The UpWrite Predictor: A General Grammatical
Inference Engine for Symbolic Time Series with
Applications in Natural Language Acquisition and
Data Compression

Jason Lloyd Hutchens, B.E. (Hons.)

This thesis is presented for the degree of
Doctor of Philosophy of
The University of Western Australia

Centre for Intelligent Information Processing Systems
Department of Electrical and Electronic Engineering
The University of Western Australia
Nedlands, WA
AUSTRALIA 6907

December 1999

Prologue

With the unreasonable petulance of mankind I rang the bell and gave a curt
intimation that I was ready. Then I picked up a magazine from the table
and attempted to while away the time with it, while my companion munched
silently at his toast. One of the articles had a pencil mark at the heading,
and I naturally began to run my eye through it. Its somewhat ambitious title
was “The Book of Life,” and it attempted to show how much an observant
man might learn by an accurate and systematic examination of all that came
in his way. It struck me as being a remarkable mixture of shrewdness and of
absurdity. The reasoning was close and intense, but the deductions appeared

to me to be far fetched and exaggerated.

The writer claimed by a momentary expression, a twitch of a muscle or a glance
of an eye, to fathom a man’s inmost thoughts. Deceit, according to him, was
an impossibility in the case of one trained to observation and analysis. His con-
clusions were as infallible as so many propositions of Euclid. So startling would
his results appear to the uninitiated that until they learned the processes by

which he had arrived at them they might well consider him as a necromancer.

“From a drop of water,” said the writer, “a logician could infer the possibility
of an Atlantic or a Niagara without having seen or heard of one or the other. So
all life is a great chain, the nature of which is known whenever we are shown a
single link of it. Like all other arts, the Science of Deduction and Analysis is one
which can only be acquired by long and patient study, nor is life long enough to
allow any mortal to attain the highest possible perfection in it. Before turning
to those moral and mental aspects of the matter which present the greatest
difficulties, let the inquirer begin by mastering more elementary problems. Let
him, on meeting a fellow-mortal, learn at a glance to distinguish the history
of the man, and the trade or profession to which he belongs. Puerile as such
an exercise may seem, it sharpens the faculties of observation, and teaches
one where to look and what to look for. By a man’s finger-nails, by his coat-
sleeve, by his boots, by his trouser-knees, by the callosities of his forefinger
and thumb, by his expression, by his shirtcuffs—by each of these things a
man’s calling is plainly revealed. That all united should fail to enlighten the

Prologue

competent inquirer in any case is almost inconceivable.”

“What ineffable twaddle!” T cried, slapping the magazine down on the table;

“I never read such rubbish in my life.”
“What is it?” asked Sherlock Holmes.

“Why, this article,” I said, pointing at it with my eggspoon as I sat down to
my breakfast. “I see that you have read it since you have marked it. I don’t
deny that it is smartly written. It irritates me, though. It is evidently the
theory of some armchair lounger who evolves all these neat little paradoxes in
the seclusion of his own study. It is not practical. I should like to see him
clapped down in a third-class carriage on the Underground, and asked to give
the trades of all his fellow-travellers. I would lay a thousand to one against

him.”

“You would lose your money,” Holmes remarked calmly. “As for the article, I

wrote it myself.”
“You! ”

“Yes; I have a turn both for observation and for deduction. The theories which
I have expressed there, and which appear to you to be so chimerical, are really
extremely practical - so practical that I depend upon them for my bread and

cheese.”
“And how?” I asked involuntarily.

“Well, I have a trade of my own. I suppose I am the only one in the world.
I’'m a consulting detective, if you can understand what that is. Here in London
we have lots of government detectives and lots of private ones. When these
fellows are at fault, they come to me, and I manage to put them on the right
scent. They lay all the evidence before me, and I am generally able, by the
help of my knowledge of the history of crime, to set them straight. There is a
strong family resemblance about misdeeds, and if you have all the details of a
thousand at your finger ends, it is odd if you can’t unravel the thousand and
first.”

A Study in Scarlet
SIR ARTHUR CONAN DOYLE

Abstract

“Come, Watson, come!” he cried. “The game is afoot.”

The Return of Sherlock Holmes
SIR ARTHUR CONAN DOYLE

This dissertation is concerned with the development of a general Grammatical Inference
Engine for symbolic time series—a device which is capable of automatically constructing
a predictive model from arbitrary symbolic data. We are particularly interested in the
situation where the data is natural language text, and would like to draw conclusions about
language acquisition in human beings from this work, but we deliberately avoid making
any language-specific assumptions in the design of the Grammatical Inference Engine, lest
they adversely affect its generality.

This work stems from pattern recognition, something at which the human brain is
particularly adept. We use the UpWrite, a modelling framework initially developed for
the task of image recognition via syntactic techniques, to bootstrap a simple predictive
model with higher level structure. Fairly general information processing techniques are
used to discover this higher level structure from the sequence of predictions made about
the data by the predictive model. We refer to the bootstrapped predictive model as the
UpWrite Predictor.

Our implementation of the UpWrite Predictor uses the novel techniques of aggluti-
nation and agglomeration to iteratively construct symbol sequences and symbol classes
which constitute higher level structure in the data, with the result that words and syntac-
tic categories are successfully discovered in natural language text. The fact that simple
information theoretic measures may be used to uncover structure of this sort from the se-
quence of predictions made by a simple predictive model, with minimal assumptions made
about the underlying data, lends strength to the argument that at least some aspects of
human language acquisition may be explained without resorting to the notion of universal
grammar.

The UpWrite Predictor may potentially be of use in many applications, and we explore
one of these, data compression, in this dissertation. We show that the performance of
the standard PPMC data compressor may be improved by using the UpWrite Predictor
to abstract the data prior to compression taking place. During our exploration of the

data compression problem, we introduce several modifications and additions to traditional

vi Abstract

PPM techniques, including a wildcard language model, which makes use of additional
equivalence classes which traditional Markov models discard, and a goal-oriented language
model, which is able to constrain the predictions it makes based upon knowledge of future
events, and is therefore able to capture long-distance dependencies in natural language

text.

Contents

Prologue iii
Abstract v
Acknowledgements xxi
1 Introduction 1
1.1 Imtroduction e 1
1.2 Motivation 2
1.3 The Problem 2
1.4 The Sherlock Corpus o o it e 3
1.5 Original Contributions 5
1.6 Structure of the Dissertation 5

2 Information Theory 7
2.1 Imtroduction L e 7
2.1.1 What is Information? oL 8

2.1.2 Why is Information Important? 8

2.1.3 Overview e e e 9

2.2 Shannon’s Mathematical Theory of Communication 9
2.3 Shannon’s Guessing Game Lo 11
2.4 Information Theoretic Measures 13
2.4.1 Notation. 13

2.4.2 Probability Theory 14

2.4.3 Information Theoretic Measures 15

2.5 A Philosophical Discussion L oo 17
2.6 Summary and Conclusion oL 0o 18

3 Inference of Predictive Models 21
3.1 Imtroduction e 21
3.1.1 Speech Recognition 21

3.1.2 Data Compression e 22

3.1.3 Overview e e e 23

viii

Contents

3.2
3.3
3.4
3.5

3.6

3.7

3.8

Grammatical Inference
The Stochastic Grammatical Inference Process
Markov Models
Problems With Markov Models
3.5.1 The Zero-Frequency Problem
3.5.2 The Sparse Data Problem
3.5.3 The Local Context Problem
Smoothing
3.6.1 Baum-Welch Optimization
Back-off
3.7.1 Katz’s Back-Off Procedure

Summary and Conclusion

An Introduction to the UpWrite

4.1

4.2

4.3

4.4

4.5

4.6

Design and Implementation of the UpWrite Predictor

5.1

5.2
5.3

Introduction Lo o
4.1.1 Relationship to Predictive Models
4.1.2 Overviewo o e e e
Historical Background
4.2.1 Syntactic Pattern Recognition
4.2.2 The UpWrite
The UpWrite Process
4.3.1 The Sub-Object UpWrite
4.3.2 The Quotient-Object UpWrite

4.3.3 Discovering Sub-Objects and Quotient-Objects

An Example: Classifying Polygons
4.4.1 Selecting a Local Model
4.4.2 Local Gaussian Modelling
4.4.3 Finding Lines and Vertices
4.4.4 Finding Triangles and Squares
4.4.5 Classification,
Real-World Examples
4.5.1 Identifying Aircraft
4.5.2 Distinguishing Calvin From Hobbes
4.5.3 Other Work
Summary and Conclusion

Introduction o
5. 1.1 Overview e e
The UpWrite Predictor

Discovering Symbol Sequences.

Contents ix

6

5.3.1 Performance Measures o8
5.3.2 Previous Work 59
5.3.3 Algorithms for Discovering Symbol Sequences 66
5.3.4 Identifying Separator Symbols 0L 66
5.3.5 Segmentation 67
5.3.6 Agglutination oL 71
5.4 Discovering Symbol Classes, 74
5.4.1 Previous Work 75
5.4.2 The Problem of Noise due to Ambiguity 79
5.4.3 Algorithms for Discovering Symbol Classes 83
5.4.4 Agglomeration L oL 84
5.4.5 Clustering 89
5.5 The Final Structure of the UpWrite Predictor 92
5.5.1 Selecting the Predictive Model 93
5.5.2 Discovering Symbol Sequences and Symbol Classes 94
5.5.3 UpWriting and DownWriting 94
5.5.4 Correcting Mistakes via Feedback 95
5.5.5 Stopping Criterion L 96
5.6 Summary and Conclusion 0oL 96
Experiments with the UpWrite Predictor 101
6.1 Introduction. 101
6.1.1 Overview e 102
6.2 Discovering Symbol Sequences. Lo oo 102
6.3 Discovering Symbol Classes 104
6.4 Finding Both Types of Structure 107
6.5 Performance on a Random Source, 111
6.6 Evaluation on Quasi-English Data 112
6.6.1 Text 1 e 112
6.6.2 Text 2 114
6.6.3 Text 3 117
6.6.4 Text 4 119
6.6.50 Text D e 120
6.6.6 Text 6 e 122
6.6.7 Text 7 123
6.6.8 Discussion 127
6.7 Performance on Natural Language Text 127
6.8 UpWriting and DownWriting 129
6.9 Generations e e 131

6.10 Summary and Conclusion L oo 134

Contents

7 Data Compression

7.1 Introduction. e
7.1.1 Overview o v e e e e e e
7.2 A Compressed History

7.2.1 Origins of Compression

7.2.2 Statistical Compression Versus Dictionary Compression

7.2.3 Static, Semi-Adaptive and Adaptive Compression
7.2.4 Lossy or Lossless Compression
7.2.5 Huffman Coding
7.2.6 Arithmetic Coding
7.2.7 Ziv-Lempel Compression.
7.2.8 Burrows-Wheeler Compression
7.2.9 Statistical Compression
7.2.10 Learning as Compression
7.3 Prediction by Partial Matching
7.3.1 The Escape Mechanism
7.3.2 Exclusion
733 Blending.o
7.3.4 Update Exclusion.
7.3.5 Recency Scaling
7.4 Corpora for Evaluation of Compression Performance
7.5 Analysis of the Performance of Various PPM Models
7.5.1 The ‘Optimal’ Model
7.5.2 The Standard Methods
7.5.3 Other Data Compression Algorithms
7.6 Some Modifications of and Additions to Standard PPM
7.6.1 Alternative Escape Mechanisms
7.6.2 Alternative Blending Mechanisms
7.6.3 Pre-Transmission of Statistics
7.6.4 Equivalence Exclusion
7.6.5 Re-Determining Model Precedence
7.6.6 Alternative Equivalence Classifications
7.6.7 Incorporating Long-Range Statistics
7.6.8 Discussion oo
7.7 The UpWrite Compressor oo v ..

7.8 Summary and Conclusion

8 Conclusion

8.1 Introduction. e
8.2 Future Worko

137

Contents xi

Epilogue 191
Complete Bibliography 193

Index 211

List of Figures

1.1

2.1

3.1

3.2

3.3

3.4

3.5
3.6

4.1

4.2
4.3

4.4
4.5
4.6

5.1
5.2

5.3

5.4

The Test section of the Sherlock Corpus in its entirety. 4
Shannon’s model of a communication system. 11

A simple 2" —order Markov model which is capable of generating pseudo-

English sentences. 26

Plot of the performance of n-gram language models, for various n, over a

portion of the data from which they were inferred. 28

Plot of the performance of n-gram language models, for various n, over

novel data. 29
The hitherto unseen symbol ¢ occursindata. 30
The hitherto unseen context (bb) occurs indata. 30

Part of the HMM formed from the linear interpolation of three Markov
models. e e e e e e e 33

An binary image of a triangle has several levels of representation, the lowest

level of which is an array of bits. o oL 38
The Sub-Object UpWrite extends the context available to a predictive model. 42

The Quotient-Object UpWrite results in contexts which are observed more

frequently. oL 43
A line drawing of the triangle of figure 4.1. 46
A line drawing of a triangle with local Gaussian Models superimposed. . . . 47

A line drawing of a triangle with local Gaussian Models describing the lines

and vertices. L L L e e e e e e e e 48
The proposed structure of the UpWrite Predictor. o7
Successor count over the Sentence section of the Sherlock corpus, for a
context of 1 symbol. 61
Successor count over the SENTENCE section of the SHERLOCK corpus, for
a context of 5 symbols. L L L 61

Dendrogram formed by Wolff’s algorithm over the Sentence section of the

Sherlock corpus.o 64

xiv List of Figures

5.5 Dendrogram formed by Wolff’s algorithm over the SENTENCE section of the
SHERLOCK COrpus.« v v v v it e e e e e e e e e e e e e e e e 65

5.6 The ten characters which cause the highest uncertainty in a 2"¢-order
Markov model over the Sherlock corpus. 67

5.7 The ten symbols which cause the highest uncertainty in a 2"¢-order Markov
model over the SHERLOCK corpus. 68

5.8 Instantaneous entropy of a 1%~order Markov model over the Sentence sec-
tion of the Sherlock corpus. o 69

5.9 Instantaneous entropy of a 1%~order Markov model over the SENTENCE sec-
tion of the SHERLOCK corpus.« o i i ot 69

5.10 Instantaneous information provided to a 1%'-order Markov model by the
Sentence section of the Sherlock corpus. 72

5.11 Instantaneous information provided to a 1**—order Markov model by the
the SENTENCE section of the SHERLOCK corpus. 72

5.12 Dendrogram formed by agglutination using the information to measure cor-
relation over the Sentence section of the Sherlock corpus. 73

5.13 Dendrogram formed by agglutination using the information to measure cor-
relation over the SENTENCE section of the SHERLOCK corpus. 73

5.14 A phrase-structure grammar which generates a sequence of symbols which
exhibit several kinds of ambiguity. 79
5.15 A simplex in R? is the line segment connecting (0,1) and (1,0). 80

5.16 A simplex in R?® is the region of space corresponding to the equilateral
triangle which has (0,0,1), (0,1,0) and (1,0,0) as its vertices. 81

5.17 The sixteen vectors representing predictions made by a 2"¢-order Markov

model over data generated by the grammar of figure 5.14 lie on the 2-

simplex which is defined by the three vectors which represent the symbol
classes, and this, in turn, lies within the 3-simplex in R*. 82

5.18 The class of digits discovered from the Sherlock corpus at the character
level by the agglomeration algorithm. 85

5.19 One of several classes of punctuation characters discovered from the Sher-
lock corpus at the character level by the agglomeration algorithm. 86

5.20 A class containing pronouns which are used to describe persons and groups

of persons, and auxiliary verbs which are used to express possibility, as

discovered from the Sherlock corpus at the word level by the agglomeration
algorithm. 86

