
 

 

LOSSLESS COMPRESSION OF LARGE BINARY IMAGES  
IN DIGITAL SPATIAL LIBRARIES 

EUGENE AGEENKO and PASI FRÄNTI 

Department of Computer Science, University of Joensuu 
Box 111, FIN-80101 Joensuu, FINLAND 
e-mail: {ageenko|franti}@cs.joensuu.fi 

Phone: +358-13-251 3103 
Fax: +358-13-251 3290 

 
 

Abstract. A method for lossless compression of large binary images is proposed for 
applications where spatial access to the image is needed. The method utilizes the 
advantages of (1) variable-size context modeling in a form of context trees, and (2) 
forward-adaptive statistical compression. New strategies for constructing the context 
tree are introduced, including a fast two-stage bottom-up approach. The proposed 
technique achieves higher compression rates and allows dense tiling of images down 
to 50 × 50 pixels without sacrificing the compression performance. It enables partial 
decompression of large images far more efficiently than if the standard JBIG was 
applied. 

 

Keywords: image compression, spatial access, context tree, context modeling, binary 
images, digital spatial libraries. 

 
 



 

 2

1. INTRODUCTION 
We consider digital maps generated within several international projects headed by 
the National Land Survey of Finland (NLS) [1]. These include: MapBSR project, 
covering the entire Baltic Sea region, Barents GIT (Geographic Information 
Technology), a project between Finland, Sweden, Norway and Russia, and GIS-Sever 
project, spanning the border between Finland and Russia. The objective of the 
projects is to produce uniform geographic information that can be used in planning 
and decision-making of communication, infrastructure, technical, economical and 
cultural cooperation, tourism and security interests. 

Raster images are generated from map database for digital publishing on CD-ROM, 
or in the web. The images consist of several binary layers, which together form the 
computer-generated color image, as shown in Figure 1. The number of layers is 
limited but the size of a single image is typically very large. As a test case, we use 
images from the Topographic Map Series 1:20000 of Finland. 

The main problem in digital spatial libraries is the huge storage size of the images. 
For example, a single map sheet of 5000×5000 pixels representing a single map sheet 
of 10×10 km2 requires about 12 Mb. The necessity of compression for saving storage 
space is therefore obvious. Another highly desired feature of digital spatial libraries is 
spatial access to the image. Spatial access enables the user to operate directly on the 
compressed data without retrieving the entire image. It makes possible an efficient 
retrieval and decompression of the desired parts of the image with high precision. 
Spatial access would therefore be a significant feature in imaging databases [2], as in 
Engineering Document Management systems (EDM) [3], and Geographic 
Information Systems (GIS), where large format images are used [4]. 

Spatial access can be supported by tiling, i.e. dividing the image into fixed size 
rectangular blocks [4]. The blocks (denoted here as clusters) are compressed 
independently by any compression method. JBIG is the latest standard for binary 
image compression and therefore applicable for this purpose [5]. Straightforward 
combination of tiling and the backward adaptive JBIG, however, suffers from high 
learning cost because of coding much smaller size of data in comparison to the whole 
image. Using JBIG, it is possible to partition the image into clusters of 350×350 
pixels without sacrificing the compression performance. A better solution is to use 
forward-adaptive statistical modeling as proposed in [6]. Using this technique, it is 
possible to achieve cluster size of 100×100 pixels.  

We propose an improved compression method, in which variable-size context 
modeling and forward-adaptive statistical modeling are combined. This scheme 
improves the compression performance of JBIG by over 20%, which is sufficient to 
partition the image into clusters of as small as 50×50 pixels. We consider various tree 
construction approaches, including a new fast bottom-up approach. We consider 
semi-adaptive approach where the tree is optimized on-line for the image to be 
compressed, and static approach where the tree is estimated off-line using a training 
image. We give comparative results for the proposed and existing techniques by 
compressing a set of topographic images.  
 



 

 3

Map-sheet division of Central Finland

Baltic Sea Region

Sample fragment 500 500×

 
 Binary layers   

    
Basic Contours Water Fields 

Fig. 1. Illustration of NLS Digital Spatial Library 
(with the permission of National Land Survey of Finland). 

