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Abstract

We present a general purpose lossless greyscale
image compression method, TMW, that is based
on the use of linear predictors and implicit seg-
mentation. In order to achieve competitive com-
pression, the compression process is split into an
analysis step and a coding step. In the first step,
a set of linear predictors and other parameters
suitable for the image is calculated, which is in-
cluded in the compressed file and subsequently used
for the coding step. This adaption allows TMW
to perform well over a very wide range of im-
age types. Other significant features of TMW are
the use of a one-parameter probability distribu-
tion, probability calculations based on unquantized
prediction values, blending of multiple probability
distributions instead of prediction values, and im-
plicit image segmentation.

The method has applications beyond image com-
pression. The work is also relevant to image seg-
mentation and image comparison.

For image compression, the method has been
compared to CALIC on a selection of test images,
and typically outperforms it by between 2 and 10
percent, at the cost of considerably slower com-
pression. In particular, a bitrate of less than 3.92
bpp has been achieved for the luminance band of
the well known lenna image, compared to 4.05 bpp
reported for CALIC in [Wu97].

1 Introduction

Recent years have seen many advances in the field
of lossless coding of greyscale images. However,
even the most successful method, CALIC is ba-
sically a variation on a few well known methods
— namely predictive coding, context based selec-
tion of predictor coefficients and a fading-memory
model for prediction error distributions.

In this paper, we present an approach to lossless
coding of greyscale images that uses several funda-
mentally new concepts, such as the extraction of
global image information, the use of multiple pre-
dictors with blending in the probability domain,

and the use of unquantized predicted values

2 Two stage encoding

The proposed method uses a two stage encoding
process. In the first stage, called Image Analysis,
a set of model parameters is chosen in a way that
minimizes the length of the encoded image. This
set of model parameters is then used in the second
stage, the Coding Stage, to do the actual encod-
ing. Obviously, the chosen parameter set has to
be considered part of the encoded image and has
to be stored or transmitted alongside the result
of the Coding Stage. Thus, the format of the en-
coded image is a two part message, as shown in
figure 1.
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Figure 1: Principle of two part message used in
proposed method

Wallace introduced the idea of such two part
messages in [Wa68], asserting that the best choice
of model parameters, i.e. the one that best de-
scribes the true characteristics of the data, is the
one that led to the shortest overall message length.
A choice of model parameters that overfits the
data will result in an increase in the size of the
first part of the message that is larger than the
resulting savings in the second message part. Con-
versely, a choice of model parameters that under-
fits the available data will reduce the length of



the first message part by less than the resulting
increase in the second part of the message.

When applied to image compression, the first
message part can be seen as describing character-
istics of the image, i.e. as containing global infor-
mation. The second part of the message contains
purely local information about the values of indi-
vidual pixels. Ideally, the first part would capture
the “essence” or “meaning” of the image, while
the second part would only contain information
about the particular values of noise for each pixel.
While the proposed method does not yet achieve
this ideal goal, it does constitute a significant step
in this direction.

The two stage encoding process allows the pro-
posed method to adapt to and perform well for an
extremely wide range of image types. The results
given in section 5 range from applying the pro-
posed method to raytraced (i.e. practically noise
free) images all the way to applying it to noisy 12
bit medical images.

Another interesting aspect of the two stage pro-
cess is that it provides a measure for how similar
the characteristics of two images are. In order to
determine this measure for two images A and B,
individual parameter sets for each image have to
calculated as well as one parameter set covering
both images. The difference between the total file
sizes for

1. Encoding the images independently, with the
individual parameter sets, and

2. Encoding both images with the one parame-
ter set covering both of them

is the desired measure.

3 Model used

The model used in the proposed method is based
heavily on linear predictors. Three different kinds
of predictors are used

e pixel-predictors that predict a pixel value
based on the pixel values of its causal neigh-
bours;

e sigma-predictors that predict the magnitude
of a pixel-predictor’s prediction error based
on the magnitude of that pixel-predictor’s
prediction errors for the causal neighbours;

e blending-predictors that predict how well
suited a particular pixel-predictor is to pre-
dict a pixel value, based on how well the pixel-
predictor performed on the causal neigh-
bours.

The parameters of the resulting model are the
weights of the predictors. The model seems to be
powerful and flexible enough to adapt well to all
images it has been tested on so far.