5.21 A class containing nouns which are used to describe human beings, and

nouns which are used to indicate periods of time, as discovered from the

Sherlock corpus at the word level by the agglomeration algorithm. 87

List of Figures XV

5.22 A class containing, among other things, the definite and indefinite articles,

and attributive possessive pronouns, as discovered from the Sherlock corpus

at the word level by the agglomeration algorithm. 87
5.23 A class containing proper nouns, among other things, as discovered from

the Sherlock corpus at the word level by the agglomeration algorithm. . . . 87
5.24 A class containing proper nouns, among other things, as discovered from

the Sherlock corpus at the word level by the agglomeration algorithm. . . . 88
5.25 A class containing for the most part adverbs which express time-relative

possibilities, as discovered from the Sherlock corpus at the word level by

the agglomeration algorithm. 88
5.26 A class containing for the most part nouns which describe parts of buildings,

parts of towns, and times of day, as discovered from the Sherlock corpus at

the word level by the agglomeration algorithm. 88
5.27 A rather esoteric class containing, amongst other things, nouns which de-

scribe parts of the body, clothing and familial relationships, as discovered

from the Sherlock corpus at the word level by the agglomeration algorithm. 89
5.28 A symbol class containing pronouns used to refer to persons as its most

frequent elements, as discovered in the Sherlock corpus at the word level by

clustering the predictions made by a 1%-order Markov model. 90
5.29 A symbol class containing units of time measurement as its most frequent

elements, as discovered in the Sherlock corpus at the word level by clustering

the predictions made by a 1%*-~order Markov model. 91
5.30 A symbol class containing the words HAVE and HAD, and auxiliary verbs

which express possibilities as its most frequent elements, as discovered in

the Sherlock corpus at the word level by clustering the predictions made by

a 1%—order Markov model. 91
5.31 A symbol class containing prepositions which describe motion or position

as its frequent elements, as discovered in the Sherlock corpus at the word

level by clustering the predictions made by a 1%'~order Markov model. . . . 92
5.32 Example data which is to be UpWritten with the symbol sequence (THE,Y). 95

5.33 A greedy UpWriting process results in an erroneous chunk. 95

6.1 The phrase-structure grammar used to generate data for testing the acqui-
sition of symbol sequences.o L Lo oo 102
6.2 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.1. 103
6.3 The phrase-structure grammar used to generate data for testing the acqui-
sition of unambiguous classes. o Lo Lo L 104
6.4 The phrase-structure grammar used to generate data for testing the acqui-

sition of ambiguous classes. oL oL 105

xvi List of Figures
6.5 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.4. 106
6.6 The phrase-structure grammar used to generate data for testing the acqui-
sition of symbol sequences and unambiguous symbol classes. 107
6.7 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.6. 108
6.8 The phrase-structure grammar used to generate data for testing the acqui-
sition of symbol sequences, ambiguous symbol classes and ‘phrases’. . 109
6.9 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.8. 109
6.10 The phrase-structure grammar used to generate a random sequence of sym-
bols. . . . 111
6.11 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.10.111
6.12 The phrase-structure grammar used to generate Text 1. 112
6.13 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.12.113
6.14 The phrase-structure grammar used to generate Text 2. 114
6.15 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.14.115
6.16 The phrase-structure grammar used to generate Text 3. 117
6.17 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.16.119
6.18 The phrase-structure grammar used to generate Text 4. 119
6.19 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.18.120
6.20 The phrase-structure grammar used to generate Text 5 and Text 6. 121
6.21 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.20.122
6.22 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on modified data generated by the phrase-structure grammar of
figure 6.20. oL 124
6.23 The phrase-structure grammar used to generate Text 7. 125
6.24 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.23.125
6.25 The performance of the UpWrite Predictor at the end of each iteration as
evaluated on natural language text. oL 128
6.26 The most probable DownWritten form of the first two sentences of the
Sherlock corpus. L 130

List of Figures xvii

6.27

6.28

6.29

6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
7.10

The least probable DownWritten form of the first two sentences of the

Sherlock corpus.o 130
The longest DownWritten form of the first two sentences of the Sherlock

COTPUS. + « v v v v vt e e e e e e e e e e e e e e 130
The shortest DownWritten form of the first two sentences of the Sherlock

COTPUS. + « v v v v vt e e e e e e e e e e e e e e 130
A random DownWritten form of the first two sentences of the Sherlock corpus.130
A portion of data generated by a Markov model of order 0. 132
A portion of data generated by a Markov model of order 1. 132
A portion of data generated by a Markov model of order 2. 132
A portion of data generated by a Markov model of order 3. 132
A portion of data generated by a Markov model of order 8. 132
Data generated by the UpWrite Predictor after 200 iterations. 133
Data generated by the UpWrite Predictor after 400 iterations. 133
Data generated by the UpWrite Predictor after 600 iterations. 133
Data generated by the UpWrite Predictor after 800 iterations. 133
Data generated by the UpWrite Predictor after 1000 iterations. 133

The binary tree formed from the messages of example 7.1 by the Huffman
coding algorithm. Lo oL 141
The unit interval is partitioned into one sub-interval for each message, with
the size of a sub-interval determined by the probability of the message. . . . 143
The unit interval is progressively partitioned according to the symbol se-
quence CLAB. e e e e e e e e 144

A Ziv-Lempel data compressor replaces a repeated substring with a pointer

into a recent history buffer. o o o000 145
The block-sorting transformation matrix. 146
A block diagram of a modern adaptive statistical data compressor. 148

A plot of the average compression performance over both the Calgary and

Canterbury corpora for ‘optimal’ PPM compressors of differing orders. . . . 159
Four sentences generated by a 1%*~order Markov model. 175
Three sentences generated by the ‘fractal’ language model. 176

Five sentences generated by the goal-oriented model. 177

List of Tables

5.1
5.2
5.3
0.4

9.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

Results of Harris’ segmentation algorithm. 60
Results of Wolft’s agglutination algorithm. 65
Results of thresholded entropic chunking. 70
Some examples of erroneous symbol sequences discovered by thresholded

entropic chunking on the SHERLOCK corpus. 70
Results of agglutination. L. 74

A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.1, shown in the order of acquisition.104
A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.3, shown in the order of acquisition.105
A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.4, shown in the order of acquisition.106
A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.6, shown in the order of acquisition.108
A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.8, shown in the order of acquisition.110
A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.12, shown in the order of acquisition.114
A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.14, shown in the order of acquisition.116
A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.16, shown in the order of acquisition.118
A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.18, shown in the order of acquisition.121
A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.20, shown in the order of acquisition.123
A list of the structure found by the UpWrite Predictor on modified data
generated by the phrase-structure grammar of figure 6.20, shown in the
order of acquisition. e 124
A list of the structure found by the UpWrite Predictor on data generated by

the phrase-structure grammar of figure 6.23, shown in the order of acquisition.126

List of Tables

XX
7.1 The codewords assigned to the messages of example 7.1 by the Huffman
coding algorithm. oo L 141
7.2 An overview of the files in the Calgary corpus. 156
7.3 An overview of the files in the Canterbury corpus. 157
7.4 Results of ‘optimal’ PPM compression using various maximum orders of
Markov model, over both the Calgary and Canterbury corpora 158
7.5 Results of ‘optimal’ compression using various combinations of ad hoc tech-
niques for improving the performance of PPM. 160
7.6 Results of PPM compression using the standard methods of estimating es-
cape probabilities, including performance for PPM predictive models which
use blending rather than escape. 161
7.7 Results of other well-known compression algorithms. 162
7.8 Results of using Method F, Method G and Method H to estimate the prob-
ability of a novel event.o oL 166
7.9 Results of using Method I and Method J to estimate the values of the
blending weights. Lo 168
7.10 Results of pre-transmitting the alphabet and pre-transmitting Mgy. 169
7.11 Results of applying equivalence exclusion to a standard PPM model. 170
7.12 Results of re-ordering the precedence of the predictive models by the meth-
ods of entropic precedence and probabilistic precedence. 172
7.13 Results of using wildcard equivalence models and class-based models in the
PPM data compression system.00 o 0oL 173
7.14 Results of applying the goal-oriented model to a PPM compressor. 178
7.15 Results of compressing an UpWritten version of the data, with the specified

maximum size of the alphabet of sub-objects and quotient-objects, together
with the results of standard PPMC for comparison. 180

Acknowledgements

“Thank you!” said Holmes. “Thank you!” and as he turned
away, it seemed to me that he was more nearly moved by the

softer human emotions than I had ever seen him.

The Return of Sherlock Holmes
SIR ARTHUR CONAN DOYLE

Completing postgraduate studies is a frightening prospect. I have constantly found
myself rebounding between two opposing beliefs: that I have not done sufficient work to
warrant writing a dissertation, and that I have covered so much ground in so many diverse
areas that I would have a lot of trouble deciding what to put in and what to leave out.
Both of these concerns have proved true to varying degrees, and both are a consequence
of my propensity to procrastinate, remarkable even by postgraduate standards. The only
solution was to sit down and write, and see what came of it. I sincerely hope that the
results speak for themselves.

I would like to thank all of the members of CIIPS, the Centre for Intelligent Infor-
mation Processing Systems at The University of Western Australia. Housed within the
Department of Electrical and Electronic Engineering, CIIPS has been my home since 1992,
when, along with fellow second-year undergraduate students Danny Goodman and Bruce
Cooper, 1 talked Professor Yianni Attikiouzel, director of CIIPS, into letting us perform
“virtual reality research”. This resulted in a poor-man’s VR system, consisting of a bicycle
crash helmet, a pair of monochromatic viewfinders salvaged from broken video cameras,
two Amiga computers (one for each eye, synchronised via a serial link) and a bunch of po-
tentiometers for measuring the position and orientation of the victim’s head. Seven years
later, T realise that the opportunity given to us by Yianni on that first fateful day has
enabled me to touch upon a lot of exciting areas, and to develop ideas which I otherwise
would not have had the chance to. It has also meant that this dissertation has been a long
time in the making, and the fact that I’ve finally finished writing is due in no small part
to a pep-talk given to me by Yianni at just the right time. Thanks for everything, Yianni.

Dr. Michael Alder, of the Department of Mathematics at UWA, has been my supervisor
since 1994. I am incredibly indebted to him for his advice, and for affording me the freedom
to walk my own path. No doubt I have often proved a disappointing apprentice, and this

tome won’t necessarily alter his opinion on that matter, but I do not think I’d have made

xxii Acknowledgements

it this far if it hadn’t been for Mike. I won’t beat around the bush—Mike, your presence
has been an inspiration, and is one thing that has made this little endeavor worthwhile.

My thanks go to other members of CIIPS, especially our numerous administrative
staff over the years, not the least of all Violetta Cetrullo and Brenda Churchill, who have
provided lots of help to fledgling thesis writers such as myself. Chris deSilva has often given
me food for thought, has expressed enthusiasm for my work, and has kindly proof-read
many draft chapters. I would also like to thank Roberto Togneri, Gareth Lee, Poh Lian
Choong, Sok Gek Lim, Tony Zaknich, Ramachandran Chandrasekhar and Keith Godfrey
for the interesting comments they’ve made about my work over the years, and for all the
help they’ve given me.

My fellow postgraduate students have provided help, support, and, most welcome of
all, frequent distraction. I would like to thank Paul (Wil) Williams, Bruce (Brewski)
Cooper, Sonny Tham, Daniel Harvey, Robert (Ram) McLaughlin, Gareth Cook, Phil
Dunstan and Raymond Low for being great friends who have always been around to chat
to, and to bounce ideas (and other objects) off. Patrick Hew was a great help in his role as
an unsolicited proof-reader, something for which I'm profoundly grateful, and I would also
like to thank the numerous postgraduate and undergraduate students who have passed
through CITPS on their way to bigger and better things. I fondly remember you all.

I would like to thank my parents, who have been kind enough to provide me with a
home, and who have given me their love and understanding, even though they have not
really understood what it is I’ve been doing locked away in my bedroom for twelve hours
each day for the past four months. Last, but not least, I wish to express my extreme
gratitude to my beloved D., who has provided me with much-needed support during the

difficult times, and who has given me the greatest reason of all for completing my studies.

JASON HUTCHENS
Perth, Western Australia,
December 1999

Chapter 1

Introduction

The past and the present are within the field of my inquiry, but

what a man may do in the future is a hard question to answer.

The Hound of the Baskervilles
SIR ARTHUR CONAN DOYLE

1.1 Introduction

The human brain is particularly adept at pattern recognition. It is capable of recognising
the faces of friends and family, of distinguishing a quiet spoken word against louder ambient
noise, of detecting and acting upon cause-effect relationships in the environment, and of
perceiving and understanding language, both spoken and written. On occasion the human
brain overextends itself; detecting structure where none exists, a situation familiar to those
who have found themselves bedridden with a bad dose of influenza, and who have stared,
in a delirious state of mind, at the grain of a wooden wardrobe. The brain is constantly
looking for patterns, and the poor patient may have fleeting glimpses of something animal
moving beneath the whorls of the timber.!

This propensity for detecting structure in chaos no doubt exists because doing so is
useful for the survival of the organism, and the process of evolution tends to favour such
mechanisms. Neanderthal statisticians who refused to jump up the nearest tree upon
seeing a lion for the first time, having only seen tigers in the past, unfortunately did not
live long enough to ensure the survival of their DNA. The rest of us have been left with
the ability to chunk: to summarise our knowledge of the world at any particular instant,
to generalise based upon past experience, and to make inferences about what is likely to
happen in the future.

The evolution of language is a recent phenomenon, geologically speaking, and it seems
likely that its very existence is a product of the general information processing abilities
of the human brain. Our thesis rests on this belief—that simple computational pattern
recognition, which makes no assumptions about the data being processed, may be used to

unlock some of the rich structure which underlies natural language.

2 1.2. Motivation

1.2 Motivation

Models of natural language are used in a variety of applications, and interest in such mod-
els is growing day by day, as Information Technology becomes more and more pervasive.
Applications of models of natural language abound, and range from language understand-
ing, text generation and machine translation to speech recognition, data compression and
author identification. Language models are typically crafted with a particular application
in mind, and it is easy to fall into the trap of attempting to achieve slight advances in per-
formance by tweaking model parameters, or developing new algorithms to do the tweaking
on one’s behalf.

We believe that real advances in the study of natural language modelling will not
come until we focus on the development of a general language acquisition device which
is applicable to all of the standard problems, but which does not make any assumptions
about the data it is likely to see. Such an approach would enable us to explore the limits
of our language model prior to the introduction of application-specific constraints, and,
more importantly, would have the potential to shed some light on the human language

acquisition process.

1.3 The Problem

We are attempting to develop a general Grammatical Inference Engine—an algorithm
which is capable of automatically constructing a model for some data. To make the
problem somewhat easier, we restrict ourselves to the case where the data being modelled
is a symbolic time series. Ideally, the Grammatical Inference Engine will find structure in
the data automatically, and will use this structure to create a hierarchical model which is
able to describe the data on a global scale. Although we are interested in natural language
applications, we acknowledge that this work must begin with very simple data sources in
the hope of generalising to more complicated ones once a suitable framework has been
developed.

We will show that very simple predictive models, which make predictions about the
next symbol in the data based upon a local context of symbols, are all that is required
to build such a system. Information theoretic measures may be used to find structure in
symbolic time series data from nothing more than the sequence of predictions made by
such models, and this structure can then be used used to bootstrap the model, in a process
known as the UpWrite.

The UpWrite enables us to design a system which begins with a very simple local
model of the data and controllably grows this model in order to describe the data on a
global scale, allowing the model to make generalisations about data seen in the past in
order to better predict the future. The result is a hierarchy of models which describe the
data on all levels, allowing applications to choose the granularity of description that they

require.