The rest of the paper is organized as follows. The components of the existing 
methodology are briefly summarized in Section 2. The variable size context 
modeling is described in Section 3. The principles of the context tree are given in the 
Sections 3.1 and 3.2. Existing top-down approaches for constructing the tree are 
discussed in Section 3.3, and new bottom-up approach is introduced in Section 3.3. 
The parameters of the context tree model and forward-adaptive statistical modeling 
are considered in Sections 3.5 and 3.6. The decompression phase is discussed in 
Section 3.7. Experiments of the proposed compression system are reported in Section 
4, and conclusions are drawn in Section 5. 



 

 4

2. COMPRESSION SYSTEM FOR DIGITAL SPATIAL LIBRARIES 

2.1. JBIG-based compression 

In sequential JBIG, the image is coded pixelwise in raster scan order using backward 
adaptive context-based statistical modeling and arithmetic coding [6,7]. The 
combination of already coded neighboring pixels defines the context (we will assume 
a three-line ten-pixel default template). JBIG uses an arithmetic coder, namely the 
QM-coder. The probability estimation in the QM-coder is derived from arithmetic 
coder renormalization [8]. Instead of keeping the pixel counts, the probability 
estimation is implemented as a state machine. It consists of 226 states organized in a 
Markov-chain. The adaptation process starts from the zero-state, having 
approximately equal probability distribution. 

The emerging standard JBIG2 [9] improves the compression of text images using 
pattern matching technique for extracting symbols from the image. The compressed 
file consists of bitmaps of the library symbols coded by a JBIG-style compressor, 
location of the extracted marks as offsets, and a pixelwise coding of the matched 
symbols using two-layer context template. The standard includes also an optional 
lossy mode for filtering the matched symbols. These two enhancements, however, are 
of limited usage in the case of cartographic images, as they do not include large 
number of text elements. Moreover, the images are usually computer generated and 
therefore not affected by digitization noise. 

2.2. Image tiling 

To provide spatial access, the image is divided into clusters of C × C pixels and each 
cluster is compressed independently from each other. Cluster index table is 
constructed from the pointers indicating the location of the cluster data in the 
compressed file and stored in the file header. To restore any part of the image, only 
the clusters consisting of the desired pixels need to be decompressed.  

The cluster size is a trade-off between compression efficiency and decoding delay. If 
very small cluster size is used the desired part of the image can be reconstructed more 
accurately and faster. The compression, however, would be less efficient because of 
an increased learning cost and a less accurate probability model because of the cluster 
boundaries. The index table itself requires space and the overhead is relative to the 
number of clusters. 

2.3. Forward-adaptive statistical modeling 

In forward-adaptive modeling (FAM), the image is compressed by a two-stage 
procedure. In the first stage, the image is analyzed and the frequencies of the white 
and black pixels ( C

Wf  and C
Bf ) are calculated for each context C. The resulting 

probabilities are mapped to the respective states in the state automaton of the 
QM-coder using a look-up table. In the mapping, we use only the 28 “fast-attacks” 
states of the automaton because they represent the full probability range with 
sufficient accuracy and allow faster adaptation. The derived model table is stored in 
the header of the compressed file. 

In the second stage, the clusters are compressed separately using QM-coder. The 
compression is essentially the same as in sequential JBIG. The only differences are 



 

 5

that the QM-coder is reinitialized and the model is restored each time the 
compression of a new cluster starts. 

The forward-adaptive modeling compensates the coding inefficiency from the tiling 
by reducing the learning cost. This is achieved at the cost of increased overhead. The 
overhead is two bits per context, which is usually negligible in the case of very large 
images. For details of the forward-adaptive modeling, see [6]. 

3. VARIABLE SIZE CONTEXT MODELING 
In forward-adaptive statistical modeling, the context size is a trade-off between 
accuracy and overhead of the model. A larger context template results in a more 
accurate probability model. The overhead, however, grows exponentially with the 
size of the context template. It is therefore better to use variable-size context model, 
in which the context selection is made using a context tree instead of a fixed size 
template [10,11]. 

