Glicbawls — Grey Level Image Compression By
Adaptive Weighted Least Squares

Bernd Meyer, Peter Tischer
School of Computer Science and Software Engineering,
Monash University
Clayton, Victoria, Australia, 3800

Email: [bmeyer,pet]@csse.monash.edu.au

1 Introduction

In recent years, most research into lossless and near-lossless compression of greyscale
images could be characterized as belonging to either of two distinct groups.

The first group, which is concerned with so-called “practical” algorithms, encom-
passes research into methods that allow compression and decompression with low to
moderate computational complexity, while still obtaining impressive compression ra-
tios. Some well-known algorithms coming from this group are LOCO [4], CALIC [1]
and P2AR[2].

The other group is mainly concerned with determining what is theoretically possible.
Algorithms coming from this group are usually characterized by extreme computational
complexity and/or huge memory requirements. While their practical applicability is
low, they generally achieve better compression than the best practical algorithm of the
same time, thus proving beyond a doubt that the practical algorithms fail to exploit
some redundancy inherent in the images. Well-known examples are UCM[3] and TMW
[5]

What has been largely missing so far is an algorithm that combines the compression
rates of the impractical algorithms with the moderate computational requirements of
the practical ones. In this paper, we present Glicbawls, an algorithm that achieves that
goal for natural images.

The current implementation can compress and decompress greyscale images with 1 to
30 bits per pixel, using raw or ASCIT .PGM files, in both lossless and near-lossless mode.
Colour images (raw and ASCII .PPM files) are also supported, and while compression
rates for them are not world class, they are usually better than PNG’s.

Due to the simplicity of the Glicbawls algorithm, a full featured encoder/decoder can
be implemented in 1839 bytes of C code.! Even when including the decoder code with
each compressed image the compression rates achieved are still extremely competitive

!This is also due to some rather atrocious abuses of the C language — Glicbawls was originally
developed as an entry for the International Obfuscated C Contest.

and allow placing an absolute upper bound on the amount of information contained in
an image.

2 Overview

Wu’s P2AR|[2] algorithm uses a single linear predictor whose weights are recalculated
for each pixel. This is done by applying the least squares algorithm to the pixels in a
rectangular window around the current pixel. By choosing a rectangular window, the
computational complexity of calculating the least squares predictor can be markedly
reduced, thus making the method practical.

However, giving equal weight to the contribution of each pixel within the rectangular
window, and no weight to pixels outside the window, does not accurately reflect the
correlations that exist within typical images. Pixels close to the current pixel should
have more influence on the choice of weights than pixels farther away.

Glicbawls uses a predictor similar to Wu’s, except that the predictor weights are
recalculated by taking all previous pixels into account. Each pixel’s contribution to
the least squares algorithm is weighted by a factor of 0.8% where d; is the Manhattan-
distance between the pixel ¢ and the current pixel. Given this choice of weights, least
squares predictors can be calculated using an algorithm similar in efficiency to that used
in [2]

The resulting prediction errors are modeled by using the modified ¢-distribution
introduced in [5]. The spread parameter o of the distribution is calculated from the
weighted average of the squared prediction errors for all previous pixels, with each
pixel’s contribution being given the weight 0.79. This average can also be calculated
efficiently.

The actual entropy coding of the prediction errors according to the ¢-distribution is
handled by a straightforward arithmetic coder.

3 Least Squares Predictor

The calculation of weighted least squares predictors is at the very heart of the Glicbawls
algorithm. Only through an efficient implementation of this calculation could Glichbawls
achieve its goal of practicality.

3.1 Definition of Predictor

At any point during the encoding, there are a number N of previous pixels, with pixel
values py,ps, -+ ,py at coordinates (z1,y1), -+, (n,yn), as well as a current pixel at
coordinates (z¢,yc) whose pixel value peo is to be predicted. For each of those pixels
pi, the 12 causal neighbours with a Manhattan-distance of three or less? are referred to

ni1
as n; = < . >
4,12

2Which neighbouring pixel ends up at what position in n does not matter, as long as it is consistent
at each step

For each pixel p;, a matrix A; and a vector b; can be calculated as

A;= nn;" (1)
bz- = pin; (2)

From those, A¢ and b are calculated as

N
Ao = Z 0.8lrc—wiltlvo—vil A, (3)
=1
and
N
be = Z 0.8lrc—wil+lyo—vilp, (4)
=1

Then solving the linear equation system?

ACW == b(j (5)

w1

:) of the linear predictor that can be used to predict

w12

will give the weights w = <

pc from ne.