Chapter 1. Introduction 3

We aim to show that the UpWrite Predictor, the predictive model which results from
the application of the UpWrite to a low order Markov model, is able to make better
predictions than more traditional predictive models due to its ability to incorporate higher
level structure extracted from the data. Omne application which we focus on is that of
adaptive statistical data compression, a stimulating and challenging field which puts tight
constraints upon the predictive model, and which nicely illustrates the communication
problem. Our intention, however, is that the UpWrite Predictor should be capable of

being used in a myriad of applications.

It would be unreasonable to deny that the statistical regularities of natural language
are not used, in part, to aid the language acquisition process in human beings. If structure
is there to be found, it is almost certain that the process of evolution would have favoured
brains which are capable of extracting this structure and using it to aid the language
acquisition process. It is our belief that the human brain is a particularly good predictive
model, and that fairly generic information processing techniques are used in the human

brain to fairly specific ends.

1.4 The Sherlock Corpus

The Sherlock corpus is used throughout this dissertation when presenting the results
of experiments which require a reasonably sized collection of natural language text. It
was formed by downloading all of the Sherlock Holmes stories, by Sir Arthur Conan
Doyle, from the Oxford Text Archive, which is located on the World Wide Web at
http://www.ota.ox.ac.uk/, stripping them of all SGML processing directives and new-
line characters, and concatenating the resulting files together. The Sherlock corpus is a
3536088 byte file which contains 666696 words from a vocabulary of 21005 words. It con-
tains a small percentage of errors due to the optical character recognition process which
was used to construct the electronic versions of the Sherlock Holmes stories stored in the
Oxford Text Archive, and no attempt was made by us to eliminate these errors. The
version of the corpus used in this dissertation may be downloaded from the World Wide

Web by following the appropriate link from the Web site of this dissertation [1].

Various sections of the Sherlock corpus are used when performing experiments, and

these were formed via Unix commands, as summarised below.

Test: Thisis a 1147 byte file which is used primarily for the evaluation of various modelling
techniques, and is shown in its entirety in figure 1.1. It is formed by the command
head -c 1147 Sherlock > Test.

Train: This is most of the Sherlock Corpus, with the Test section removed. It is formed
by the command tail -c 3534940 Sherlock > Train.

4 1.4. The Sherlock Corpus

Small: This is the first 100000 bytes of the Train section of the Sherlock corpus, and is
used primarily when we need to train predictive models quickly. It is formed by the
command head -c 100000 Train > Small.

Sentence: This is the first sentence of the Sherlock corpus, “To Sherlock Holmes she is
always the woman.” Many plots and diagrams are given over this sentence. It is

formed by the command head -c 44 Sherlock > Sentence.

To Sherlock Holmes she is always the woman. I have seldom heard
him mention her under any other name. In his eyes she eclipses and
predominates the whole of her sex. It was not that he felt any emotion
akin to love for Irene Adler. All emotions, and that one particularly, were
abhorrent to his cold, precise but admirably balanced mind. He was, [
take it, the most perfect reasoning and observing machine that the world
has seen, but as a lover he would have placed himself in a false position.
He never spoke of the softer passions, save with a gibe and a sneer. They
were admirable things for the observer - excellent for drawing the veil
from men’s motives and actions. But for the trained reasoner to admit
such intrusions into his own delicate and finely adjusted temperament
was to introduce a distracting factor which might throw a doubt upon
all his mental results. Grit in a sensitive instrument, or a crack in
one of his own high-power lenses, would not be more disturbing than
a strong emotion in a nature such as his. And yet there was but one
woman to him, and that woman was the late Irene Adler, of dubious
and questionable memory.

FIGURE 1.1: The Test section of the Sherlock Corpus in its entirety.

We are interested in the problem of general Grammatical Inference, and for this reason
we occasionally perform experiments using a version of the Sherlock Corpus which has all
whitespace and punctuation removed, and in which all characters are converted to their
uppercase equivalents. This makes segmentation of the data into words a non-trivial task,
and this is something that we hope the UpWrite Predictor can accomplish automatically.
The various sections of the SHERLOCK corpus may be formed from the correspond-
ing sections of the Sherlock corpus by using the sequence of piped Unix commands cat
Section | tr -d -c ’[:alnum:]’> | tr ’[:lower:]’ ’[:upper:]’ > SECTION.

We have been using the Sherlock corpus for many years, and originally selected it
because it was the largest freely-available collection of English text we could find. We think
it is appropriate that Sherlock Holmes himself was a master of inference and deduction, and
was greatly interested in ciphers and secret codes. We pay homage to Sir Arthur Conan
Doyle’s creation by quoting extracts from his stories in the epigraphs at the beginning of

each chapter in this dissertation, and more extensively in the prologue and epilogue.

Chapter 1. Introduction 5

1.5 Original Contributions
Some of the original contributions made during the course of our research are

e application of the UpWrite technique to the modelling of symbolic time series, and

the subsequent development of the UpWrite Predictor, a novel predictive model;

e extending and developing various algorithms for discovering symbol sequences and

symbol classes in arbitrary data;

e an important insight into the problem of syntactic category acquisition which may
potentially result in a successful algorithm for classifying natural language words

into classes;

e application of the UpWrite Predictor to the problem of adaptive statistical data

compression;

e many novel modifications of and additions to the various techniques used in tra-
ditional adaptive statistical data compressors, including new escape mechanisms,
alternative equivalence classifications and a more theoretically sound exclusion pro-

cess; and

e the development of a goal-oriented language model which is capable incorporating
information about future events, and therefore may be used to generate data which

exhibits long-distance dependencies by “filling in the blanks” in a template.

1.6 Structure of the Dissertation

The next three chapters of this dissertation serve to provide an introduction to Information
Theory, the inference of predictive models, and the UpWrite. We begin in chapter 2 by
giving an historical overview of Information Theory, and introducing the various informa-
tion theoretic measures which we shall be using when we develop the UpWrite Predictor.
This is followed in chapter 3 by a description of the grammatical inference problem for
predictive models, a discussion of the inference of Markov models, and the presentation of
the techniques of smoothing and back-off which are used in the n-gram language models
of speech recognition systems to address some of the problems associated with the ba-
sic Markov model. The UpWrite is then introduced in chapter 4, using a simple image
recognition problem to illustrate its power.

These three introductory chapters provide us with the tools necessary for the devel-
opment of the UpWrite Predictor in chapter 5. In this chapter we show how information
theoretic measures may be applied to the sequence of predictions made by a simple predic-
tive model to find two types of structure in data, sub-objects and quotient-objects, which

in natural language text may correspond to sequences of characters which form words

6 Notes

and classes of words which form syntactic categories. We give an historical account of
work performed in the automatic extraction of this kind of structure from data, and we
introduce a few novel techniques of our own. We then show how the UpWrite may be
used to incorporate the structure found by these techniques into the predictive model in
a process of abstraction which results in a hierarchical description of the data, and which
serves to improve the performance of the predictive model on novel data.

The performance of the UpWrite Predictor is evaluated in chapter 6, where the results
of a series of experiments performed on a variety of artificial corpora generated by simple
phrase-structure grammars are used to assess the ability of the UpWrite Predictor to
find the structure inherent in the data. We also look at the performance of the UpWrite
Predictor at modelling natural language text, and we give evidence of its ability to find
words and syntactic categories by using it generatively and inspecting the resulting output.

Data compression is introduced in chapter 7, and we give a thorough overview of the
modelling technique of Prediction by Partial Matching, or PPM, which is pervasive in this
domain. We introduce some novel modifications of and additions to the standard methods
used in PPM, including a goal-oriented language model which is capable of using knowledge
about future events in order to increase its scope, enabling it to capture long-distance
dependencies in data, before showing how the UpWrite Predictor may be successfully
applied to the data compression problem by abstracting the data prior to compression
taking place.

In the final chapter of this dissertation, chapter 8, we summarise the material presented,

discuss our results, draw conclusions from them, and speculate on possible future work.

Notes

I The author may confirm via anecdotal evidence that this is indeed the case, and

recommends the reader verify this with his or her own experiments.

References

[1] Jason Hutchens’ PhD web site. Available at:
http://ciips.ee.uwa.edu.au/ hutch/phd/

Chapter 2

Information Theory

A confederate who foresees your conclusions and course of action
is always dangerous, but one to whom each development comes
as a perpetual surprise, and to whom the future is always a

closed book, is indeed an ideal helpmate.

The Casebook of Sherlock Holmes
SIR ARTHUR CONAN DOYLE

2.1 Introduction

Information Theory is a relatively new science which emerged from Claude Shannon’s pi-
oneering work on communication systems in the 1940’s. The primary goal of Information
Theory is the quantification of information, something which enables the design and anal-
ysis of efficient communication systems. The fundamental unit of information is the bit,
which represents the amount of information required to distinguish between two equally
likely events, and which should be familiar to anyone experienced with computers.

A quantitative information measure can be derived by likening information processing
to an act of prediction, whereby a model makes a prediction about which symbol is likely
to occur next in the data being processed. We refer to such a model as a predictor,
or a predictive model. The information supplied to the predictive model by the symbol
which actually does occur next is a function of the probability which the predictive model
assigned to that symbol in the course of making its prediction. Information is a property
which is supplied to the predictive model by the data, and the amount of information
received by the predictive model is dependent on the model itself. For this reason we find
it intuitive to refer to the information supplied to the predictive model by the next symbol
in the data as the surprise experienced by the predictive model upon finding out what the
symbol actually is.

A second information theoretic measure introduced by Shannon is that of entropy,

which is a property of the predictive model itself. The entropy of a predictive model is the

8 2.1. Introduction

expected value, with respect to the model, of the information which will be supplied to the
model by the next symbol in the data. The entropy of a predictive model is maximum when
the model assigns an equal probability of occurrence to all symbols, and minimum when
the predictive model assigns a probability of 1 to a particular symbol, and a probability
of 0 to the remaining symbols. For this reason we find it intuitive to refer to the entropy
of a predictive model as its uncertainty.

In the present work we are primarily concerned with modelling an information pro-
cessing device based on our beliefs of how the human brain functions. Information Theory
provides the mathematical framework necessary for pursuing such a line of research. It
gives us a language for talking about such models, for comparing them to one another,

and for extracting structure from the data they process.

2.1.1 What is Information?

Intuitively we understand information to be that intangible something which arises when
knowledge is applied to data. A meteorologist, for example, may use her knowledge of
meteorological phenomena to make a forecast of tomorrow’s minimum and maximum tem-
peratures based upon measurements taken from anemometers, rain gauges, thermometers
and suchlike. The application of the meteorologist’s knowledge to the observed data has
resulted in information, and this information is relative to the meteorologist herself—
another person may have regarded the measurements from the weather station as nothing
more than a meaningless sequence of numbers.

Knowledge is something which can be both innate and attained by experience. When
we construct a model, innate knowledge is specified in the form of the assumptions that
we make. As the model is applied to an information processing problem, it may adapt
to the data which it observes, modifying its knowledge in the process, and thus ‘learning’
from its experience.

It is often confusing to use terms like information, knowledge and experience when
speaking about a model; it smacks of anthropomorphisation, and it may cause one to
draw incorrect conclusions, and to suggest fallacious theories, merely on the strength of
the loaded meanings inherent in the terminology. We cannot avoid using the terminology
of Information Theory—doing so would require us to devise an obscure terminology of our
own. Instead, we stress that Information Theory itself is not concerned with semantics or

meaning in any way.?

2.1.2 Why is Information Important?

Information, in the technical sense of the word, is important primarily because it provides
a measure of how ‘interesting’ a piece of data is. Data which has high information with
respect to the predictive model is data which should be investigated—it may be fed back
into the model to allow it to alter its knowledge, and the importance which it places on

future events.

Chapter 2. Information Theory 9

The information measure is directly related to the minimum number of bits required to
unambiguously represent the data with respect to the predictions made by the predictive
model, and this enables the data to be compressed for efficient storage and transmission;

one real-world application of Information Theory which we shall meet in chapter 7.

2.1.3 Overview

We begin this chapter with an historical account of Information Theory, and then proceed
to discuss the role of a predictor in a communication system. We then rigorously define
the notation and information theoretic measures which we shall be using throughout this
thesis, and we conclude by discussing some of the more esoteric philosophical issues raised

by a theory of information.

2.2 Shannon’s Mathematical Theory of Communication

In 1941 Claude Shannon, now regarded as the father of Information Theory, was studying
various communications problems at the Bell Telephone Laboratories in Princeton, New
Jersey. Motivated in part by the war effort, his research culminated in 1948 with the
publication of the seminal work “A Mathematical Theory of Communication”; an event
which marked the birth of a new science [12].

Shannon’s work was preceded by that of R.V.L. Hartley, who, twenty years earlier,
had recognized some essential aspects of the information measure Shannon would later
develop rigorously [6].> Hartley realized that observation of a symbol’s value generates
information only if that value is one of several that the symbol could have taken on—that

is, if the symbol is the value of a random variable. He wrote that [6]

. in estimating the capacity of the physical system to transmit information
we should ignore the question of interpretation, make each selection perfectly
arbitrary, and base our result on the possibility of the receiver’s distinguishing
the result of selecting any one symbol from that of selecting any other. By
this means the psychological factors and their variations are eliminated and
it becomes possible to set up a definite quantitative measure of information

based on physical considerations alone.

Hartley was searching for a method which would allow the capacity of various systems
to carry information to be compared. He proposed a quantitative measure of information
by considering a message composed of z discrete random variables, each of which has D
possible values. Intuitively, the information conveyed by these symbols should be z times
the information conveyed by a single symbol, yet the message itself has D? possible values.
This suggests the logarithmic function as an appropriate information measure, in which

case the information content of the message may be expressed as zlog D.

10 2.2. Shannon’s Mathematical Theory of Communication

Definition 2.1. The Hartley Information of a discrete random wvariable X is therefore

log D, where D is the number of possible values of X.

Today it is common to calculate logarithms to base 2 when measuring information,
but it is often forgotten that the selection of base is entirely arbitrary, and does nothing
more than specify the units that the information content will be expressed in. When

calculated to base 2, the information is expressed in bits.t

Throughout this dissertation
all logarithms will be calculated to base 2 unless otherwise stated.

The Hartley Information provides an answer to many simple technical problems. For
example, a telephone switching system that is to service 8 customers requires logy 8=3
bits of information to uniquely identify each customer. The fundamental problem with
Hartley’s measure, however, is that it neglects to take the relative frequency of events into
account, meaning that rare events are considered to supply the same amount of information
as frequent events.

Shannon was functioning as a communications engineer, studying the problem of noise
in communication systems, when he established a theory which allowed the construction of
codes which were tolerant to noisy transmission systems. He considered a communications
system to consist of six components, illustrated in the block diagram of figure 2.1. These

six components are

e an information source, which produces the message which is to be communicated;

a transmitter, which transforms the message into a signal fit for transmission;

a channel, which is the medium over which the transformed messages are transmit-
ted;

e a noise source, which perturbs the signal during transmission;

e a receiver, which performs the inverse operation of the transmitter; and

a destination, which is the intended recipient of the message.

This formulation of a communication system is very general; it applies equally well to
a conversation between two human beings, the transmission of television signals and the
storage of data on magnetic media for retrieval at some later date.

Like Hartley before him, Shannon was searching for a measure of information which
would enable him to compare the performance of two communication systems. Shannon
wanted a measure which would give, in some sense, an indication of how much informa-
tion is produced by the information source; a measure which would indicate the degree
of choice the information source has when selecting an event to generate, and the degree
of uncertainty an observer has about the outcome. He began by assuming that the in-

formation source is stochastic, so that each message it is capable of producing has an

Chapter 2. Information Theory 11

signal signa’
Transmitter Channel Receiver

message
2fessaw

Information Source Noise Source Destination

FIGURE 2.1: Shannon’s model of a communication system.

associated probability of occurrence. The important insight made by Shannon was that
an information measure should be a function of the probability of the message.

