода в нужный формат.

Использование фильтров VirtualDub

LoadVirtualDubPlugin
("filename", "filtername", preroll)

Подключение фильтра VirtualDub:

- 1. Первый параметр <имя>.vdf плагин VirtualDub
- 2. Второй параметр имя файла с конвертированного по AviSynth (<имя>.avs)
- 3. Preroll показывает сколько кадров необходимо держать в буфере (например, для деинтерлейсинга)


```
Import("d:\vdub_filters.avs")
AviSource("d:\filename.avi")
ConvertToRGB32() # Там где надо
VD_SmartBob(1, 0, 10, 1)
ConvertBackToYUY2() # Там где надо
```

VD_SmartBob(1, 0, 10, 1) – функция осуществляющая подгрузку плагина с соответствующими параметрами для данного фильтра.

Загрузка фильтра деинтерлейсинга


```
function VD SmartBob(clip ''clip'', bool
  ''show motion'', int ''threshold'', bool
  ''motion map denoising'')
  LoadVirtualdubPlugin("d:\bob.vdf"," VD Sm
  artBob", 1)
  Return
  clip.SeparateFields. VD SmartBob(clp.GetP
  arity?1:0, default(show motion, false)?1:0,
  default(threshold, 10),
  default(motion map denoising, true)?1:0)
```

Итоги

AviSynth является весьма гибким средством применительно к любому приложению работающему с видео. Возможность работы с исходниками позволяет получить при правильном подходе весьма ощутимые результаты.

Основное преимущество – возможность СУЩЕСТВЕННО сэкономить время при массовых операциях с фильмами.

- ♦ ММХ технология
- ◆ Программа VirtualDub
- ◆ Программа AviSynth
- ◆ Программа Mathcad

Mathcad

Удобнейшее средство визуализации данных.
Средство предварительной проработки фильтров.

Введение в Mathcad Достоинства mathcad'a

Почему стоит использовать Mathcad:

- Промежуток времени для получения первых результатов работы алгоритма значительно меньше по сравнению с разработкой в какой-либо среде
- Каждое изменение текста программы динамически влияет на результат
- Поиск ошибок осуществляется быстрее, чем в исходном тексте программы на к-л. языке программирования
- Реализовав основную часть алгоритма в mathcad'e, время написания реальной программы уменьшается на порядок
- Множество реализованных, готовых к использованию функций

Введение в Mathcad (2) Достоинства mathcad'a

Почему стоит использовать Mathcad:

- Исходный код программы выводится в графическом режиме, и потому выглядит нагляднее, чем в текстовом редакторе
- Как правило, для реализации к-л. задачи в mathcad'e требуется написать меньше исходного теста, чем например в C++
- Реализовав основную часть алгоритма в mathcad'e, время написания реальной программы уменьшается на порядок
- Отличная помощь: все описано кратко и понятно
- Простота использования
- Индексация в массиве начинается с нуля

Пример функции чтения Сбоку - изображение с NEDI

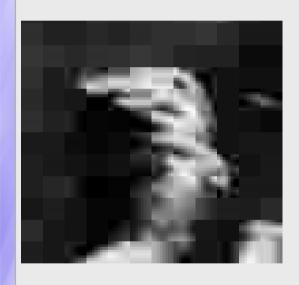
$$\label{eq:loadC2} \begin{split} \text{LoadC2}(A,i,j,M) &:= & \begin{array}{l} m \leftarrow M-1 \\ \text{str} \leftarrow 0 \\ \text{for} & d \in 0...m \\ \\ \hline & i0 \leftarrow i+d \\ j0 \leftarrow j-m+d \\ \text{for} & k \in 0...m \\ \\ \hline & \\ C_{\text{str},0} \leftarrow A_{i0-k,j0+k-2} \\ \hline & \\ C_{\text{str},1} \leftarrow A_{i0-k-2,j0+k} \\ \hline & \\ C_{\text{str},2} \leftarrow A_{i0-k+2,j0+k} \\ \hline & \\ C_{\text{str},3} \leftarrow A_{i0-k,j0+k+2} \\ \\ & \\ \text{str} \leftarrow \text{str} + 1 \\ \end{split}$$


Разработка фильтра
 Чтение изображения

Визуализация матрицы – Ctrl + T

S := "F:\Doklad\battle 100 59 blocked.bmp"

P := READRGB(S)


$$\begin{aligned} \text{DeTriple(P)} &:= & w \leftarrow \frac{\text{cols(P)}}{3} \\ & R_0 \leftarrow \text{submatrix(P, 0, rows(P) - 1, 0, w - 1)} \\ & R_1 \leftarrow \text{submatrix(P, 0, rows(P) - 1, w, 2 \cdot w - 1)} \\ & R_2 \leftarrow \text{submatrix(P, 0, rows(P) - 1, 2 \cdot w, 3 \cdot w - 1)} \\ & R \end{aligned}$$

S

Разработка фильтра
 Показ компонент изображения

RGB:= DeTriplex(P)

 RGB_0

RGB₁

RGB₂

Разработка фильтра
Перевод изображения в YUV

Разработка фильтра
Показ результата

YUV:= RGB_to_YUV(RGB)

 YUV_0

YUV₂

 YUV_1