3.2 Efficient Calculation

Glicbawls encodes and decodes images in scanline order. This implies that yc can never
be smaller than the y; of any previously seen pixel, and thus |yc — vi| = yo — vi-

Assuming the indices of the previously seen pixels p; to be ordered according to their
x; coordinates in such a way that z; < z;11, we can define N, as the index of the first
pixel with x; > ¢ and M|, as the index of the last pixel with z; < ¢. In effect, py, - - - pasy
will be the set of all pixels in column one, and py, - - - pa, the set of all pixels in column
q. Obviously, M, +1 = Ng4i.

We can then rewrite equation (3), using X for the number of columns in the image,
as

X M,
Ac =) (0879 Y " 0.8 v A) (6)
q=1 =Ny
Defining B, as
Mq
B, =Y 08WcvA, (7)
i=Ny

3 Actually, this is a simplification. See section 3.3 for one additional step that has been omitted from
this explanation.

equation (6) can be written as

zo—1 X
Ac = (08F=9B) + > (0.84")B,) (8)
q=1 q=zc

We can refer to the two parts of that sum as E and F, i.e.

zo—1

E=) (08 9B, (9)
F=> (084"B,) (10)

Then E contains the contributions of all
previous pixels left of the current pixel, while
F contains the contributions of all pixels above ' ' ' ' F
the current pixel that are not in E (see fig- E
ure 3.2). As can easily be seen, in the case
where the current pixel is the top left corner
pixel (i.e. the first one in scanline ordering),
both are matrices containing only zeros. The
same is true for all B,.

Whenever a pixel has been fully encoded
or decoded, it is added to the set of pre-
viously seen pixels, and the algorithm then Figure 1: Pixel ranges accounted
proceeds with the next pixel in scanline or- for by E and F in efficient calcu-
der. Let [be the index of the pixel just added
to the set of previously seen pixels.

Current Pixel

lation of predictor weights

3.2.1 Non-border Case

Usually, the next pixel is at coordinates (xc + 1, y¢), i.e. just to the right of the current
pixel. Proceeding to it does not change yc at all. As the B, do not depend on z¢ at
all, the only B, that changes is the B the A; from the just finished pixel gets added to,
which is B,. Thus

B if
Bq - q 1 q 7£ Tc, (11)
B,+A ifg=uxc.

When proceeding to the right, a whole new column of pixels is added to the range
of pixels covered by E. The contributions of all the pixels in that column are contained
in B,,. On the other hand, for all the pixels that were already covered by E before, the
Manhattan-distance from the current pixel is going to become one larger than it was
before, and thus their contribution gets weighted down by a uniform factor of 0.8. Thus

E « 0.8E + B,,, (12)

using the already updated B,,..

Similarly, proceeding to the right means that a whole column of pixels is removed
from the range covered by F. The contributions of those pixels are contained in the
pre-update version of B, ,. For all pixels that remain in the range covered by E, the
Manhattan-distance from the current pixel is going to become one smaller, and thus
their contributions get weighted up by a uniform factor of %. Thus

F-B,,
0.8

F + (13)

using the pre-update B,,..

3.2.2 Border Case

Whenever the pixel just encoded or decoded was the rightmost pixel of a scanline, the
next pixel is at coordinates (0,yc + 1), i.e. the leftmost pixel of the next scanline.
Proceeding to it increases yc.

The B, do not depend on z¢ at all, but they do depend on yc. Increasing yo by
one will increase the exponent in their definition by one, and thus their values need to
be scaled down by a factor of 0.8.

Of course, the A; from the pixel just encoded or decoded needs to be added to the
appropriate B, before that scale-down:

e {O.8Bq ?f q# rc, (14)
0.8(B,+ A, if¢=uzc.

When moving to the leftmost pixel of a new scanline, there will be no pixels to the
left of the current pixel, and thus

E« 0 (15)

F, however, needs to be recalculated completely from the updated B,, to contain
the influence of all the pixels seen so far:

X
F <«) (0.8""YB,) (16)
q=1

3.2.3 Implementation Issues

While the above algorithm is mathematically correct, repeated application of equation
(13) will lead to numerical instability. Also, calculating F directly according to equation
(16) is inefficient.

The solution is to pre-calculate all values for F each time work on a new scanline is
started. This can be done by defining

(17)

P _ Byt 08F ifg <X,
o ifg=X+1.

At the start of each scanline, all Fy,--- Fx are calculated (starting at Fx and
working downward, i.e. working from right to the left) and stored. These precalculated
values are then used instead of the single, constantly maintained F described in the
algorithm above. Except for differences introduced by numerical inaccuracies, they are
identical. However, the storage required for the precalculated values roughly doubles
the memory requirements of the efficient calculation.