Hartley had previously stated that the logarithmic function is the most natural choice
for calculating the information content of the message, and Shannon derived this rigorously,

assuming that the desirable properties of an information measure are

e that it is continuous with respect to the probability distribution over all possible

messages;

e that, for a uniform distribution, the information measure should monotonically in-

crease with the cardinality of the set of events; and

e that if an event is broken down into a series of events, the information measure of
the original event should be the weighted sum of the information measure of each

event in the series.

Shannon applied the thermodynamical concept of entropy to the communication sys-
tem as a measure of uncertainty about the message that the information source is going
to emit.” We shall rigorously define Shannon’s entropy measure, along with a variety of

other useful information theoretic measures, in section 2.4.

2.3 Shannon’s Guessing Game

In 1951 Shannon published a paper which developed some of his thoughts concerning
prediction, natural language, and the language competence of human beings [11]. Shannon
wished to approximate the entropy of the English language with respect to the model
which is implicit in the human brain,® and he achieved this by asking human subjects to
progressively predict the next letter in an English sentence, an experiment which is now
commonly referred to as the Shannon Game [10].

The Shannon Game is used to approximate the entropy of the language model implicit

in the human brain by measuring the number of guesses required by human subjects to

12 2.3. Shannon’s Guessing Game

correctly guess each letter in the test sentences. We shall use the Shannon Game to give

an example of prediction, and to discuss the measures of surprise and uncertainty.

Consider the incomplete sentence shown below, and imagine that an anonymous ex-

perimenter has asked you to utter the word which you expect to see next.

The cat sat on the ...

It is likely that the word which first entered your head upon reading this sentence was
‘mat’. There are several reasons for this. You may have seen the sentence “the cat sat
on the mat” many times before, and this prior experience increases your expectations of
seeing it again. Your experience of the world dictates that cats may sit on various things,
so even if you have never seen a sentence exactly like this one before, you can narrow
down the possibilities. Your uncertainty of the identity of the next word in the sentence

is therefore quite low.

You now inform the anonymous experimenter that you expect to see the word ‘mat’

next. The anonymous experimenter lets you know that your guess is incorrect.

You might now proceed to guess such words as ‘floor’, ‘chair’ or ‘carpet’, because these
too are things that cats might sit on, or you might guess words such as ‘hat’, ‘gnat’ or
‘rat’, because they satisfy the rhyming constraint and happen to be mildly amusing. The
anonymous experimenter, much to your chagrin, continues to shake his head as you make

your guesses.

After a while you tire of this process, at which stage the anonymous experimenter

informs you that the next word in the sequence was actually ‘ceiling’.

The word ‘ceiling’ forms a perfectly grammatical sentence—the sentence “the cat sat
on the ceiling” is satisfactory as far as a formal grammar of English is concerned. But to
the subject of such an experiment the appearance of the word is surprising, and it is likely
that you consider it to form a nonsense sentence. The appearance of the word ‘ceiling’ it
is likely to have surprised you more than the appearance of the words ‘mat’, ‘rat’ or even

‘floor’ would have.

Such a demonstration shows that the model of the English language inside your head,
whatever it may be, has additional constraints to those imposed by the formal grammars
of English developed by the linguistics community.” It also indicates that the surprise
you experience upon discovering the identity of the next word in the sentence is a crude

measure of your prediction competence.

Shannon gave bounds for the entropy of the model of natural language implicit in
the human brain by collecting statistics about the number of attempts human subjects
required to correctly guess the next letter in a collection of English sentences. His estimate
gave an upper bound of 1.3 bits per letter and a lower bound of 0.6 bits per letter, which

agrees with modern experimental results [2].8

Chapter 2. Information Theory 13

2.4 Information Theoretic Measures

We shall now formally define the notation and the information theoretic measures which
we shall be using throughout this dissertation. The reader should beware that some of our
terminology is non-standard; particularly our use of the terms information and entropy.
Shannon considered information to be a change in entropy, and stated that “information is
that which reduces uncertainty”. Our definitions of information and entropy differ, in that
we define information as an a posterior: property of the data with respect to a predictive
model, and we define the entropy as an a priori property of the model itself, expressed as
the expected value of the information.

We recommend the text by Thomas Cover and Joy Thomas as an excellent reference

on Information Theory [5].

2.4.1 Notation

Definition 2.2. An alphabet is a finite set containing at least two distinct elements
known as the symbols. Let A = {x1,z2,... ,x;,...} represent the alphabet, and let |A|
denote the cardinality of the alphabet.

Example 2.1. The set of ASCII characters constitutes an alphabet.

Remark 2.1. Although we will usually be dealing with an alphabet of characters, we will
occasionally be working on the word level when processing natural language data, in which

case the set of words will be referred to as the alphabet rather than the dictionary.

Definition 2.3. Let s, = xz1,%2,... ,%4,... ,Z,, with x; € AV x;, be a sequence of z

symbols which we shall refer to as a symbolic time series or as the data.

Example 2.2. For the alphabet of ASCII characters, any file in the ASCII format is a
valid symbolic time series. The Sherlock corpus is therefore a symbolic time series in the
alphabet of ASCII characters.

Remark 2.2. We will often informally refer to the data as a corpus, a text or a string,

particularly when talking about natural language data.

Definition 2.4. A predictive model M is an algorithm which is capable of making a
prediction about the next symbol x; in the symbolic time series s, in the form of a probability
distribution over the alphabet. We denote the probability which the predictive model assigns
to the next symbol in the data as P(z;|M,s;_1), where s;_1 represents the portion of the

data which precedes the next symbol, referred to as the history.

Remark 2.3. An n'"—order Markov model satisfies this definition, and we shall introduce

such models in the next chapter.

Remark 2.4. We shall also refer to predictive models as predictors.

14 2.4. Information Theoretic Measures

2.4.2 Probability Theory

Predictive models are normally constructed by measuring the relative frequencies of sym-
bols in various contexts, as observed in a training corpus, and we shall discuss the con-
struction of predictive models in this manner in the next chapter. We must tread carefully
when referring to relative symbol frequencies and symbol probabilities; a common trap is
to regard them as being the same thing. This is not the case.

Probability theory is used to quantify our expectations about the future, and these
expectations are represented as a probability distribution over all possible future events.
This distribution may be arrived at in one of two ways; as a measure of the frequencies
of outcomes in random experiments, or as our degrees of belief in propositions which do
not involve random variables. The first kind of probability is easy to come by; we can
simply make observations of an event in order to approximate its probability, as is the
case when inferring the maximum likelihood model from a training corpus. The second
kind of probability is subjective rather than objective; it forces us to reveal our a priori

assumptions, to be explicit about our confidence in our beliefs.

Definition 2.5. Baye’s rule is defined in equation 2.1, where M is a predictive model
and D is the observed data. The a priori probability of the model is given by P(M), and
P(M|D) gives the a posteriori probability of the model with respect to the observed data.
Application of Baye’s rule allows us to update our degree of belief in model M in the light
of observed data, and provides a practical method of selecting one predictive model over

another.

P(M)P(D|M)
P(D)

P(M|D) = (2.1)
Remark 2.5. Although the predictive model M may have been inferred from observations
of actual data, P(M) must be arrived at by other, possibly quite subjective, means. The
power of the Bayesian approach is that it forces us to be explicit about our prejudices. In
situations where we have no reason for preferring one predictive model over another, the

uniform distribution may be used as the Bayesian prior.

Remark 2.6. Note that P(D) is included merely to normalise the equation, to ensure
that P(M|D) is a valid probability distribution. This may be achieved by setting P(D) =

> m P(DIM).

Example 2.3. Consider a biased coin, with P(heads) > P(tails). Without any a pri-
ori knowledge of this particular coin, it seems reasonable to assume that heads and tails
are equally likely. Now let M, represent the model which predicts P(heads) = m with
m € [0,1]. Baye’s rule requires us to provide an a priori distribution over the space of
models. If we were to choose the uniform distribution, it would mean that we have no

prior assumptions, and are willing to approximate P(heads) from the data alone. If we

Chapter 2. Information Theory 15

are completely confident, and set P(M1) = 1 with P(M,,) = 0 for all other m, no number
2
of observations will alter our belief that M1 is the correct model. In reality the prior we
2

choose will fall somewhere between these two extremes.

We shall be using the Bayesian approach in chapter 7 when we explore some alternative
methods for combining the predictions made by a family of predictive models into a single

prediction, for use in data compression systems.

2.4.3 Information Theoretic Measures

Definition 2.6. The information supplied to the predictive model by the next symbol in
the data is denoted I(z;|M,s;—1), where z; is the symbol which follows the history s; 1
and M is the predictive model, and is given by the negative logarithm, taken to base 2, of
the probability of the symbol z; following the history s;_1 according to the predictive model
M, that is,

I(:Ei|./\/l,8i_1) = —log2 P((I,‘i|M,Si_1) (2.2)

Example 2.4. Consider a model M, which predicts the value of a coin toss with the
uniform prediction P(heads|M,g,si—1) = P(tails| Mg, si—1), regardless of the history of
previous coin tosses s;_1. Fach coin toss will result in exactly one bit of information being

supplied to the model, since — logZ% =1.

Remark 2.7. The information supplied to the predictive model by the next symbol in the
data specifies the minimum number of bits required to describe the symbol with respect
to the model in an unambiguous way, and may be understood informally to represent the
surprise the predictive model receives upon discovering what the next symbol in the data

actually is.

Definition 2.7. The instantaneous entropy of the predictive model is given by the ex-
pected value of I(x;|M,s; 1), and is denoted H(M,s; 1),” where s; 1 is the history and
M is the predictive model, that is,

H(M,Si_l) = Z P((I,‘i|./\/l,8i_1)[(xi|./\/l,8i_1) (2.3)

;€A

Example 2.5. The entropy of the M, of example 2.4 is 1 bit, since the prediction made
by the model is the uniform distribution. Consider a second model My which makes the
predictions P(heads| My, si—1) = 3 and P(tails| My, s;—1) = 1. The entropy of this model
will be —3 logy 3 — X logy & = 0.81 bits.

Remark 2.8. We intuitively think of H(M, s;—1) as the uncertainty the predictive model
M has about the next symbol in the data, given that s;_1 is the history.

16 2.4. Information Theoretic Measures

Remark 2.9. A symbol assigned zero probability by the predictive model supplies an in-
finite amount of information to the model should it occur, but this does not affect the

entropy calculation, as

li P(z;)logy P(x;) =0 2.4
 Jim Pl log, P(a) 2.4
Remark 2.10. The entropy of the predictive model is a mazimum when it assigns an

equal probability to all symbols in the alphabet, and equal to

H o = log, |A| (2.5)

Definition 2.8. The average information supplied to the predictive model by the data
is denoted by I(s,| M), where z is the number of symbols in the data s, and M is the
predictive model, and is given by dividing the information supplied to the predictive model

by the data by the number of symbols in the data, that is,
- 1
I(s:|M) = ——logy P(s:| M) (2.6)

Remark 2.11. P(s,|M) can be decomposed into a product of the predictions made by the
predictive model M about each symbol in the data s,, and we shall define this decompo-
sition, and show how it may be used to derive the standard Markov model, in the next

chapter.

Example 2.6. Consider using My of example 2.5 to make predictions about o fair coin,
so that heads and tails occur with equal frequency in the data s,. The average information
supplied to the model My by the sequence of coin tosses s, will be —% log, %—% log, i =1.21
bits per symbol, while the average information supplied to the model M, of example 2./ by
s, will be 1 bit per symbol.

Remark 2.12. The average information of the data with respect to the predictive model
may be used as a performance measure, and it represents the minimum number of bits
required to express s, in terms of the predictions made by the model. We shall use this

measure in chapter 7 when we use predictive models in data compression systems.

Example 2.7. If we were to use I(s,|M) as a performance measure in the previous ez-
ample, M, would be deemed the better model, as Mg, is “less surprised about the data”
than M0

Definition 2.9. The perplexity of the predictive model with respect to the data is denoted
PP(M|s,), where s, is the data and M is the predictive model, and is given by the
probability of the data with respect to the predictive model raised to the average information

supplied to the predictive model by the data, that is,

PP(M]s;) = P(s,| M) ¢ (2.7)

Chapter 2. Information Theory 17

Remark 2.13. When the IBM Speech Recognition Group developed a language model for
their Tangora speech recognition system, the perplexity of the model with respect to the text

was introduced as a performance measure [1].

Remark 2.14. The perplexity is a monotone function of the average information, and
gives the average number of equiprobable symbols which the predictive model must choose
between when making a prediction [4]. We shall not be using the perplezity as a perfor-
mance measure in this dissertation, we define it here only to mention its relationship to

the average information.

2.5 A Philosophical Discussion

Information Theory has found many applications in numerous diverse fields, and there can
be no doubt that a general theory of information is of great use in today’s information-
driven society, and that many more applications of Information Theory are likely to emerge
in the future. Indeed, we shall show that information theoretic measures may be used to
discover structure in data, and that this structure may be used to bootstrap a predictive
model in a process known as the UpWrite. Information Theory, together with the UpWrite,
may potentially contribute to the development of a general learning algorithm, something
which would mark the genesis of computational intelligence.

Information Theory has formed a basis for theories of learning, including complexity
theory, and, more generally, Norbert Wiener’s Cybernetics [13]. One author has gone so
far as to form, in a non-rigorous sense, a quantum theory in which information is a fifth
dimension, and entropy is a field of force [7]. The use and abuse of Information Theory
is widespread, and not restricted to the sciences by any means. The introduction of
a quantitative measure of information saw its misapplication throughout the humanities,
and it is therefore not surprising that the linguistics community of today treats Information
Theory with caution, and applies it carefully.

Generally speaking, the entropy of a system rises to a maximum whenever it is in a
state of complete and utter disorder, and such systems are inherently uninteresting. In
thermodynamics the maximum entropy state is achieved when the system is in equilibrium,
which certainly does not seem interesting at a macroscopic scale. Higher entropy states
appear roughly the same on a macroscopic level, with many possible arrangements of
elements at a microscopic scale. Frozen water has less entropy than water vapour, while
a sensible model of the English language has a lower entropy than a model which deems
all characters equally likely.

Constraints must be imposed on a system if it is to exhibit behaviour which we would
consider interesting. A fish tank containing layers of different coloured fluids is more
interesting than one containing a featureless murky liquid, and is evidence of some higher
order process at work. Similarly, the constraints which bind the possible forms of sentences

in natural languages result in symbol strings which are inherently more interesting than

18 2.6. Summary and Conclusion

those generated by a uniformly random source, and the higher order processes at work
may be uncovered, if only partially, by investigating the strings themselves.

Constraints impose order on a system which otherwise would be completely chaotic,
and this imposition of order has the side-effect of introducing redundancy—the fact that
the elements of the system are ordered with respect to one makes redundancy inevitable,
and its existence in a system is, according to John von Neumann, evidence of complex-
ity [3].

Redundancy, according to Lila Gatlin, comes in two flavours; context-free and context-
sensitive [3]. An example of the former is the statistical rule that some symbols occur more
frequently than others. Gatlin suggests that this type of redundancy exists to safeguard
against error. Context-sensitive redundancy, however, is the extent to which the symbols
have departed from their state of independence, and permits variety.

It is a curious thing that intelligent beings create complex systems, and it is even
more thought-provoking to suggest that such systems can arise spontaneously, in a self-
generating way. According to Campbell [3], John von Neumann believed that such be-
haviour is a foregone conclusion once the system breaks the so-called “complexity barrier”.