3.1 Multiple Linear Predictors

The proposed method uses linear pixel-predictors

of the form
M

pred = Z w;Ppv;
i=1

with M being the number of causal neighbours
used for the prediction'and puv; being the pixel
value of the i-th causal neighbour.’The w; are
model parameters determined during the image
analysis stage and their values are included in the
first part of the encoded message.

One of the key ideas of the proposed method
is to use not just one but multiple such pixel-
predictors for each pixel.

The motivation behind this is that the correla-
tion characteristics of a pixel with its causal neigh-
bours typically are not constant over the whole
image. Trying to model all pixels with the same
predictor would necessarily result in that predic-
tor being suboptimal for at least some areas of the
image. [Wu97] addresses the problem by choosing
from a set of fixed predictors according to heuris-
tics, but still uses the prediction of only one pre-
dictor for the encoding. Also, due to the heuris-
tics being hardcoded, the choices made may po-
tentially be completely unsuitable for the image to
be encoded (a good example for this is the CALIC
result for the SHAPES image shown in figure 2).

Another approach to addressing the problem
is the one used in [Se97]; Multiple predictors
are used and their predictions are then blended
together to give a single predicted pixel value.
This method, however, applies a single proba-
bility distribution centered around the predicted
value. Unless that probability distribution itself
is bimodal, the resulting prediction cannot be bi-
modal, either, and thus potentially fails on edges.
See figure 3 for a case in which no single predicted
value would be appropriate, and a bimodal prob-
ability distribution is desirable.

The proposed method goes one step further
than [Se97] and calculates a probability distribu-
tion p(CP = z) for the current pixel having the

IThis model parameter is not determined during the
image anlysis stage, but instead is supplied by the user.
However, it ¢s included in the first part of the encoded
message. A value of 12 has been found to be a good choice
for images of size 512x512.

2We tried starting the sum at i = 0 with pvg = 1, i.e.
allowing a constant term in the linear predictor. Invariably,
it turned out that the best value for wo was very close to
0 and that the savings realized in the second part of the
encoded message were smaller than the cost of including
wo in the first part.



Figure 2: Synthetic image SHAPES

value z individually for each pixel-predictor. Then
the probability distributions are blended together,
resulting in a final probability distribution which
is then used to encode the pixel. If the blend-
ing weights are varied for different areas of the
image, this allows for the use of appropriate pre-
dictor blends. It also allows for the generation
of complex probability distributions, such as the
bottom right distribution in figure 3, from simple
ones.
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Pixel values predictor predictor
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Figure 3: Effects of blending predicted values vs
blending probability distributions

3.2 Probability Distribution for
Prediction Errors

Probability models in predictive coding give an es-
timate on the likelihood of a particular prediction

error occurring. As the prediction error distribu-
tion typically is not stationary over the whole im-
age, most models contain local parameters based
on information from a pixel’s causal neighbour-
hood.

However, experience shows that only the mag-
nitudes of prediction errors of close neighbours
of a pixel are in any significant way correlated
to the magnitude of the prediction error for said
pixel. This means that only a limited amount
of data is available for determining the local pa-
rameters, thus limiting the number of local pa-
rameters that can be determined in a statistically
meaningful way — the fewer local parameters are
used, the less information from non-local neigh-
bours has to be used to determine the parameters.
On the other hand, using fewer local parameters
also severely limits the possible shapes for the dis-
tributions.

There is a range of waysfor dealing with this
conflict. On one end of the range is the full his-
togram (which would require 255 local parameters
for an 8 bit image). This is rarely used, as the high
number of parameters would result in the use of
data from non-local neighbours. Further down the
range, other methods such like the ones used in
SUNSET [La94] and SMB [Wo094] can be found,
which are trading accuracy in describing the dis-
tribution shape for a reduction in local parameters
(for 8 bit images, SUNSET has a few dozen local
parameters, SMB has 9).

The probability model used in the proposed
method is at the other end of the range — it
uses a model with just a single local parameter.
This allows us to use only data from close local
neighbours. Experiments conducted during devel-
opment seem to indicate that the positive effects
from this high locality more than compensate for
the negative effects of not being able to describe
non-trivial distribution shapes. This might be due
to the use of multiple pixel-predictors described in
the previous section.