All of the above has dealt only with A; and A and has completely ignored the b;
and be. The exact same methods are used for them. Simply replacing every A with b
in the above will suffice to arrive at an efficient method for calculating be.

3.3 Bias

One problem commonly encountered when using least squares predictors, especially ones
calculated from relatively few observations*, is that they tend to overfit data, sometimes
producing horrendously large predictor weights. However, large weights are usually not
desirable for predicting in the presence of noise, as they tend to amplify the noise in the
predicted value.

To avoid this problem as much as possible, Glicbawls adds a bias u towards an
averaging predictor to the equation system before calculating the weights. A matrix
A and a vector be are defined as

Ao = Ag +ul (18)
1 u
be=be+— | : 19
c c+12 : (19)
u

Instead of actually using equation (5) to calculate the predictor weights, we use
Acw = be (20)

The strength of this bias, w, is initially given a value of 80, and then dynamically
adapted during the encoding or decoding of an image. For each pixel, two predicted
values are calculated, P; (which is used for coding) using a bias of u, and P using a
smaller bias of 0.9u. For both, the prediction errors are calculated (e; = P, — pc and
ey = Py — pc). Then u is adjusted as follows:

(21)

u+el—e2 ife; >0
u+e2—el ife; <0

Experiments show that this way of changing u allows for rapid adjustment in case
the characteristics of the image change strongly, while being fairly robust in the presence
of small, random, noise induced differences between P, and Ps

40r, in the case of Glicbawls, calculated from many observations, relatively few of which are given
enough weight to dominate the calculation.

4 Prediction Error Modeling

4.1 Modified t-distribution

Once the predictor has predicted a pixel value P for the current pixel, a modified t-
distribution is centered around that prediction. The probability of the current pixel
value being less than X is given by the formula
X=-p 1 13
po<X)=K [(¥ (22)
N

and the probability of the current pixel value being between X; and X5 by
p(Xi <z <Xy =plr<Xy) —plr<X) (23)

with K chosen so that p(x < oo) = 1. Because in Glichawls the probabilities passed to
the arithmetic coder are always ratios of values given by these formulae, the constant
factor K can be ignored for the calculation.

This distribution is similar to a Normal Distribution, but has the useful property of
having more weight in the tails, and thus being more forgiving about large mispredictions
by the least squares predictor. Its other useful property is that the integral can be solved
analytically.® Ignoring the term K, that probability can be calculated as

p(r < X) = D)) (ELE L 1) ¢ (24)
(n—=1) rn42(y) 1
2 = ifn < 14,
r(y) = vy Vi (25)
L ifn=14
Ne T

where c is an integration constant that cancels out in equation 23.

4.2 Calculation of o

To determine the distribution parameter o and thus the width of the distribution, the
weighted average S of the squared prediction errors for all previously seen pixels is
calculated. Each pixel’s contribution €? is being weighed proportionally to 0.7%. This
average can be calculated efficiently using the methods described in section 3.2. As the
result of the calculation, however, is supposed to a scalar value (rather than an equation
system), scaling has to be applied to ensure that the weights sum up to one. o is then

calculated as
o = 0.964VS (26)

The factor 0.964 was arrived at empirically and provides a slight compensation for the
shape of the used distribution, which is slightly wider than a Normal Distribution with

By looking it up in [6], the book the German engineering term “Bronstein-integrierbar” is derived
from

the same ¢.5

4.3 Avoiding Numerical Instability

Using the definitions given so far on a machine with limited numeric precision can in
rare cases lead to a probability being calculated as zero. If that happens, the program
would either fail or enter an infinite loop.

For this reason, p is defined as

ﬁ(Xl S r < XZ) = p(Xl S r < X2) + 1076(X2 — Xl) (27)

and p is used instead of p for for coding. Because in Glicbawls, all probabilities passed to
the arithmetic coder are ratios of two p thus calculated, it is not necessary to explicitly
renormalize the D to ensure they add up to 1.

For most natural images, the difference of this modification on the compressed image
size is negligible.

4.4 Coding

Pixel values are encoded by repeatedly subdividing the possible value range into two
(roughly) equal sized parts, and encoding which part contained the actual value. En-
coding stops when the possible value range has been reduced to a size small enough to
ensure reconstruction with the required accuracy. For lossless compression, this is the
case when the size of the value range reaches one, but for near-lossless compression with
a maximum allowed error of e, reaching a size of 2e + 1 is sufficient.