In developing the UpWrite Predictor, we shall apply the principles of Information
Theory to simple predictive models in an attempt to uncover higher level structure in
data, and we shall use this structure to augment the model, increasing its predictive
power, in a method borrowed from syntactic pattern recognition—the UpWrite. This is
an attempt to model the complex systems which generated the data, with a long-term
goal being the development of a computational model of natural language acquisition in

human beings.

2.6 Summary and Conclusion

In this chapter we have given a brief historical overview of Information Theory, beginning
with Shannon’s model of a communication system. We then introduced the notation which
we shall be using throughout this thesis, and defined the various information theoretic
measures which we have found to be of value in the problem of automatically discovering
structure in arbitrary data. We concluded with a rather subjective philosophical overview
of why Information Theory is useful in the lofty goal of developing artificially intelligent

systems.

Notes

2 Even though Information Theory itself is not concerned with semantics or meaning,
we shall see that it is possible to design a simple predictive model which learns semantic
categories in natural language text, to a degree, by applying simple information theoretic

measures to the sequence of predictions it makes.

References 19

3 Shannon acknowledges the pioneering work of Hartley in his classic paper.

4 The terminology ‘bit’ was coined by J.W. Tukey by contracting the term “binary

digit”, and was first mentioned in Shannon’s landmark paper.

5 It is interesting to note that Boltzmann referred to thermodynamical entropy as

relating to “missing information”.

6 Although this may seem like a controversial statement, it is obvious that the human
brain must contain a model of natural language of some sort, because human beings are

capable of both generating and understanding natural language utterances.

" When considering which words may follow the segment “the cat sat on the ...”, it
is unlikely that you considered all possible noun phrases. Rather, your prior knowledge
imposes additional constraints above and beyond those of a grammar which a linguist
might come up with. A formal grammar may only be able to predict that a noun-phrase

is expected, which could be anything from ‘mat’ to “colourless green idea”.

8 Entropy, of course, is a property of a model, and averaging results from a group of
different models therefore seems slightly suspicious. It should be noted however that some
researchers happily refer to the entropy of a language. This is confused, but not intolerably

so0, if we regard the language as generated by a model.

9 Although the adoption of the H symbol to denote entropy is borrowed from ther-
modynamics, we agree with James Massey’s suggestion that it be thought of as a belated

honour to Hartley [9].

10 Note that this Minimum Information criterion is equivalent to the standard Maximum

Likelihood criterion.

References

[1] A. Averbuch, L. Bahl, R. Bakis, P. Brown, G. Daggett, S. Das, K. Davies, S. Degen-
naro, P. de Souza, E. Epstein, D. Fraleigh, F. Jelinek, B. Lewis, R. Mercer, J. Moor-
head, A. Nadas, D. Nahamoo, M. Picheny, G. Schichman, P. Spinelli, D. Van Comper-
nolle, and H. Wilkens. Experiments with the Tangora 20,000 word speech recognizer.
Technical report, IBM T.J. Watson Research Center, 1986.

[2] Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Jennifer C. Lai,
and Robert L. Mercer. An estimate of an upper bound for the entropy of English.
Computational Linguistics, 18(1):31-40, 1992.

[3] Jeremy C Campbell. Grammatical Man: Information, Entropy, Language and Life.
Pelican Books, 1984.

20

References

[4]
[5]

Eugene Charniak. Statistical Language Learning. MIT Press, 1993.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley
& Sons, 1991.

R.V.L. Hartley. Transmission of information. The Bell System Technical Journal,
VII(3):535-563, July 1928.

Arie S. Issar. From Primewval Chaos to Infinite Intelligence: On Information as a

Dimension and on Entropy as a Field of Force. Avebury, 1995.

Frederick Jelinek. Probabilistic Information Theory: Discrete and Memoryless Mod-
els. McGraw-Hill, 1968.

James L. Massey. Applied digital Information Theory. Lecture notes, 1992.

Martin Redington and Nick Chater. The guessing game: A paradigm for artificial
grammar learning. In A. Ram and K. Eiselt, editors, Proceedings of the Sixteenth
Annual Conference of the Cognitive Science Society, pages 745749, 1994.

C.E. Shannon. Prediction and entropy of printed English. The Bell System Technical
Journal, XXX (1):50-64, January 1951.

Claude E. Shannon and Warren Weaver. The Mathematical theory of Communication.

University of Illinois Press, 1949.

Norbert Wiener. Cybernetics, or Control and Communication in the Animal and the
Machine. John Wiley & Sons, 1961.

Chapter 3

Inference of Predictive Models

“You see, my dear Watson”—he propped his test-tube in the
rack, and began to lecture with the air of a professor addressing
his class—*“it is not really difficult to construct a series of
inferences, each dependent upon its predecessor and each simple

in itself.”

The Return of Sherlock Holmes
SIR ARTHUR CONAN DOYLE

3.1 Introduction

The information theoretic measures introduced in the previous chapter may be used to
find structure in data from the sequence of predictions made by a predictive model, and
the usual method of constructing such a model is to infer it from a training corpus. This
process is a particular case of what is called grammatical inference by the syntactic pat-
tern recognition community [4], which may also be referred to as computational language
acquisition.

Observation of natural language suggests that letters and words occur with varying
frequencies [5, 11], and predictive models inferred from a large text corpus are able to
capture this property. Such models have many applications, and are used today in speech
recognition systems and adaptive statistical data compressors. Both the speech recognition
and data compression communities have independently developed similar grammatical

inference techniques to construct the predictive models they require.

3.1.1 Speech Recognition

A speech recognition system transcribes an utterance by selecting the most probable word

string W in light of the observed acoustic evidence A, as in equation 3.1.

~

W = arg maz P(W|A) (3.1)

22 3.1. Introduction

Application of Bayes’ rule allows us to express P(W]A) as in equation 3.2. A speech
recognition system therefore consists of two components—an acoustic model which is ca-
pable of estimating P(A|W'), and which is inferred from a large number of utterances, and
a language model which is capable of estimating P(W'), and which is inferred from a large

corpus of natural language text.!!

P(W)P(AIW)

POVIA) = =55

(3.2)

An n-gram language model is typically used to estimate P(W). The frequencies of
word n-tuples are collected from a training corpus, and are used to estimate a probability
distribution over all words in the alphabet for contexts of n — 1 words. This probability
distribution is smoothed to ensure that every word in the alphabet is assigned a non-zero
probability by the n-gram language model. Smoothing is usually performed by linearly
interpolating the probability estimates of j-gram language models for 0 < j < n. Compli-
cated optimization procedures are typically applied in order to determine locally optimal
interpolation weights; the fact that the grammatical inference process is computation-
ally expensive as a result is of little consequence, as the predictive model used in speech

recognition systems remains static during use.

3.1.2 Data Compression

Adaptive statistical data compressors work by using arithmetic coding to efficiently encode
each symbol in the data with respect to a predictive model. In order to avoid the overhead
of transmitting this model along with the encoded representation of the data, adaptive
statistical data compressors infer the model incrementally from the data as it is being

compressed.

A PPM language model, where PPM is an abbreviation of Prediction by Partial Match-
ing, is typically used in such data compressors—the predictions made by a 3™-order
Markov model are smoothed either by blending them with the predictions of lower order
Markov models, in a process identical to that of linear interpolation, or by using a tech-
nique known as escape to gradually fall-back from the 3™ -order Markov model to the
lower order Markov model which assigns a non-zero probability to the next symbol in the
data.

The predictive model used in adaptive statistical data compressors is inferred adap-
tively from the data being compressed, and this means that the techniques of blending and
escape are required to be computationally efficient, so that compression may complete in

reasonable time.

Chapter 3. Inference of Predictive Models 23

3.1.3 Overview

We begin this chapter with a brief description of the process of grammatical inference
before introducing the general technique used to infer predictive models from data. The
standard Markov model is then introduced, and we discuss some of the problems it faces.
The techniques of smoothing and back-off, which are used to combine the predictions made
by several predictive models of various orders, are then presented. We defer a discussion
of the PPM language model until chapter 7, where we shall present the data compression

process in detail.

3.2 Grammatical Inference

A Grammatical Inference Engine is a device which automatically constructs a grammar
from a training corpus. Whether or not such a device is used in the human brain during
natural language acquisition is a topic of much controversy. It is our position that the
human brain does infer natural language from scratch, rather than making use of a uni-
versal grammar which is present from birth, and we base this belief on our experience that
fairly general information processing techniques may be used to find fairly specific kinds
of language-like structure in data. We introduce a computational model which is capable
of uncovering some of this structure in chapter 5.

Apart from contributing to the debate on natural language acquisition in human be-
ings, a general Grammatical Inference Engine would be of great use in applications where
it is not possible to design a grammar by hand. Eugene Charniak states that general

grammatical inference is useful because [2]

e the analysis is grounded in real data, and therefore makes good use of the available

evidence, while avoided unfounded assumptions;
e it may be used in applications where a lack of perfection is of no consequence;
e it can produce useful results in a reasonable amount of time;

e an expert may not be available, and hence standard linguistic techniques for design-

ing a grammar cannot be applied;
e the model can adapt to new data as it is observed; and

e many applications require a stochastic grammar, and it may be unreasonable to

expect a human expert to provide us with probability estimates.

Our approach is one of selecting a type of grammar which is easy to infer from data,
and which is capable of capturing both the context-free and context-sensitive redundancy
observed in natural language. A simple local-context model such as a Markov model is

sufficient to achieve this, and we shall show that Markov models may be trivially inferred

24 3.3. The Stochastic Grammatical Inference Process

from data. A technique known as the UpWrite, which we shall introduce in the next
chapter, may then be used to abstract the data in a way which improves the ability of the
predictive model inferred from it to generalise about previously unseen data, resulting in
the formation of a more powerful model. This approach differs from that of traditional
syntactic pattern recognition, where a grammar considered appropriate to the data is
designed by hand, with the result that grammatical inference may not be such a trivial

problem.

3.3 The Stochastic Grammatical Inference Process

A stochastic grammar is a model which is capable of assigning a probability to an arbitrary
symbolic time series s, = x1,9,... ,T,. It is common to decompose the probability P(s;)
using Bayes’ rule, as in equation 3.3, where s;_1 = x1,%2,... ,x;—1 is the history. It should
be noted that this decomposition is not unique—there are many possible decompositions,
all of them equally valid. We select the one shown in equation 3.3 merely because it
describes a predictive model, in that the probability of a symbol x; is conditional on the

history of preceding symbols.

z

P(s.) = [[P(xilsi 1) (3.3)

i=1
The inference problem for predictive models is therefore one of estimating the condi-
tional probabilities of the right-hand side of equation 3.3. This is difficult as ¢ increases,
as it becomes more and more likely that the history s; 1 will not have been observed in
the training corpus at all. The common solution to this problem is to group histories into

a finite set of equivalence classes.

Definition 3.1. An equivalence class of strings is a set of strings which are deemed to
be similar according to some measure. We use ®(s;_1) to denote the equivalence class to

which the string s;—1 belongs.

The decomposition of equation 3.3 may now be expressed as in equation 3.4. Our

problem is now one of selecting an appropriate equivalence classification.

z

P(s;) = [[P(zil®(si-1)) (3.4)

=1

Frederick Jelinek states [8] that the equivalence classification chosen must necessarily

draw a compromise between

e being sufficiently refined to provide adequate information about the history; and

Chapter 3. Inference of Predictive Models 25

e providing classes which occur frequently enough in the training corpus so that the

probability P(z;|®(s;—1)) can be reliably estimated.

The equivalence classification traditionally used in both the speech recognition and
data compression fields is to classify histories according to their most recent context of
n symbols. This is the Markovian assumption, and predictive models which use this

equivalence classification are known as n'* —order Markov models.

3.4 Markov Models

An n*"—order Markov model makes the equivalence classification shown in equation 3.5.

D(si—1) = (Ti—ny--- yTi1) (3.5)
Remark 3.1. We refer to the substring (x; n,...,x; 1), which the n®—order Markovian
equivalence classification maps aoll histories s;_1 = x1,Z2,... ,T;—1 onto, as a context.

We delimit contexts with the angled brackets (and), and we often delimit substrings and

other short symbolic time series using the same notation.

Definition 3.2. A Markov model consists of a state space S = {y1,...,yc}, a unique
starting state ys € S, and a probability distribution of transitions between states P(yp|yq)
v Ya; Yo € S.

Definition 3.3. An n'*-order Markov model contains one state for every context, with
a transition between two states (Tj_p,... ,Ti—1) and (Ti—pi1,... ,T;) occurring with prob-

ability P(z;|Zi—pn,... ,xi—1), and emitting the symbol x;.

The n'*—order Markov model M estimates the probability of the data s, as in equa-
tion 3.6.

z

P(s,M) =~ HP(%K%—n, L Ti—1)) (3.6)
i=1

Remark 3.2. A Markov model is capable of assigning a probability to an arbitrary sym-
bolic time series by performing the decomposition of equation 3.6. Markov models may also
be used generatively to create data according to the probabilities embodied by the model.
This process proceeds by beginning in an arbitrary state, following o transition out of this
state at random, in accordance with the probabilities of the transitions which lead out of the
state, emitting the appropriate symbol, and iterating. We shall be using predictive models
generatively in chapters 6 and 7 in order to inspect the data they produce. This enables
us to get an intuitive feel of how well the predictive model captures the essence of the data

it was inferred from.

26 3.4. Markov Models

Example 3.1. Figure 3.1 shows a simple 2™ —order Markov model which is capable of
generating pseudo-English sentences such as “The man ate the apple, and the woman ate

a peach.”

<START> <NULL> The

N[—
N

1 1
1

woman ate man ate 1

7
S

a peach the peach the apple an apple

and the

1 1
2 2

FIGURE 3.1: A simple 2" —order Markov model which is capable of generating pseudo-
English sentences.

Chapter 3. Inference of Predictive Models 27

It is now possible to derive the maximum-likelihood estimate of the probabilities of the
right-hand side of equation 3.6 from the normalised frequency with which the substring
Zi—m, ... ,Tjoccurs in the training corpus. This is achieved as in equation 3.7, where C(s;)

denotes a count of the number of occurrences of the substring s; in the training corpus.

Clti ... ,2)
Plzil{zin,...,25-1)) = 3.7
(@il(Zin, ,Tio1)) C(@in,- - Ti1) (3.7)
Remark 3.3. We refer to the substring (;—p41,-.. ,%;), which is of length n, as an n-

gram. The n-gram language model is so named because the inference process consists of
counting the occurrences of n-grams in the training corpus. An n'—order Markov model

is equivalent to an (n + 1)-gram language model.

Remark 3.4. We refer to a 1-gram language model as o unigram language model, a
2-gram language model as a bigram language model and a 3-gram model as a trigram

language model.

Speech recognition systems normally incorporate 2"¢-order Markov models, while 37—
order Markov models are usually used in the PPM language model of adaptive statistical
data compressors. We shall introduce the PPM language model in chapter 7; until then we
shall be concerned only with the modelling techniques used in speech recognition systems,
as they will be sufficient to illustrate the problems faced by the inference of predictive

models in general.

3.5 Problems With Markov Models

The average information supplied to a predictive model by the data, as defined in equa-
tion 2.6, may be used to evaluate the performance of the predictive model. Consider the
plot shown in figure 3.2, which was generated by inferring character level n-gram language
models, for various n, from the entire Sherlock corpus, and evaluating the performance of
each of the resulting predictive models by measuring the average information provided to
the model by the Small section of the Sherlock corpus.

It can be seen that the performance of an n-gram language model improves as n is
increased when the model is used to make predictions about portions of the corpus from
which it was trained. This is not surprising; larger contexts constrain the possible values
of z;, and, for sufficiently large n, P(z;|M,s;—1) =1V z; € s,.