3.1. Context tree 

Variable-size context model can be implemented using a context tree (CT) where the 
number of context pixels depends on the combination of the neighboring pixel 
values. The context selection is made using a context tree instead of a fixed size 
template. Each node in the tree represents a single context, and the two children of a 
context correspond to the parent context augmented by one more pixel. The position 
of this pixel can be fixed in a predefined order estimated for a typical topographic 
image, see Figure 2, or is optimized for every context within a limited search area 
relative to the compressed pixel position (we refer to the last case as free tree [11]). 
Only the leaves of the tree are used in the compression. The context tree example is 
shown in Figure 3. 

3.2. Construction of the tree 

During the tree construction, the image is processed and the statistics C
Wf  and C

Bf  are 
calculated for every context in the full tree, including the internal nodes. The tree is 
then pruned by comparing the children and parents nodes at each level. If 
compression gain from using the children nodes instead of their parent node is not 
achieved, the children are removed from the tree and their parent will become a leaf 
node. The compression gain is calculated as: 

 ( ) ( ) ( ) ( ) SplitCostClClClCCCGain BWBW −−−=,,  , (1) 
where C is the parent context and CW and CB are the two children nodes. The code 
length l denotes the total number of output bits from the pixels coded using the 
context. The cost of storing the tree and the statistical model is integrated in the 
SplitCost. With forward-adaptive compression in mind, we can estimate the code 
length as: 

 ( ) 








+
+









+
⋅= C

B
C

W

C
BC

BC
B

C
W

C
WC

W ff
ff

ff
ffCl loglog . (2) 

According to the direction of the pruning, the tree construction is classified either as 
top-down or bottom-up. 



 

 6

x Context pixel

? Pixel to be coded

9 10
2
?

4 8
6

3
15

7

JBIG CONTEXT TREE

7 9
2
?

5 10
8

3
16

4
11

13 14 16
18
12
17

15
22

19

21
20

 

Fig. 2. The default three-line context template of the sequential JBIG (left), and the 
22-pixel ordered neighborhood used for the context tree (right). The first 10 pixels in 
the neighborhood constitute the JBIG template. 

?

? ? ? ?

??? ?

??

? ? ? ? ? ?

?

? ? ? ?

? ? ? ?? ??

 

Fig. 3. Example of a context tree. 

3.3. Top-down construction 

In top-down approach, the tree is constructed stepwise by expanding the tree one 
level at a time starting from a predefined minimum level kMIN. The process starts by 
constructing the models for all contexts at the level kMIN. The next level contexts are 
tentatively constructed, compared to their parent contexts, and pruned. The process 
continues until a predefined maximum level kMAX is reached, or when no new nodes 
were created during the process of a single level.  

A drawback of this approach is that a context, which delivers negative gain at some 
step of the iteration, will not be expanded further, even if the expansion could deliver 
positive gain later. The on-line construction of the tree makes also the compression 
an order of magnitude slower than JBIG.  

Another approach using top-down tree construction is the free tree [11], in which the 
position of the context pixel is adaptively determined for each context. When a new 
level is constructed, all possible positions for the next context pixel are analyzed 
within a predefined search area. The position resulting in maximal compression gain 
is chosen for each context separately. The drawback of this approach is that the 
position of the new context pixel must also be stored in the compressed file. The 



 

 7

computational complexity of the free tree algorithm is also much greater and it grows 
with a factor of the search area size. 

3.4. Bottom-up construction 

In bottom-up approach, the tree is analyzed starting from the bottom. A full tree of 
kMAX levels is first constructed by calculating the statistics for all contexts in the tree. 
The tree is then pruned one level at a time up to the level kMIN using the same 
criterion as in the top-down approach. Nodes that do not deliver positive 
compression gain are removed from the tree. The sketch of the implementation is 
shown in Fig. 4 and the algorithm is illustrated in Fig. 5. 