When encoding a greyscale image with a maximum pixel value of M, the initial
range (i.e. the range of possible non-quantized pixel values) is Ry = [—0.5, M + 0.5)

Whenever a value is known to be in the range R; = [X7, X5) and a further reduction
in the size of the range is necessary, a value X is calculated that splits R; into R, =
[Xl,Y) and Ri,g = [Y, XQ).7

Given that the pixel value is known to be in R;, the probability r; of it being in R;;
is

B p(X <z <X)
_]/9\(X1§1'<X2)

™ (28)

A simple binary arithmetic coder is used to encode which part of R; the actual
pixel value was in (or, in the case of decoding, to provide that information). The range
bounds are then adjusted, and if necessary, another iteration is taken.

6The actual implementation contains some extra detail which cannot be discussed in the limited
space available. In particular, measures to ensure that o does not become unreasonably small, even in
the face of large areas of perfect prediction. For natural and thus noise-containing images, the influence
of these measures is negligible.

In the case of near-lossless compression, the total possible range is first divided into “bins” of size
2e + 1, and X is chosen to be on a boundary between bins. The bins are aligned in such a way that
the predicted pixel value is centered in the middle of a bin, thus minimizing the expected number of
bits needed to encode the pixel.

5 Weight Adjustment

There is one more twist to the Glicbawls algorithm. As described so far, the unavoidably
large prediction errors near edges in the image will dominate the least squares algorithm.
The resulting predictors are well suited for predicting pixels near edges, but are generally
suboptimal for non-edge regions.

Due to the way the o parameter is calculated, however, the Glicbawls algorithm
usually ezpects predictions for pixels near edges (i.e. in the vicinity of previous larger
prediction errors) to be less accurate — o will be larger for those pixels. Figuratively
speaking, “getting it wrong” is not as much of a problem for those pixels as for the
others.

For this reason, the influence of pixels for which ¢ was large should be reduced. In
Glicbawls, this is done not by using the definitions in equations (1) and (2), but rather
the following scaled versions:

Different powers of o were tried for the weight adjustment. There is no single “best”
choice, different images compress best with different exponents, but simply reducing
weights by % gives the best overall performance over a large suite of test images.

6 Self Extraction

Due to the small size of the C source that implements the Glichawls algorithm, including
it with the compressed data is feasible. The total overhead for including the complete
(gzip-compressed) source code as well as a small shell script that extracts, uncompresses
and compiles it and then uses the resulting executable to decompress an image, is no
more than 1370 bytes. The resulting file is a shell script that will output the image to
its standard output.

As that file contains everything needed to recreate the image file on any UNIX
machine which has gunzip and a C compiler installed, its total size can serve as an
absolute upper bound for the amount of information contained in the image.

7 Colour Images

In order to keep the Glicbawls code size small, colour images are essentially treated as
greyscale images in which the colour components are interleaved on a per-pixel basis.
Each row of the greyscale image is three times as wide as those of the colour image
it was derived from. The values in columns 3n + 0 of the greyscale image are the R
components of the colour pixels in the matching columns n, the values in columns 3n+1
are the G components, and the values in columns 3n + 2 the B components.

When dealing with colour images, the local neighbourhood used to predict pixel
values is modified by multiplying all horizontal offsets by 3. Effectively, this means that

| | balloon | barb | barb2 | board [boats | girl | gold | hotel [zelda | lenna || Avg |

lossless compression
LOCO 2.90 4.65 4.66 3.64 3.92 3.90 | 4.47 4.35 3.87 4.24 4.06
CALIC 2.83 4.41 4.53 3.56 3.83 3.77 | 4.39 4.25 3.75 4.10 3.94
P2AR 3.98 3.64 4.30 3.96 3.78
Glicbawls 2.64 | 3.92 4.31 3.39 3.63 | 3.56 | 4.28 | 4.18 | 3.54 | 3.90 || 3.74
near-lossless compression, e=1
LOCO 1.64 | 3.15 3.17 2.20 2.48 2.45 3.00 2.87 2.37 2.71 2.60
Glicbawls 1.32 | 2.43 2.81 1.94 2.17 | 2.11 | 2.75 | 2.66 | 2.05 2.39 || 2.26
near-lossless compression, e=5
LOCO .73 1.70 1.65 .86 1.13 1.26 1.51 1.38 1.19 1.37 1.28
Glicbawls .33 | 1.04 1.28 .60 .84 .81 | 1.23 | 1.14 .65 .89 .88
lossless compression, self extracting file
Glicbawls 2.67 [3.94 | 4.34 [342] 3.65 | 3.59 [4.30 [4.20 | 3.56 | 3.94 [[3.76

Table 1: Compression results, in bits per pixel, for Glicbawls compared to CALIC,
LOCO and P2AR in lossless and near lossless modes

pixel values from one colour band are predicted based only on values from the same
band. However, as the weights used for predicting pixel values are calculated as before,
data in one colour band will still effect the predictions the others.