It need not be said that in practical applications we do not have the opportunity to
infer predictive models from the data on which they will be applied—the entire point of
grammatical inference is to construct a predictive model which is capable of making gen-
eralisations about hitherto unseen data. Consider figure 3.3, which plots the performance

of character level n-gram language models which were inferred from the Train section of

28 3.5. Problems With Markov Models

Average Information Supplied to Model by Data (bps)

20

FIGURE 3.2: Plot of the performance of n-gram language models, for various n, over a
portion of the data from which they were inferred.

the Sherlock corpus only, and which were then evaluated over the Small section of the
Sherlock corpus. In order to avoid problems arising from cases where P(z;|M,s;_1) =0,
we set P(z;|M,si_1) = _jl\ in situations where this would have occurred.!?

It turns out that the performance of the n-gram language model is almost identical to
that of the previous example for n < 3, but after this it begins to level off, and degrades
for n > 5. This is due to the fact that as n is increased, more and more contexts which
did not occur in the training corpus are observed in the testing corpus.

Three of the main problems suffered by Markov models, when used as predictive mod-

els, are

the zero-frequency problem which occurs when the model is unable to assign a non-
zero probability to the next symbol in the data, with the result that the symbol

provides an infinite amount of information to the model should it occur;

the sparse data problem which occurs when an insufficient amount of data was used

for inference, resulting in unreliable probability estimates; and

the local context problem in which the model fails to take long-range dependencies

which exist in the data into account.

In the following sections we shall describe each of these problems in detail, after which

we will briefly discuss the two methods of smoothing and back-off which are used in

Chapter 3. Inference of Predictive Models 29

Average Information Supplied to Model by Data (bps)

F1GURE 3.3: Plot of the performance of n-gram language models, for various n, over novel
data.

the predictive models of speech recognition systems to combine the predictions made by
Markov models of various orders into a single prediction, eliminating the zero-frequency
problem altogether, and reducing the problem due to sparse data. We shall defer a po-

tential solution to the third problem to chapter 5, where we introduce Up Write Predictor.

3.5.1 The Zero-Frequency Problem

The zero-frequency problem occurs when a predictive model encounters a context which
was not observed during inference and, as a consequence, assigns a zero probability to
the symbol which actually occurs next in the data [3,10]. This results in the probabil-
ity P(xy1,x9,...,z,) being calculated as zero, causing a catastrophic failure whereby an

infinite amount of information is supplied to the predictive model by the data.

The zero-frequency problem may be due to the appearance of a novel symbol in a
previously observed context, or by the appearance of a novel context which consists of a
hitherto unseen arrangement of known symbols. We shall analyse the nature of these two

situations by studying a simple artificial data source.

30 3.5. Problems With Markov Models

The Occurrence of a Novel Symbol

Consider a symbolic time series which consists of a repeated concatenation of the substring
aab. Figure 3.4 illustrates a portion of this data, where the occurrence of the novel symbol

¢ may, for instance, be due to the presence of noise (i.e. it may be a corrupted a).

aabaabaabaabacbaabaab

FIGURE 3.4: The hitherto unseen symbol ¢ occurs in data.

Let us assume that a trigram language model M has been inferred from a version of
this data in which the symbol ¢ did not occur. This model will be unable to assign a non-
zero value to P(c|M,ba), P(b|M,ac) and P(a|M,cb). In general, an n-gram language
model will be rendered useless over a sequence of n symbols whenever a single novel symbol
occurs, beginning at the novel symbol itself and continuing for the context length, during

which the novel symbol appears in the context and, therefore, the context is also novel.

The Occurrence of a Novel Context

Consider a different portion of the same data, shown in figure 3.5, where the occurrence

of the novel context (bb) may also be due to corruption of the data by noise.

aabaabaabaababbaabaab

FIGURE 3.5: The hitherto unseen context (bb) occurs in data.

In this situation, even though all of the symbols in the data were observed during
inference, the fact that the context (bb) is novel means that P(a|bb) cannot be assigned a
non-zero value by the trigram model. Furthermore, in this particular example, the model
will be unable to assign non-zero values to both P(b|ba) and P(b|ab), since an a symbol

has only previously occurred in those contexts.

3.5.2 The Sparse Data Problem

The sparse data problem is related to the zero-frequency problem in that it is a consequence
of the fact that only a finite amount of data is available for inference. An n'*-order
Markov model requires more training data as n is increased in order to observe each
context sufficiently often so that a reliable probability estimate can be made.

In reality the size of training corpus required by an n'»—order Markov model for even
moderate values of n is prohibitive, and simply unattainable for many applications. The
result of this is that the predictions made by n'*—order Markov models tend to be rather

sparse probability distributions for large n.'

Chapter 3. Inference of Predictive Models 31

3.5.3 The Local Context Problem

The third problem suffered by Markov models is caused by the equivalence classification
they use—the models only take a local context into account, and are therefore blind to
any long-range features in the data.

Consider, for example, the following sentence, which is taken from “The Adventures
of Sherlock Holmes” by Sir Arthur Conan Doyle.

He took an orange from the cupboard, and tearing it to pieces he squeezed out

the pips upon the table.

In this sentence, the seventeenth word, ‘pips’, is far more dependent on the fourth
word, ‘orange’, as it is on the two words immediately preceding it. A Markov model of
sufficiently high order to take this long-distance dependency into account would suffer

from the other two problems we have mentioned.

3.6 Smoothing

The language model used in speech recognition systems addresses the zero-frequency prob-
lem and the sparse data problem by smoothing the predictions made by various orders
of Markov model together in order to guarantee that P(z;|M,s;_1) > 0V x; € A. This
process is akin to that of blending used in the PPM language model of adaptive statistical
data compressors. We shall discuss blending in chapter 7.

Smoothing is achieved as in equation 3.8. The predictions made by j-gram lan-
guage models'* for various j, denoted by M, are interpolated by taking a weighted
sum, where the interpolation weights are functions of the context (x;_,11,... ,2;—1), and
satisfy Aj((Zi—n+1,-.. ,2i-1)) > 0V j € [1,n], and 337 Nj((zi—pt1,. .. ,@i-1)) = 1. We
may consider the interpolation weights to define a probability distribution over the set of

j-gram language models {M1,... ,M,}.

n

Pz M, si-1) & Y N (Bicng1y .- Zi1)) Pla My, siz1) (3.8)

J=1

Smoothing via linear interpolation incorporates the predictions of low order Markov
models, which tend to make the most of the available data, and the sparse-data problem is
reduced as a consequence. Although smoothing eliminates the zero-frequency problem due
to novel contexts, the appearance of a novel symbol will still result in an infinite amount
of information being supplied to the model. Data compressors address this by introduc-
ing another model, M _;, which makes the uniform prediction, while speech recognition
systems ensure that no symbol occurs in the testing corpus which has not already been

observed in the training corpus.

32 3.6. Smoothing

We now require methods for estimating the interpolation weights. Many candidate
techniques exist, but we shall consider only one—Baum-Welch optimization, which is a

particular case of the Ezpectation-Mazximisation algorithm.

3.6.1 Baum-Welch Optimization

Baum-Welch optimization, also known as the forward-backward algorithm, is commonly
used to determine locally-optimal interpolation weights in the language model of speech
recognition systems [6—8]. Baum-Welch optimization begins by regarding the smoothed
language model of equation 3.8 as a single Hidden Markov Model, or HMM. We shall not

describe the Baum-Welch algorithm in detail; for that we recommend Jelinek’s book [8].

Definition 3.4. A Hidden Markov Model consists of a state space S = {y1,...,Yc},
a unique starting state ys € S, a probability distribution of transitions between states
P(yblya) Y Ya,ys € S, and a probability distribution over the output alphabet A associated
with each transition P(x;|ya,yp).

Remark 3.5. A Hidden Markov Model is a Markov model in which the state sequence
used to gemerate an output string is unknown—that is, more than one state sequence is

possible for any given output string.

The probability of the data s, = x1,...,z, may be expressed as the sum of the

individual probabilities of all possible generations of that data, as given in equation 3.9.'

P(s.) = > [1Pwilyi) P(@ilyi1,) (3.9)
Y

1y--Yz 1=1

Figure 3.6 shows a portion of the HMM which corresponds to a trigram language
model which has been smoothed via linear interpolation. The transition from the state
(2i—2,x;—1) to the state (x;_1, ;) may occur in three different ways, corresponding to the
three transitions in the unigram, bigram and trigram language models. The three states
corresponding to the interpolation weights \; are referred to as null states, and the three
transitions to these null states from the state (z; o, z; 1), represented by dashed lines in
the diagram, are referred to as null transitions. These transitions emit no symbols when
they are traversed.

By applying equation 3.9 we may calculate the probability of the Hidden Markov Model
ending up in state (z;_1,%;) given that it started in state (x;_2,z;_1), and we find that
this corresponds to the probability P(z;| M, s;_1) of equation 3.8, for n = 3.

Initially the probabilities of the null transitions in the HMM are unknown, while those
of the remaining transitions are approximated via standard maximum-likelihood tech-
niques. A large portion of the training corpus is used for this inference, with the remainder
being held out so that it may be used to estimate the values of the interpolation weights.

Ideally, we would like to choose the interpolation weights as in equation 3.10, where

M\ represents an HMM with a particular set of interpolation weights A, and s, is the

Chapter 3. Inference of Predictive Models 33

P(A\tlwi—2,wi—1) -~
L
.

.
.
.
Lo Pelzioo, mia
(Ti—2,@i—1) FT-" "~~~ = -3
N
N
N
N

~

~ _P(Aslzi—2,mi—1)

-
-
-
~

f(z)a)l®i-2,i-1)

FiGUure 3.6: Part of the HMM formed from the linear interpolation of three Markov
models.

observed data. The process of estimating the interpolation weights now becomes one of
estimating the probabilities P(\;|z;—2,2;—1)—the probability associated with each null
transition in the HMM—such that the probability of the observed data is maximised.

My, = arg maz P(s,|My) (3.10)

The Baum-Welch algorithm may be used to find locally-optimal values of the inter-
polation weights. It is based upon the assumption that if the state sequence y1,... ,yx
which generated the observed data s, is known, where £ > z due to the presence of
null transitions, then the transition probabilities could be estimated via the standard
maximum-likelihood technique by counting the number of times each transition was used
in the generation. In an HMM, however, many possible state sequences are capable of
generating the same data. In this case, the counting function C(y;_1,y;), which is used to
estimate P(y;|y;—1), is expressed as a function of P(y;|y;—1) itself!

The Baum-Welch algorithm proceeds by making an initial guess at the values of the in-
terpolation weights, and then gradually refining this initial estimate by finding all possible
state sequences which could have generated the held-out portion of the training corpus,
and using the modified count functions described above to re-estimate the null transi-
tion probabilities. This process is repeated until the values of the interpolation weights

converge.

3.7 Back-off

A second technique used in the language model of speech recognition systems is that

of back-off. Instead of taking the weighted sum of predictions made by several Markov

34 3.7. Back-off

models to determine the value of P(x;| M, s;_1), the probability assigned to z; by exactly
one Markov model in the set {M;,... , M} is used, with the model selected to estimate
the probability of a particular z; being determined by gradually falling back from higher
order Markov models to lower order ones. This process is similar to that of escape in the
PPM language model of adaptive statistical data compressors. We shall discuss escape in
chapter 7.

Various back-off techniques exist. In this section we shall consider one—Katz’s back-
off procedure, which has been found to often out-perform smoothed language models
which use the Baum-Welch algorithm to optimize the interpolation weights. Katz’s back-
off procedure is equivalent to a process of non-linear interpolation, whereby the frequency
estimates of rare events are discounted, with the freed probability mass being redistributed

amongst unobserved events.

3.7.1 Katz’s Back-Off Procedure

Katz’s back-off procedure is a heuristic nonlinear interpolation technique which has been
found to out-perform smoothed language models which use the Baum-Welch algorithm
to optimize their interpolation weights [8,9]. It works by quantifying the belief that high
frequency counts are more accurate than low frequency counts by discounting the relative
frequency of a symbol in a context via a discounting function d(C(z;—pn+1, ... ,2;)), which
is a function of the number of times the n-gram has been observed, as in equation 3.11,
and re-distributing the remaining probability mass among events which have not yet been

observed in the context.

C($ifn+17 s 7$i)
C(Timnt1s-- ,Tio1)

P(zi{zi—nt1s -, zim1)) = d(C(zi—pt1s--- i) (3.11)

Katz chose to set d(r) = 1 for r > K, where K is some predetermined count threshold
and r is an n-gram count, in the belief that for sufficiently large counts the relative
frequency is an adequate estimate of the probability. Katz suggests that K be set to 5
or so [9]. The discounting function used for the remaining r which satisfy 1 < r < K is
chosen to ensure that the probability assigned to unseen n-grams is that specified by the
Good-Turing estimate [8].

This results in the general back-off procedure shown in equation 3.12, where the prob-
ability of a symbol z; according to the model M, and the history s; ; is expressed as a
discounted version of the relative frequency f(z;|;—p+1,-.. ,%i—1), as encapsulated in the

function)7, which is a Good-Turing type function.

F@ilTizji1, .-, 2i1) if C(xi—jy1,-..,xi) > K,
P($i|Mj,3i71) ~ OZQT(IZ'|:L‘Z',]‘+1, coyzieq) if1 < C(Ii,jJrl, o z) < K, (3.12)
BP(xi|Mj_1,si-1) otherwise.

References 35

Fallback to the model M 1 occurs when this relative frequency is zero, and the weights
a € [0,1] and S € [0,1] are chosen to ensure that the prediction made by the predictive
model is a valid probability distribution. In the situation where the fallback process
reaches M, it is assumed that P(z;|Mi,s;—1) = f(z;). Katz calculates the weights o and
B directly, as functions of the observed n-gram frequencies, in preference to optimizing
their values via other techniques. Details of Katz’s technique may be found in Jelinek’s
book [8].

3.8 Summary and Conclusion

In this chapter we have introduced the notion of a grammatical inference engine, and we
have discussed the problems faced by Markov models, which may be inferred from data
trivially. We then briefly discussed the two solutions proposed by the speech recognition
community to these problems; smoothing and back-off. The details of these techniques are
not important to our thesis, although we shall be presenting the equivalent techniques of
blending and escape, developed by the data compression community, when we construct

our own adaptive statistical data compressor in chapter 7.

Notes

11 P(A) is merely a normalising constant which ensures that P(W|A) is a valid proba-
bility.

12 This means that the prediction made by the predictive model is no longer a valid
probability distribution, but this is of no consequence in the example; we merely seek to

guarantee that I(s,|M) remains finite.
13 Sparse in that most of the elements of the probability distribution will be zero.
14 Recall that a j-gram language model is equivalent to a Markov model of order j — 1.

15 P(s,) may be calculated from an HMM in a recursive manner by constructing a
trellis which represents the generation of data s, over time. This technique is presented
in Jelinek’s book [8].

References

[1] L. Bahl, F. Jelinek, and R. Mercer. A maximum likelihood approach to continuous

speech recognition. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-5(2), March 1983.

[2] Eugene Charniak. Statistical Language Learning. MIT Press, 1993.

36

References

3]

[11]

John G. Cleary and W.J. Teahan. Experiments on the zero frequency problem. In
James A. Storer and Martin Cohn, editors, Data Compression Conference (DCC ’95),
pages 52-61, 1995.

King Sun Fu. Syntactic methods in pattern recognition. Academic Press, 1974.

Zellig Harris. A Theory of Language and Information: A Mathematical Approach.
Oxford University Press, 1991.

Frederick Jelinek. Principles of lexical language modeling for speech recognition.
Technical report, IBM T.J. Watson Research Center.

Frederick Jelinek. Self-organized language modeling for speech recognition. Technical
report, IBM T.J. Watson Research Center.

Frederick Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1997.

Slava M. Katz. Estimation of probabilities from sparse data for the language model
component of a speech recognizer. IEEFE Transactions on Acoustics, Speech and Signal
Processing, ASSP-35(3), March 1987.