 

PruneTree (CONTEXTTREE CT, int level) 
 if  (level = kMAX) then  // we reached the end of tree 
  return (CodeLength (CT)); 
 else  // process the subtrees recursively 
  CLw = PruneTree (CT WhiteChild, level+1); 
  CLb = PruneTree (CT BlackChild, level+1); 
   if (level ≤ kMIN) then  // out of pruning range 
   return (0); 
  else  // check the node for pruning 
   CL = CodeLength (CT); 
   Gain = CL – CLw – CLb – SplitCost ; 
   if (Gain > 0) then // split node 
    return (CLw + CLb + SplitCost); 
   else  // prune node 
    RemoveTree (CT WhiteChild); 
    RemoveTree (CT BlackChild); 
    return (CL); 

Fig. 4. Recursive bottom-up tree pruning algorithm. 

The advantage of the bottom-up approach is that only one pass over the image is 
required. Unfortunately, high kMAX values will result in huge memory consumption. 
For this reason, we propose a two-stage bottom-up pruning procedure. In the first 
stage, the tree is constructed to the level kSTART and then recursively pruned up to the 
level kMIN. In the second stage, the remaining leaf nodes at the level kSTART are 
expanded to the level kMAX and then pruned up to the level kSTART. In his way, the 
memory consumption depends mainly on the choice of the kSTART because only a 
small proportion of the nodes at that level remains after the first pruning stage. kSTART 
is selected to have as great vale as memory resources permit to cause minimal 
influence on the structure of the context-tree. 



 

 8

fw = 540
fb = 155
l(C) = 532.12

fw = 88
fb = 17
l(C) = 67.08

fw = 452
fb = 138
l(C) = 463.00

?15
5

6

fw = 317
fb = 77
l(C) = 251.61

fw = 135
fb = 61
l(C) = 175.34

?

6

15
5

6

?15
5

6

?15
5

6

Gain = -6.84
pruned

?15
5

6

Gain = 532.12 -
- (251.61 + 175.34 + 7) - 67.08 - 7 =

= 24.09

Gain = 463.00 -
- 251.61 - 463.00 - 7 =

= 29.05

 

Fig. 5. Illustration of bottom-up tree pruning  

3.5.  Semi-adaptive and static variants 

There are two alternative approaches for generating the context tree. In semi-adaptive 
approach, the tree is optimized directly for the image to be compressed.  An 
additional pass (or passes) over the image will be required. The cost of storing the 
tree structure is approximately two bits per context, i.e. one bit per node (‘1’ for 
indicating a divided node, and ‘0’ for indicating a leaf node). For a free tree, the 
position of the next context pixel must also be stored. It can be represented as an 
index within the search area, and stored with ( ) sizewindow _log  bits.  

Another approach is to use a static tree optimized using a training image. This is 
possible because of the similarity of the trees for images of similar type. The main 
problem of the static approach is to control the growth of the tree. There is no 
overhead from storing the tree and therefore we must add a progressively weighted 
constant to the SplitCost in order to prevent the tree from greedy growing. If the 
forward-adaptive statistical model is applied, two passes will be required anyway, 
and therefore the semi-adaptive approach is preferred.  

3.6. Combination with forward-adaptive modeling  

The context tree, as described here, can be integrated with the forward adaptive 
statistical modeling as follows. All compression procedures remain the same, only 
the context selection is derived by traversing the context tree. In the construction of 
the tree, we use (2) for estimating the code length of a context, and add the cost of 
storing the statistical model to the SplitCost. Incorporating the model cost (5 bits per 
context) and the tree store cost (2 bits per context) in the SplitCost makes it possible 
to achieve optimal tradeoff between compression improvement and overhead. The 
combination of context tree and forward-adaptive statistical modeling is denoted here 
as CT-FAM. 



 

 9

3.7. Decompression 

To decompress the image or its fragment, the compressed file header is first 
processed, and cluster indices, model table, and context tree are read and re-
constructed in memory. The respective clusters are then located in the compressed 
file and decompressed. The same procedures of the QM-coder are utilized for 
decoding, only the context selection is derived by the tree, and the coder is 
reinitialized before processing each cluster. 