The distribution used is a variation of the -
distribution given by the formula

X 1
po<X)=K [ ()
with N currently hardcoded® at £ and K cho-
sen in such a way that p(z < +o0) = 1. The
parameter o is the local parameter estimated
from the magnitude of the prediction errors for
a pixel’s causal neighbours — currently the 30

3This should really be a variable parameter included in
the first part of the message. However, the current im-
plementation of the function p(z < X) uses a lookup ta-
ble which would have to be recalculated each time N is
changed. At the current time this is not practical.



causal neighbours within a Manhattan distance
of 5 pixels are used.*

One interesting result of using a continuous dis-
tribution for the probability model is that it allows
us to use predicted values without quantization.
If the predicted value is Z, then the probability
p(z = X)of the pixel value z being the integer X
can be expressed as

ol = K/X+5 z g,

X—5—z 1+22N

This means that the probability p(z = X) is
a continuous function of the predicted value T,
and that a prediction “between” two integers (e.g.
43.5) will give equal probability to both its neigh-
bours (i.e. 43 and 44). This results in an improve-
ment when compared to methods which are based
on discrete distributions and thus require a quan-
tization step which introduces a small amount of
quantization noise.?

3.3 Calculation of Distribution Pa-
rameter

The parameter o of the t-distribution is calculated
using a sigma-predictor. The formula used is

30
= E v; *pe?
i=0

with peo = 1 and pey; 30] the prediction error of
the corresponding pixel-predictor for the 30 causal
neighbours used. The v; are model parameters
and are included in the first part of the encoded
message.5

3.4 Predictor Trust

Experiments with the distribution described in
the previous two sections has shown that while
generally performing well, it fails badly on some
low noise images with sharp high contrast edges.
The best example is the SHAPES image shown in
section 5. In such images, a small value for o is
desirable for almost all pixels, however there are
pixels for which the prediction error will be quite
large. It turned out that the actual distribution of

4The number of pixels used for this should be a variable
parameter included in the first message part, too. However,
experiments seem to indicate that 30 pixels is a good choice
for almost all images tested. Therefore we chose to delay
adding in the extra complexity.

5The main benefit of using a continuous distribution is
described in section 4. The direct savings due to the elimi-
nation of the quantization noise are generally negligible —
for the lenna test image, the savings are about 0.001 bits
per pixel.

6Teaving out the constant term peg and thus the param-
eter vg will result in serious degradation of the compression
performance.

prediction errors could not be accurately modelled
by the modified ¢-distribution. For most pixels,
the distribution used was quite good, but for some
pixels (those on edges encountered for the first
time, and thus unexpectedly), all values for the
prediction error were essentially equally likely. In
order to account for this, a “trust” or “certainty”
parameter was introduced for each predictor, giv-
ing a modified function for the probability

(1-¢
L

(r=X)=cxplx=X)+

=)

where c is the trust parameter and L is the size
of the possible range of values for z. In effect, the
probability distribution described in the previous
two sections is blended with a distribution which
represents total ignorance.

It should be noted that one global parameter c is
calculated for each pixel-predictor and included in
the first message part. In contrast, the parameter
o is calculated for each individual pixel from local
information, and only the weights used in that
calculation are included in the first part of the
message.

3.5 Calculation of
Weights

Once the probability distributions for all pixel-
predictors have been calculated, they are blended
together to give a single, combined distribution.

Zb]p] r =

where P is the number of predictors used”and
b; is the blending weight for predictor j’s distribu-
tion. The b; are calculated based on the number
of bits the predictor j would have needed to en-
code the pixels in the causal neighbourhood in a
manner similar to Bayesian blending. The actual
formulas are

Blending

pall T =

Q
Inc; = Ztklnﬁj(mk:pvk)
k=0
e
R
Zk:l Ck

with pj(zr = pvg) being the probability the
predictor j assigned to the actual value of the
k-th causal neighbour, ) being the number of
causal neighbours used for calculating the blend-
ing weights®and the #; being model parameters

7Just like M, P is a parameter supplied by the user and
included in the first part of the encoded message.

8The third and final user supplied parameter, together
with M and P.



Figure 4: Partial assignment to predictor 10 for a
sample encoding of lennagrey using a model with
M=11, P=14 and @=24. Bright areas stand for
a high weight for the predictor, dark areas for a
low weight.

determined during the image analysis phase and
included in the first part of the encoded message.

Although this is not a completely correct inter-
pretation of the algorithm,this step might be un-
derstood by assuming that Inc; is an estimation
for the number of bits predictor j would require
to encode the current pixel, based on the number
of bits required to encode the causal neighbours.