Tan H. Witten and Timothy C. Bell. The zero-frequency problem: Estimating the
probabilities of novel events in adaptive text compression. IEEFE Transactions on
Information Theory, 37(4):1085-1094, July 1991.

George Kingsley Zipf. Human Behavior and the Principle of Least Effort: An Intro-
duction to Human FEcology. Addison Wesley, 1949.

Chapter 4

An Introduction to the UpWrite

Everything which had been disconnected before began at once to
assume its true place, and I had a shadowy presentiment of the

whole sequence of events.

The Memoirs of Sherlock Holmes
SIR ARTHUR CONAN DOYLE

4.1 Introduction

The UpWrite is a process for constructing a hierarchical representation of data. It works
by iteratively extracting higher level structure from the representation of the data at one
level of the hierarchy in order to determine how the data should be represented at the
next level of the hierarchy. Similarities between local models of the data at one level of
representation are used to extract this higher level structure.

The basic goal of the UpWrite is to progressively abstract the data in such a way as
to preserve its necessary features, with the intention of using the resulting representation
in applications such as image recognition.

Consider, for example, the image shown in figure 4.1. This image is a low-resolution
bitmap of a triangle, and the lowest level representation of such an image, as far as a
computer program is concerned, is as a two-dimensional matrix of binary values, corre-
sponding to the black and white pixels in the bitmap. This is the level of representation
at which any algorithm which looks for objects such as triangles in images must begin.

To a human being, however, other levels of representation are immediately apparent.
We might say that the next level of abstraction is that of line segments. We can recognise
three line segments in the image, and we may additionally recognise three vertices; points
which exist solely based upon the relationship of these line segments with one another.
This first level of representation, from a collection of pixels to a collection of line segments
and vertices, has abstracted the image by grouping together pixels which are, in some

sense, parts of the same higher level object.

38 4.1. Introduction

FIGURE 4.1: An binary image of a triangle has several levels of representation, the lowest
level of which is an array of bits.

At the next level of abstraction, a human being may say that the three line segments
and the three vertices describe a single object—the triangle. A computer program which
is able to construct a hierarchical model of a triangle in the same way may be capable of
determining whether or not a novel image belongs to the set of images of triangles.

The UpWrite can be used to develop a computer program which is able to achieve
this classification with a high level of success, without knowing what a triangle is a priori.
The resulting program is generic enough to be extended to non-trivial image classification

problems.

4.1.1 Relationship to Predictive Models

The UpWrite was inspired in part by the observation that many patterns exhibit a quasi-
linguistic structure which is reminiscent of the structure of natural language. Our thesis
rests on the belief that the UpWrite, which is a fairly general framework for finding struc-
ture in data, and progressively constructing a hierarchical model of that data, may be

applied to simple predictive models.

4.1.2 Overview

We begin this chapter with a brief historical overview which serves to introduce the Up-
Write and its relationship to the field of syntactic pattern recognition. We then define the
UpWrite rigorously; a non-trivial task given that the technique itself has not yet been fully
developed, and that no definite reference exists at the time of writing. We then illustrate
the application of the UpWrite to a simple pattern recognition problem, that of classifying
polygons, before concluding with a brief discussion of real-world image recognition appli-
cations which successfully use the UpWrite, and a discussion of how the UpWrite may be

of use in the current work.

Chapter 4. An Introduction to the UpWrite 39

4.2 Historical Background

4.2.1 Syntactic Pattern Recognition

The UpWrite is related to the field of syntactic pattern recognition, which was initiated by
King Sun Fu when he observed that images tend to be hierarchically structured in ways
which are analogous to the structure of natural languages [9-11]. The syntactic approach
to pattern recognition differs from the more prevalent decision-theoretic approach in that
instead of representing a pattern as a feature vector, it attempts to construct a global
description of the pattern in terms of its constituent parts, and represent this description
as a string of symbols. The symbols themselves are discrete, and the alphabet of symbols

is selected by a human being based upon a study of the type of data being modelled.

Example 4.1. Consider the bitmap of a triangle shown in figure 4.1. A candidate alpha-
bet of symbols for describing images such as this is A = {N, NE, E, SE, S, SW, N, NW}, where
each of these symbols represents a line segment of some predetermined length oriented in

accordance with the associated compass direction.

Various techniques exist whereby a description string may be formed from a pattern,
but these tend to be unsatisfactory, with the result that similar patterns do not necessarily
produce similar description strings.'® This is probably due to the fact that images tend
not to be very string-like.

One commonly used technique for the construction of a description string from a
pattern is that of chain coding, whereby the border of the pattern is traced, and the closest
matching symbol to the current local portion of the pattern is emitted at each stage of
this border tracing process. The resulting description string is obviously dependent on
where in the image the border tracing procedure began, and preprocessing techniques

offer solutions to this problem.

Example 4.2. Consider the bitmap of a triangle shown in figure 4.1, and the alphabet
of the previous example. A possible chain-coding of the triangle which began at the black
pizel closest to the lower left border of the image, and proceeded in an upwards direction,
s N,N,NE,N,N,SE,SE,S,SE,SE, W, W, W, SW.

The recognition process is one of determining to which language the string of symbols
representing the pattern belongs. Each class of patterns which can be recognised by the
system will have an associated grammar, and this grammar may be used to accept or reject
the string which represents a novel pattern (or, if the grammar is stochastic, to assign this
string a probability). In some cases these grammars may be designed by hand, but it is
often preferable to automatically construct them from a set of training examples via a
process of grammatical inference. This recognition technique is in contradistinction to the
decision-theoretic approach to pattern recognition, in which classification is performed by

partitioning a feature space.

40 4.2. Historical Background

4.2.2 The UpWrite

In the 1970’s Michael Alder became interested in modelling cognitive processes in ways
which are consistent with our knowledge of the central nervous system and the findings of
Cognitive Psychology. His primary interest was to develop a system which was capable of
automatically selecting salient features which would enable a hierarchical representation
of the structure in images to be created, thus avoiding the problem in traditional syntactic
pattern recognition in which a human being is required to select the alphabet of primitive
symbols.

Alder was motivated by the quasi-linguistic features of information processing in the
human brain, and a discontent with the classical neural network model. The work of Hubel
and Wiesel and Blakemore, described in David Marr’s excellent “Vision” [15], suggested
that primitive feature extraction occurs at a low level of the nervous system, and this led
Alder to develop a framework referred to as the UpWrite.

In the early 1990’s Alder, together with Christopher deSilva and Yianni Attikiouzel,
authored a series of technical reports describing an early version of the UpWrite [1,2,7],
and in [1] they write that

. what we seek is not simply a system which can recognise, say, hand-
printed or cursive characters, nor one which uses high level descriptions of
the characters, but one which generates high level descriptions automatically.
Ideally, it might generate a decomposition of the letter A which would amount
to recognising three strokes with appropriate relations between them; even
more idealistically it might go on to find words and hence to be able to ‘read’

badly distorted characters simply by using context.

The overall aim of the UpWrite is the formation of a satisfactory theory of learning
which may be applied to various problems. Alder, deSilva and Attikiouzel summarised

the hierarchical nature of the UpWrite in [2], where they write that

... human being use many levels of description of events and entities. For
example, one may specify, in principle, the sequence of hand movements over a
piece of paper, or one may say “he signed a cheque”. These may be alternative
descriptions, of use to different people ... parallel to the levels of description,

there are levels of acquisition ...

One of the main features of the UpWrite is that instead of selecting the grammar which
is most suited to the current pattern recognition problem, with the result that the selected
grammar may be difficult to automatically infer from data, a simple local model which
is conducive to inference is selected instead, and techniques are then used to find higher
level structure in the data with respect to the simple local model itself, and bootstrap the

model to a higher level of abstraction. The implication of this approach is that identical

Chapter 4. An Introduction to the UpWrite 41

pattern recognition techniques may be applied to problems which initially appear to be

quite different in nature.

The UpWrite has been successfully applied to a wide range of image processing tasks,
some of which we shall describe near the end of this chapter, and its consistently good
performance suggests that it is a good framework for syntactic pattern recognition, in a

more general setting than that prescribed by Fu.

4.3 The UpWrite Process

The UpWrite is an attempt to address the problems of syntactic pattern recognition while
avoiding the pitfalls of Fu’s programme. Specifically, the UpWrite generalises beyond
string languages, as they are thought to be too restrictive for the modelling of images, while
avoiding the introduction of the human brain into the loop. The UpWrite represents an
object hierarchically, at different levels of abstraction, and defines an automatic inference
procedure which is used to generate higher levels of description in a process which is

essentially bottom-up [5].
Two major types of structure are modelled by the UpWrite. Sub-objects are ordered

sets of objects, while quotient-objects are equivalence classes of objects. For example,
words formed from character sequences are sub-objects, while syntactic categories of words

are quotient-objects.

4.3.1 The Sub-Object UpWrite

The Sub-Object Up Write is based on the general notion that the observed data may be
partitioned into a collection of sub-objects such that these sub-objects correspond to the
primitives of some higher level representation of the data. For example, a set of pixels in
an image may correspond to a line segment, and a set of characters in natural language

text may correspond to a word.

Incorporating sub-objects into a predictive model has the advantage of increasing the
context available to the model, because a single sub-object represents a sequence of lower
level symbols. For example, consider figure 4.2, which shows a sequence of characters
UpWritten to a sequence of character pairs. If we momentarily disregard the sparse data
problem, it is obvious that an n-gram language model inferred from the UpWritten version
of the data will better predict what is coming next, as this n-gram language model is
equivalent to a 2n-gram language model inferred from the lower level representation of the
data.

We are concerned with the modelling of symbolic time series, and we shall therefore
assume that a sub-object is a sequence of symbols in the following definitions. We shall

often informally refer to sub-objects as symbol sequences.

42 4.3. The UpWrite Process

<sh><e ><i s>< a><| we<ay><s ><t h><e >

N

she is always the

FIGURE 4.2: The Sub-Object UpWrite extends the context available to a predictive model.

Definition 4.1. The Sub-Object UpWrite is a mapping (1,... ,z;) — y; between a sym-

bol sequence (x1,... ,x;) of symbols taken from some alphabet Ay to a symbol y; in some
new alphabet Ay such that the observed data s, = x1,... ,%,, x; € A1 can be represented
as a higher level symbolic time series tp = y1,... ,yk, y; € As, k < z.

Definition 4.2. The Sub-Object DownWrite is the corresponding inverse relation.

Remark 4.1. We shall describe the process of mapping between strings of symbols taken
from Ay to the symbols in Ao as UpWriting the alphabet, and the process of representing
the observed symbol sequence s, in terms of this higher level alphabet as UpWriting the
data.

Remark 4.2. UpWriting the data presents a parsing problem, as more than one Up Writ-
ten wversion of the data may be possible. We shall see that the parsing problem may be
eliminated by UpWriting the data on the fly, as sub-objects are being extracted, when we
present the UpWrite Predictor in the next chapter.

Remark 4.3. The Sub-Object Down Write is a trivial process, as for each symbol y; € As,
a corresponding symbol sequence (x1,... ,x;), x; € Ay exists such that (z1,... ,z;) — y;.
We may DownWrite the data tp = y1,... ,Yk, yi € Az by replacing each symbol y; in the

data with the symbol sequence (x1,... ,x;).

Example 4.3. Let A; be the alphabet of ASCII characters, and s, be the Sherlock corpus.
Let Ay be the alphabet which contains a symbol for every distinct alphanumeric substring
in Sy, and every distinct non-alphanumeric substring in s,. This defines a Sub-Object Up-
Write from an alphabet of characters to an alphabet of words (i.e. strings of alphanumeric
characters) and non-words (i.e. strings of whitespace, punctuation and so on). The sym-
bol sequence ty, representing the Up Written version of the Sherlock corpus, corresponds to

the Sherlock corpus at the word level.

Chapter 4. An Introduction to the UpWrite 43

Sub-Objects may exist at higher levels of representation than the word level in natural
language text, due to the fact that sequences of words form phrases, clichés, sentences,
paragraphs, chapters et cetera. Furthermore, it is not clear that the word level should be
the first level of UpWrite performed—it is likely that morphemes will be discovered before

we find the words themselves.

4.3.2 The Quotient-Object UpWrite

The Quotient-Object UpWrite is based on the notion that symbols may be assigned to
equivalence classes such that these equivalence classes correspond to the primitives of
some higher level representation of the data. For example, a quotient-object of ‘things’ in
an image may correspond to the class of straight line segments, while a quotient object of
words in natural language text may correspond to the class of verbs.

Incorporating quotient-objects into a model has the advantage of making the most out
of the data available, as a single context of quotient-objects corresponds to many contexts
of lower level objects, and therefore will be observed more frequently in the data. For
example, consider figure 4.3, which shows a string of words UpWritten to a string of word
classes, where each class contains two words. It is obvious that an n-gram model inferred
from the UpWritten version of the data will observe each context of sub-objects at least

as frequently as all possible contexts of words which are UpWritten to that context.

[she| he] [is|was] [always|often] [the|a]

N4

she is always the

FIGURE 4.3: The Quotient-Object UpWrite results in contexts which are observed more
frequently.

We shall often informally refer to quotient-objects as symbol classes.

Definition 4.3. The Quotient-Object UpWrite is a mapping {z1,... ,z;} — y; between

an equivalence class of symbols {x1,... ,x;} taken from some alphabet Ay to a symbol y;
of some new alphabet As such that the observed data s, = x1,... ,2,, ; € A1 can be
represented as a higher level symbolic time series t, = y1,... ,Y,, ¥; € Ag.

Remark 4.4. The Quotient-Object DownWrite is not unique, since it is not possible to

determine which lower level symbol z; should serve as the DownWritten version of the

44 4.3. The UpWrite Process

symbol y;. It is possible to generate possible DownWritten wversions of t, by selecting
a symbol x; € {z1,...,2;} at random. The corresponding DownWritten version of t,,
which is not unique, has the property that its UpWrite is t,, and the Down Write therefore
provides an indication of how well the UpWrite has captured salient features of the data

being modelled.

Remark 4.5. We shall find it useful to consider the equivalence class {x1,... ,z;} — y;
to be stochastic—that is, to associate a non-zero probability P(x; € {z1,...,x;}) with
each symbol in the equivalence class. In this case, the Quotient-Object DownWrite pro-
ceeds by selecting a symbol x; € {x1,... ,x;} at random in accordance with the probability

distribution over the equivalence class.

Example 4.4. Let Ay be the alphabet of words and non-words which appear in the Sher-
lock corpus, as found by the Sub-Object UpWrite of the previous example. Let Ao be the
alphabet which contains a symbol for the class of symbols in A1 which are alphanumeric at
the lowest level, and a symbol for the class of symbols in Ay which are non-alphanumeric
at the lowest level. This defines a Quotient-Object UpWrite from an alphabet of words to
an alphabet of word categories, and the UpWritten symbol sequence t, corresponds to an
alternating sequence of quotient-objects which represent words and quotient-objects which

represent non-words.

In practice, we would be more interested if the quotient-objects found in natural lan-
guage text corresponded to syntactic categories such as noun, verb, article, adjective and
so on. In fact, we shall soon show that the quotient-objects found by some techniques
tend to be quasi-semantic in nature, and it is not uncommon to find classes containing

proper names, inanimate objects, verbs describing human motion and so on.

4.3.3 Discovering Sub-Objects and Quotient-Objects

We shall devote a considerable portion of the next chapter to the problem of finding sub-
objects and quotient-objects in symbolic time series. In the meantime, we shall briefly
discuss how these problems may be solved in a general sense.