4. EMPIRICAL RESULTS 
The performance of the proposed method is demonstrated by compressing a set of 
images from the NLS topographic database (Basic Map series 1:20000) using 
Pentium-200 / MS-Windows 95 system. The images are formed by several binary 
layers, each has size of 5000 × 5000 pixels: 

• basic – topographic image, supplemented with communications networks, 
buildings, protected sites, benchmarks and administrative boundaries; 

• contours – elevation lines; 
• water – lakes, rivers, swamps, water streams; 
• fields. 

In our experiments, we use five images randomly chosen from the database images 
corresponding to the map sheets No/No 431306, 124101, 201401, 263112, and 
431204. For each image, we have four binary components referred as LayerX, where 
Layer is the binary layer name, and X is the image number from 0 to 4 in a given 
order.  

We evaluate the seven methods shown in Table 1. Sequential JBIG [6] and the 
CCITT Group 3 and Group 4 [12] are the points of comparison. CT is the 
combination of context tree and JBIG. In this method, the tree is constructed using 
bottom-up strategy and the Bayesian sequential estimator is applied for the code 
length as in [11]. These four methods do not support spatial access whereas the rest 
of the methods do. T-JBIG is the combination of tiling and sequential JBIG. FAM 
stands for the forward-adaptive JBIG-based compression [6], CT-FAM for the 
proposed technique, and CT-FAMS is its static variant. 

Table 1. Compression methods and their properties.  

 Method Tiling Statistical model Context tree Passes 
 Group ¾ – n/a – 1 
 JBIG – backward-adaptive – 1 
 CT – backward-adaptive semi-adaptive 2* 
 T-JBIG + backward-adaptive – 1 
 FAM + forward-adaptive – 2 
 CT-FAM + forward-adaptive semi-adaptive 2* 
 CT-FAMS + trained trained 1 

* One stage is assumed in the bottom-up context tree construction.  
Add one more pass for 2-stage bottom-up method. 

First, we evaluate the different approaches for building the context tree, see Table 2. 
For the free tree approach, the size of the search template is 40. The split cost is 



 

 10

composed from the cost of storing the tree and the model (7 bits per context for 
context tree, and 12 bits for the free tree). Compression ratios are given for CT-FAM 
method when applied to the image Basic0. The respective compression ratio of JBIG 
is 8.74.The bottom-up tree construction is faster than the top-down approach but it 
requires more memory. The memory load grows exponentially with the size of the 
initial tree and is trade-off between compression performance and memory 
consumption. 

Table 1. Properties of the discussed tree-building strategies. Numbers in parenthesis: 
(kMIN, kMAX), for 2-stage bottom-up pruning: (kMIN, kSTART, kMAX). 

 Top-down Free tree Bottom-up 
 (6,22) (10,22) (2,22) (2,18) (2,22) (2,18,22) 
Contexts in the tree 1366 2373 2041 5596 8209 6527 
Tree file size (bytes) 341 591 1786 1400 2053 1632 
Passes over image 16 12 20 1 1 2 
Creation time 30m 20s 26m 58s 1h 58m 33s 3m 8s 4m 56s 6m 31s 
Memory load (bytes) 26K 51K  1M 8.5M 136M 8.5M 
Compression ratio 10.04 10.40 11.35 11.14 11.65 11.44 

 
The top-down construction of the tree can be performed with a small memory load 
(50K), but it is time consuming and therefore inapplicable for on-line compression. 
Another problem is that the expansion of some branches may stop too early because 
of the locality of the splitting criterion. The bottom-up approach does not suffer from 
this problem.  

The free tree does not give significant improvement over the top-down approach with 
fixed split pixel. The reasons are the high split cost, early termination of the tree 
expansion, and a limited search template (40 pixels). A delayed pruning technique 
[10] and a significantly larger search template (about 500 pixels) could be applied for 
improving the result. However, it would result in significant increase in memory 
consumption and running time, and is therefore not worth doing here.  