Also, no adjustment is made in the calculation of o parameter. This means that the
magnitude of prediction errors in one colour band will influence the expected magnitude
of prediction errors in other bands.

8 Results

Table 1 lists file sizes (in bits per pixel) obtained by running Glicbawls®, CALIC using
arithmetic coding?, LOCO'® and P2AR[2]"" on a variety of test images. In all cases,
Glicbawls provides the best compression rates of all programs compared.

Table 2 lists file sizes (in bits per pixel) obtained by running Glichawls as well
as several well-established colour compression programs on a number of photographic
test images.!2. While certainly not being competitive with state-of-the-art methods,
Glicbawls consistently outperforms both Locoe and Pngcrush, two programs in common
use today.

Table 3 lists file sizes for the so-called “artistic” (i.e. non-photographic) CLEGG,
FRYMIRE and SERRANO images. As can clearly be seen, Glichawls is not suitable
for such images.

Quite surprisingly, given that it was designed as a compression program for contin-
uous tone greyscale images, Glicbawls performs reasonably well on the eight CCITT
sample fax pages as well.!* The total set is compressed to 242.2kB, for a compression
ratio of 16.56:1. This is ahead of the Group4 fax standard (15.5:1), but loses to IBM’s
Q-coder (19.0:1) and JBIG (19.7:1).

8 As available from http://www.csse.monash.edu.au/ bmeyer/glicbawls
9As available from ftp://ftp.csd.uwo.ca/pub/fromwu/
0 A available from http://www.hpl.hp.com/loco/
HThe average for P2AR was estimated based on the available results
12Comparison values: http://www.geocities.com/SiliconValley/Bay/1995/artest14.html
13The binary images are treated as two-level greyscale images.

10

‘ ‘ lena ‘ monarch ‘ peppers ‘ sail ‘ tulips H Avg ‘

lossless colour compression

BMF 12.28 8.21 9.19 | 10.02 9.31 9.80
Rkim 12.56 8.37 9.15 | 10.26 9.39 9.95
Locoe 13.60 11.29 11.75 | 15.61 | 12.54 | 12.96

Pngcrush | 14.51 12.52 1299 | 16.17 | 13.85 | 14.01
Glicbawls | 12.74 10.14 10.56 | 13.60 | 10.71 || 11.55

Table 2: Colour compression results, in bits per pixel, for Glichawls compared to a range
of existing methods

‘ ‘ clegg ‘ frymire ‘ serrano H Avg ‘
lossless colour compression
BMF 4.28 1.26 1.27 2.27
Rkim 10.43 3.95 3.26 5.88
Locoe 7.30 6.06 4.70 6.02

Pngcrush 5.41 1.63 1.71 2.92
Glicbawls | 15.08 | 12.98 | 11.65 || 13.24

Table 3: Colour compression results for “artistic” images, in bits per pixel

9 Conclusion

We have presented an algorithm for lossless and near-lossless compression of greyscale
images which consistently achieves higher compression ratios than CALIC while having
a computational complexity low enough to be practical.

Including the source code of the decompressor with the compressed image allows the
creation of self-extracting files, thus giving absolute upper bounds for the information
contained in images.

While originally developed for greyscale images, the algorithm can also handle colour
as well as bi-level images, achieving respectable compression on them.

References

[1] X. Wu and N. Memon, “Context-based, Adaptive, Lossless Image Codec”, IEEE
Trans. on Communications, vol. 45, no. 4, April 1997.

2] X. Wu, K.U. Barthel and W. Zhang, “Piecewise 2D Autoregression for Predictive
Image Coding”, International Conference on Image Processing conference proceed-
ings, Vol 3, 1998

(3] M. J. Weinberger, J. J. Rissanen and R. B. Arps, “Applications of universal con-

text modelling to lossless compression of gray-scale images,” IEEE Trans. Image
Processing, 5, 1996, 575-586.

11

[4] M. Weinberger, G. Seroussi and G. Sapiro, “LOCO-I: A Low Complexity, Context-
Based, Lossless Image Compression Algorithm”, Proceedings IEEE Data Compres-
sion Conference, Snowbird, Utah, March-April 1996

[5] B. Meyer and P.E. Tischer, “TMW — a New Method for Lossless Image Com-
pression”, International Picture Coding Symposium PCS97 conference proceedings,
September 1997

(6] I.N. Bronstein, K.A. Semendjajew, G. Musiol and H. Miihlig, “Taschenbuch der
Mathematik, 2. Auflage”, Verlag Harri Deutsch, Frankfurt am Main, 1995

12