If the b; are viewed as partial assignments of
the current pixel to a class or segment j, the
encoding process includes an implicit segmenta-
tion of the image. This segmentation, however, is
forming segments based on correlation properties
rather than visual impression, which means that
although it is a good segmentation to achieve high
compression, it does not correspond with human
perception of what a segmentation should be. In
particular, it seems that generally one predictor
will cover all smooth areas, while all the other
predictors are highly specialized (see figures 4 and
5).

3.6 Coding

Once pyy has been calculated, an arithmetic coder
is used to do entropy coding according to this dis-
tribution. However, it is not necessary to calculate
pau(z = X) for all L possible values of X (which
would be extremely slow for 12 bit images). In-
stead, poi (X <z <Y) can be calculated, which
allows for interval halving. This way, each pixel
of a B-bit image can be encoded with B binary

Figure 5: Partial assignment to predictor 5

coding events.

4 Image Analysis

With the exception of the ¢ parameters, all oth-
ers are weights in some sort of linear predictor.
As great care has been taken to ensure that all
functions dependent on such parameters are of a
continuous nature, the compressed filesize is a con-
tinuous function of the parameters as well.’Due to
this continuous nature, the partial derivatives of
the compressed message length with respect to the
individual parameters can be calculated. This al-
lows for the use of reweighted least squares [Bu94]
to calculate parameter sets.

The calculation of parameters for a given image
is an iterative process. Starting with an arbitrary
set of parameters, in each step one of the three sets
of predictor weights is optimized, while the other
two remain unchanged. The three sets are the
coefficients of the linear predictors, w, the param-
eters of the functions determining o in the prob-
ability model, v, and the parameters of the func-
tions determining the blending weights of proba-
bility distributions, ¢t. The ¢ parameters are ad-
justed in each step, using Newton approximation.
All optimizations of parameter sets are based di-
rectly on minimizing the encoded message length.

After each step, an estimate for the resulting
filesize is calculated, based on which the iteration
can be stopped when a sufficiently good set of pa-

9This is also the reason for not including M, P and Q
in the parameters calculated during the analysis phase —
as they are integers, the filesize is a discontinuous function
of these parameters.




image name || dimensions | bit depth | CALIC | TMW | ratio || description

balloon 720x576 8 2.83 2.66 | 1.06 || outdoor scene with balloons

clin01 1301x1001 12 5.95 5.80 | 1.03 || X-ray

lennagrey 5912x512 8 4.11 3.91 | 1.05 || well known test image

ref12b-0 512x512 12 2.77 | 2.50 | 1.11 || CAT-scan

shapes 512x512 8 1.14 0.76 | 1.50 || ray traced POVRAY sample scene
| http://www.cs.waikato.ac.nz/ " singlis /ratios.html || location of the following images

airplane 512x512 8 3.74 3.60 | 1.04 || mountain scene with jet plane

baboon 512x512 8 5.88 5.73 | 1.03 || extreme closeup on baboon face

boats 720x576 8 3.83 3.61 | 1.06 || fishing boats at low tide

bridge 256x256 8 5.68 5.59 | 1.02 || outdoor scene

camera 256x256 8 4.19 4.10 | 1.02 || camera and grass

couple 256x256 8 3.61 3.45 | 1.05 || sixties couple in dark room

goldhill 720x576 8 439 | 4.27 | 1.03 || mountain village street scene

lena 512x512 8 4.48 | 4.30 | 1.04 || different version of “lennagrey”

peppers 512x512 8 4.42 4.25 | 1.04 || closeup on peppers

Table 1: Compression results for proposed method compared with results from CALIC

rameters has been found. 1°

5 Results

Table 1 lists file sizes (in bits per pixel) obtained
by running both the proposed method and CALIC
using arithmetic coding!! on a variety of test im-
ages.

The proposed method achieves higher compres-
sion than CALIC for all images tested. The file
sizes are taken from actual compressed files which
were subsequently decompressed successfully.

6 Conclusion

We have presented a new algorithm for compres-
sion of lossless greyscale images which consistently
achieves higher compression ratios than CALIC,
and is more adaptable and flexible in handling dif-
ferent types of greyscale images than any other al-
gorithm currently known. The presented methods
also have relevance for the fields of image segmen-
tation, image comparison and image abstraction,
and we hope to be able to report on results from
these fields in the future.
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