Bottom-up pruning requires only one or two passes over the image and gives better 
compression performance. The one-stage variant with kMAX = 22 has the highest 
compression performance but the two-stage variant requires much less memory (8.5 
Mbytes vs. 136 Mbytes). In the first stage, the tree is pruned from level 18 to 2. 
During this stage, 525,252 nodes are analyzed in total. In case of Basic0, the number 
of leaf nodes was reduced from 256,548 to 5,596. Only 1,305 of these belong to the 
18-th level. In the second stage, these nodes are expanded down to 22-th level. In 
total, 20,880 nodes were analyzed and 2,236 new leaf nodes were created. Thus, most 
of the nodes are analyzed and pruned during the first stage. The two-stage bottom-up 
pruning is used in the following. 

The overall effect of tiling, and the variable-size context modeling is summarized in 
Figure 6. The advantage of using a better initial model outweighs the overhead in all 
cases, except if a very small cluster size is selected. The sequential JBIG could be 
applied with the tiling using cluster size of about 300×300 without sacrificing the 
compression performance. The corresponding number is 100×100 for the FAM, and 
50×50 for the CT-FAM. Moreover, the CT-FAM improves the compression 
performance of about 20 % if the cluster size is 200×200 or greater. The maximum 



 

 11

potential improvement is estimated as the compression rate improvement that would 
be achieved if the tiling has not been applied (CT). It amounts to circa 25 %. 

-30%

-20%

-10%

0%

10%

20%

30%

0 100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Cluster size

C
om

pr
es

si
on

 g
ai

n

CT-FAM
FAM
T-JBIG

maximum possible improvement

 

Fig. 2. Compression performance of T-JBIG, FAM, CT-FAM as a function of the 
cluster size compared to the sequential JBIG. 

Comparative compression results for the discussed method are summarized in Table 
3. For this test, the image 0 is used as training image (for the static variant), and the 
images 1 to 4 are used for the compression. Tiling the image to clusters of size 
256×256 is assumed for the methods that support spatial access. The two-stage 
bottom-up pruning is used for context tree construction. For evaluating the static 
variant of the CT-FAM method, four context trees were trained off-line (using 
Image0) for each binary component separately. Experiments show that the proposed 
method improves JBIG by over 20 % for this cluster size. The static variant is also 
applicable because of similar type images. In our example, the static variant was only 
3.5 % worse than the semi-adaptive. 

Unlike JBIG, the image decompression time depends on the image complexity and 
the size of the context tree. For the whole image, it varies from one second to 
approximately two minutes, when sequential JBIG requires constantly 65 sec. On 
average for our test set, decompression of the entire image using CT-FAM method is 
about 1.8 times slower than using JBIG. At the same time, partial images (e.g. 
512×512 pixels, used by default on NLS GIS WEB-server) can be retrieved 
practically instantly. 



 

 12

Table 2. Bit rates per image type in the test set, and overall compression ratios for 
the discussed methods. 

 Methods not supporting tiling Methods supporting tiling  
(256×256 cluster size) 

Test images Group 3 Group 4 JBIG CT T-JBIG FAM CT-FAM CT-FAMS 
Basic1-4 2,834,589 2,881,614 1,197,983  884,435 1,263,311 1,211,338  903,597  944,107 
Contours1-4 1,968,901 1,230,480  643,998  514,353  683,314  632,882  536,788  549,571 
Water1-4 1,122,591  548,124  270,703  206,282  280,031  249,697  207,829  210,636 
Fields1-4  233,415  64,530  29,127  25,030  35,914  33,412  28,558  33,412 
TOTAL (16) 6,159,496 4,724,748 2,141,811 1,630,100 2,262,570 2,127,329 1,676,772 1,737,726 
Compression 
ratio 8.12 10.58 23.34 30.67 22.10 23.50 29.82 28.77 

 

5. CONCLUSION 
We propose a compression method that is a combination of variable-size context 
modeling and forward-adaptive statistical modeling. The use of context tree makes it 
possible to utilize larger context templates without overwhelming the learning cost. 
Selective context expansion results in improved prediction and better compression 
performance. The method alleviates the deterioration of the coding efficiency caused 
by tiling and achieves higher compression rates because of the improved pixel 
prediction caused by utilizing the larger contexts.  

The method is applied for the compression of binary layers of maps for four different 
domains. The simulation results show that the proposed method allows dense tiling 
of large images down to 50 × 50 pixels versus 350 × 350 pixels that of JBIG without 
sacrificing the compression performance. The improved compression method allows 
partial decompression of large images far more efficiently than with standard JBIG. 
For clusters larger than 200 × 200 pixels, the method improves the compression 
performance of JBIG by about 20 %. 

We have also considered a static variant of the method, in which the model is 
generated using a training image. It results in a faster one-pass compression and 
enables image tiling down to 100 × 100 pixels. Static variant can be applied if the 
images are known to be of similar type. Otherwise, the two-pass method should be 
used at the cost of higher compression times. The decompression times are similar in 
both cases. 

6. ACKNOWLEDGEMENTS 
We acknowledge the National Land Survey of Finland for providing the image data. 
The work of Pasi Fränti was supported by a grant from the Academy of Finland. 
Eugene Ageenko acknowledges the Moscow State University, Dept. of Applied 
Mathematics, where during the graduate and post-graduate studies he started this 
research. 



 

 13

REFERENCES 
1 National Land Survey of Finland, Opastinsilta 12 C, P.O.Box 84, 00521 Helsinki, 

Finland. http://www.nls.fi/index_e.html 

2 Pajarola, R., and Widmayer, P., Spatial indexing into compressed raster images: 
how to answer range queries without decompression. Proc. Int. Workshop on 
Multimedia DBMS, Blue Mountain Lake, NY, 1996, pp. 94-100. 

3 Ageenko, E. I., and Fränti, P., Enhanced JBIG-based compression for satisfying 
objectives of engineering document management system, Optical Engineering, 
May 1998, 37 (5), pp. 1530-1538. 

4 Samet, H., Applications of Spatial Data Structures: Computer Graphics, Image 
Processing and GIS, MA: Addison-Wesley, Reading, 1989. 

5 JBIG: Progressive Bi-level Image Compression, ISO/IEC International Standard 
11544, ISO/IEC/JTC/SC29/WG9, 1993.  

6 Ageenko, E. I., and Fränti P., Forward-adaptive method for compressing large 
binary images, Software Practice & Experience, 1999, 29 (11), (in press) 

7 Pennebaker, W. B., Mitchell, J. L., JPEG Still Image Data Compression 
Standard. Van Nostrand Reinhold. 1993. 

8 W.B. Pennebaker, J.L. Mitchell, Probability estimation for the Q-coder. IBM 
Journal of Research, Development 32(6): 737-759, 1998. 

9 Howard, P. G., Kossentini, F., Martins, B., Forchammer, S, and Rucklidge, W. J., 
The emerging JBIG2 standard. IEEE Trans. Circuits and Systems for Video 
Technology, November 1998, 8 (7), pp. 838-848. 

10 Fränti, P., and Ageenko, E. I., On the use of context tree for binary image 
compression. IEEE Proc. Int. Conf. on Image Processing (ICIP’99), Kobe, Japan, 
1999. 

11 Martins, B., and Forchhammer, S., Bi-level image compression with tree coding. 
IEEE Transactions on Image Processing, April 1998, 7 (4), pp. 517-528. 

12 Arps, R. B., and Truong, T.K., Comparison of international standards for lossless 
still image compression. Proceedings of the IEEE, June 1994, 82, pp. 889-899. 

   


	Introduction
	Compression system for digital spatial libraries
	JBIG-based compression
	Image tiling
	Forward-adaptive statistical modeling

	Variable size context modeling
	Context tree
	Construction of the tree
	Top-down construction
	Bottom-up construction
	Semi-adaptive and static variants
	Combination with forward-adaptive modeling
	Decompression

	Empirical results
	Conclusion
	Acknowledgements
	References