A sub-object may be found by observing that a particular set of objects are strongly
correlated with one another. In a symbolic time series, for example, a sequence of symbols
which occurs frequently would be a candidate sub-object. Obviously some sort of model
is needed to measure the correlation between objects, and the UpWrite requires that a
local model of the data be used. This requirement is made partially due to the fact that
it enables parallel processing of the data, as many processing units can model different
portions of the data independently, partially due to the fact that such models are typically
easy to infer from data, and partially due to the fact that the UpWrite itself will extend
the reach of each of these local models by constructing a hierarchical representation of the
data.

Chapter 4. An Introduction to the UpWrite 45

A quotient-object may be found by observing that one object may be replaced with
another in a particular context without adversely affecting the power of the local model
to describe the data. The two objects may then be considered to be equivalent in that the
performance of the local model upon encountering either of the objects is similar.

The UpWrite has a few disadvantages. The first of these is the necessity to train
the model in order for it to be of any use, although this requirement is not necessarily
a bad thing. The second disadvantage is due to the fact that the UpWrite constructs a
hierarchical model of the data. Optimizing the hierarchical model over all levels of the
hierarchy is computationally intractable, and therefore the UpWrite from one level of the
hierarchy to the next, higher level, tends to be greedy, in that the performance of the

model between the levels is optimized, to the possible detriment of the model overall.

4.4 An Example: Classifying Polygons

We shall now give an example of the UpWrite in action. This example is based on the
work of Robert McLaughlin and Michael Alder [5,17,19,20,22], and is purely speculative
in that it is not the result of an actual computational implementation.

Consider a pattern recognition system which is required to determine whether a par-
ticular image of a polygon is a triangle or a square. To make its job easy, we assume that
the images are binary, that exactly one polygon appears in each image, and that there are
no noise effects apart from those due to the discretization process.

Clearly this pattern recognition problem borders on the trivial. However, we shall
demonstrate that the UpWrite solves it elegantly, and avoids the use of heuristics en-
tirely, meaning that the solution is general enough to be applied to quite different pattern
recognition problems which are considerably more complicated.

In order to solve this problem using the UpWrite, we require

e a model which describes the data locally at various levels of abstraction;

e a process for finding line segments and vertices from local descriptors of the pixels

in an image;

e a process for finding squares and triangles from the local descriptors of line segments

and vertices; and

e a classification scheme which is capable of deciding whether a hitherto unseen poly-

gon is a square, a triangle or something else entirely.

The reader may wish to pause and consider how a problem such as this would be
solved traditionally. It is very likely that a traditional solution would be specifically
tailored to look for lines, triangles and squares in images, and would therefore be fairly
specific to this particular problem. The usual method employed by scientists and engineers

when faced with a problem such as this is to inspect the images by eye, and decide, via

46 4.4. An Example: Classifying Polygons

introspection, which features of the image allow for their classification, to encode these
features in some manner, perhaps by rules and tests, and finally to apply a standard
technique for classification. This precludes automation, and restricts the generality of the
approach.

It will be shown that the UpWrite is able to find lines, triangles and squares in a very
general sense, and does so without human intervention. The UpWrite therefore suffers

fewer restrictions than more traditional approaches to pattern recognition.

4.4.1 Selecting a Local Model

The UpWrite is a process which represents data at different levels of abstraction, and
which does so automatically. This is achieved by modelling the data locally, at each level
of representation, and by combining these local models in various ways to find higher level
structure, a bootstrapping process which uncovers global structure at its highest level.
Consider the image of figure 4.4. We shall assume that this image is expressed as a
bitmap of black and white pixels, as it was in figure 4.1. The lowest level description
of the triangle is therefore a two-dimensional array of symbols taken from the alphabet
{0,1}, where 0 represents a white pixel and 1 represents a black pixel. For classification
of various images to be possible, we need to abstract this data in a way which decreases

its degrees of freedom while preserving its structure.

FIGURE 4.4: A line drawing of the triangle of figure 4.1.

In order to extract higher level structure from this data, we require a model which
is capable of describing a local region of pixels in a way which allows us to measure the
correlation between two adjacent regions in order to decide whether they are part of the
same higher level object. We would like to measure this correlation in an information
theoretic way; by predicting what we expect to see nearby a particular neighbourhood of
pixels. Local Gaussian Models possess these necessary features. Although the choice of

Local Gaussian Models is not ideal, we do not know of a better alternative at the moment.

Chapter 4. An Introduction to the UpWrite 47

4.4.2 Local Gaussian Modelling

A local Gaussian Model abstracts the data by calculating the normalized 1%~ and 2"
order moments for local neighbourhoods of pixels. This is equivalent to considering the
black pixels in the image to be vectors in R?, and calculating the centroid and covariance
matrix of a local neighbourhood of these vectors. The resulting local model, which may be
represented as a vector in the UpWrite space R®, may be shown graphically as an ellipse
positioned at the centroid, with an orientation determined by the major eigenvector of the
covariance matrix, and a width and length determined by the two eigenvalues.

Figure 4.5 shows the result of using local Gaussian Models to describe the data. The
triangle has been UpWritten from a lower level representation of 55 vectors in R?, corre-

sponding to the black pixels of figure 4.1, to 16 vectors in R?.

FIGURE 4.5: A line drawing of a triangle with local Gaussian Models superimposed.

This first level of UpWrite has compressed the representation of the triangle by using
80 numbers to describe it instead of 110 numbers. It has also uncovered some structure—
we observe that the ellipses positioned along line segments tend to be long and thin, while
those positioned at the vertices tend to be quite circular. This first level of UpWrite is
an example of the Sub-Object UpWrite, as we have mapped a set of pixels into a single
higher level Local Gaussian Model.

Gaussian Models may be used as predictors. We can, for example, calculate the proba-
bility of a particular symbol being black or white using a Gaussian Model, and this enables
us to DownWrite the image by colouring each pixel a shade of grey according to the prob-
ability assigned to it by the model. This process, if applied to the current model, would
produce a triangular fuzz. DownWriting the higher level representation of the data allows
us to confirm that the structure of the data which we consider to be important has been

preserved.

48 4.4. An Example: Classifying Polygons

4.4.3 Finding Lines and Vertices

The triangle is now represented by 16 vectors in R>. A second level of UpWrite may be
performed in order to carry this abstract representation of the triangle further.

As we previously observed, ellipses which lie along line segments tend to be long and
thin. If they lie on the same line segment, they have similar orientations, and they are
spatially nearby. We can therefore find line segments in the data in at least two different

ways.

Cluster the vectors: A clustering algorithm may be applied to find clusters of vectors
which are similar according to some metric. Vectors which are assigned to the same

cluster may turn out to belong to the same line segment.

Entropic chunking: A sequence of local Gaussian Models may be used to predict what
the next model in the sequence should look like. If this prediction proves to be
erroneous, we have reached the end of some region of higher level structure. Until
then, we join the sequence of models together. This approach may find line segments,
and even curved lines depending on the tolerance threshold used to decide whether

a prediction is erroneous or not.

Figure 4.6 shows the results of this second level of UpWrite, which has successfully
identified the three line segments in the image. This second stage of UpWrite is another
example of the Sub-Object UpWrite; we have mapped a sequence of local models into a

single Gaussian Model at a higher level of abstraction.

FIGURE 4.6: A line drawing of a triangle with local Gaussian Models describing the lines
and vertices.

The vertices of the triangle, represented by circular ellipses in the figure, were not
UpWritten at all at this stage of the process. The vertices are areas of high entropy in the

image, and may be considered to be separators between line segments.

Chapter 4. An Introduction to the UpWrite 49

4.4.4 Finding Triangles and Squares

In order to determine whether a set of vectors in high-dimensional space represents a
triangle, a square, or something else entirely, we need to perform one further level of
UpWrite; the Quotient-Object UpWrite.

We might intuitively describe a triangle as “three line segments and three vertices” and
a square as “four line segments and four vertices”. We would therefore like our algorithm
to automatically decide that all line segments are the same kind of thing, and all vertices
are the same kind of thing. If we are successful in doing this, we will have come full-circle,
once again describing our data using a binary alphabet!

Contextual information may be used to classify the vectors which represent line seg-
ments and vertices into one of these two classes. We know, for example, that vectors
representing vertices tend to occur at either end of a line segment, and this information
may be enough to provide a classification. We shall not bother with exactly how the
classification process is achieved; we shall simply assume that it has been achieved, and
that we are left with a single vector in some high-dimensional space which describes the

triangle in a very abstract way.

4.4.5 Classification

If we apply this UpWrite process to lots of different images of triangles, and lots of different
images of squares, and if the UpWrite process preserves enough structure about these
shapes so that they may be distinguished at the highest level of abstraction, we will find
clusters of vectors in this high-dimensional space. Classification is then a trivial process of
deciding, via some measure of similarity, which of the two clusters a novel vector belongs
to, if any. Our problem of distinguishing triangles from squares is solved.

In the process of solving this trivial pattern recognition problem, we have represented
each image at four levels of abstraction. We therefore have quite powerful models of our
images which may be applied to many different problems, such as deciding whether a
particular shape is the same as one we have already seen but at a different scale, for
example. We also have a pattern recognition technique which can classify a new polygon
merely by training the system on a collection of these shapes too, and ensuring that the
highest level of abstraction is specific enough to allow it to be distinguished satisfactorily
from triangles and squares. If not, we would need to change the representation by adding

additional constraints.

4.5 Real-World Examples

The example we have presented was trivial, and served only to illustrate in a fairly general
way how the principles behind the UpWrite process may be used in a classification problem.
Implementation of such an algorithm is not as straightforward as it may have sounded, and

many different factors need to be taken into account. Even so, the UpWrite has proved

50 4.5. Real-World Examples

itself to be a powerful, robust pattern recognition technique, and we shall illustrate this

by briefly describing two examples of its application to real-world problems.

4.5.1 Identifying Aircraft

Robert McLaughlin, Michael Alder and Christopher deSilva have successfully applied the
UpWrite to various image recognition tasks which may initially appear to constitute quite
different problems. In 1995 they took a system which had been developed to distinguish
between silhouettes of left and right hands [18], and applied it to the problem of identifying

various aircraft in infra-red images [18,21].

The system which classified images of hands into two classes, left hand and right hand,
worked by inferring a hierarchical model of a hand by modelling the fingers and palm with
low order central moments, and modelling the six vectors which result from this process
(corresponding to the five fingers and the palm) as a single vector in some high-dimensional
space. This system achieved a 97.4% accuracy when classifying novel images. It was then
shown that the same algorithm could successfully distinguish between silhouettes of various
aircraft with essentially no modifications—classification of novel images was completely

successful in this case.

A similar algorithm was used to classify images of four different aircraft. The images
were formed by thresholding an infra-red image of an aircraft model which had been
rotated arbitrarily in three dimensions, resulting in a success rate of 71% for delta-wing

aircraft and 61% for non-delta-wing aircraft.

4.5.2 Distinguishing Calvin From Hobbes

Sok Gek Lim [14], Michael Alder and Philip Dunstan [8] studied the problem of detecting
intruders by classifying moving shapes as recorded by a video camera. Motion was detected
by taking the difference between two consecutive video frames, and a border-trace of
the resulting difference image was modelled using the UpWrite technique. The system
correctly classified images of human heads up to 85% of the time, and correctly classified

images which did not contain a human head up to 95% of the time.

The system was applied, with essentially no modifications, to the problem of distin-
guishing between the comic strip characters Calvin and Hobbes, created by Bill Watter-
son [13,14]. Comic panels containing one or other of the characters were subjected to
border tracing, and were then modelled via the UpWrite process. Novel images of Calvin
were correctly classified 80% of the time, while novel images of Hobbes were correctly
classified 99% of the time, using a trivial classification technique of separating the two

highest level clusters with a single hyperplane.

Chapter 4. An Introduction to the UpWrite 51

Lim and Alder speculate on the features that the system seemed to be using for clas-
sification, and they write that [13]

. we think the system is picking up Calvin’s hair spikes, and possibly Hobbes’
whiskers. Such correlations are plainly detectable in principle. Additional
evidence on the matter of which features have been extracted from the data
is supplied by an examination of the cases where the classification failed. The

system has trouble when Calvin wears a hat or has his hair brushed.

The fact that an image classification technique using the UpWrite may be successfully
applied to a completely different problem, with no essential changes apart from the low
level image processing required to capture the images in the first place, is indicative of its

power and generality.

4.5.3 Other Work

The UpWrite is a relatively unknown syntactic pattern recognition technique, and most of
the research in this area has been performed within the Centre for Intelligent Information
Processing Systems at The University of Western Australia. With the intention of dissem-
inating information about this promising approach to the pattern recognition problem,
we would like to draw the reader’s attention to the work of Paul Williams [23], Robert
McLaughlin [16], Sok Gek Lim [14] and Patrick Hew [12], with the papers of Alder et.

al. [3-5] providing a rigorous overview of the UpWrite.

4.6 Summary and Conclusion

In this chapter we have introduced the UpWrite, a powerful framework for the hierarchical
extraction of syntax from data. We have given a brief history of the UpWrite, illustrated it
via a trivial image classification problem, and briefly discussed some real-world examples
of its use in image recognition.

We are interested in the problem of constructing a predictive model which automati-
cally adapts to the data it is processing in order to describe it in a way which is efficient,
and which preserves the high level features necessary for classification while abstracting
low level features which are overly specific in that they adversely effect its performance. In
the next chapter we shall show that the UpWrite may be used to increase the power of a
predictive model, by detecting structure in the data via information theoretic techniques,
and then by incorporating this structure into a higher level version of the model by Up-
Writing the data. This is fundamentally a bootstrapping process; the model increases the
context available to it, making better use of the limited data available, by incorporating

structure which it discovers itself.

52

Notes

Notes

16 Tn the case of chain coding, for example, a single noisy pixel in an image can drastically

effect the resulting description string.

References

1]

[4]

[6]

[9]

Michael Alder, Christopher deSilva, and Yianni Attikiouzel. Automatic knowledge
acquisition. Technical Report TR90-14, The Centre for Intelligent Information Pro-

cessing Systems, Department of Electrical & Electronic Engineering, The University
of Western Australia, Australia 6907, 1990.

Michael Alder, Christopher deSilva, and Yianni Attikiouzel. On the automatic gen-
eration of higher levels of description. Technical Report TR90-15, The Centre for
Intelligent Information Processing Systems, Department of Electrical & Electronic
Engineering, The University of Western Australia, Australia 6907, 1990.

Michael D. Alder. Inference of syntax for point sets. In E. S. Gelsema and L. N. Kanal,
editors, Pattern Recognition in Practice IV: Multiple Paradigms, Comparative Studies
and Hybrid Systems, number 16 in Machine Intelligence and Pattern Recognition,
pages 45-58. Elsevier Science B.V., June 1994.

Michael D. Alder and Christopher deSilva. Topological stochastic grammars. In IEEE

International Symposium on Information Theory, July 1994.

Michael D. Alder, Gek Lim, and Christopher J.S. deSilva. The syntax of images.
Technical Report TR95-01, The Centre for Intelligent Information Processing Sys-
tems, Department of Electrical & Electronic Engineering, The University of Western
Australia, Australia 6907, 1995.

Mike Alder. Stochastic grammatical inference. Master’s thesis, Department of Math-
ematics, The University of Western Australia, Australia 6907, 1988.

C.J.S. deSilva, M.D. Alder, and Y. Attikiouzel. Automating knowledge engineering.
Technical Report TR90-03, The Centre for Intelligent Information Processing Sys-
tems, Department of Electrical & Electronic Engineering, The University of Western
Australia, Australia 6907, 1990.

Phillip Dunstan, Gek Lim, and Michael D. Alder. Real-time head detection. In
Proceedings of the IEEE International Conference on Neural Networks, volume 5,
pages 2217-2221, November 1995.

King Sun Fu. Syntactic methods in pattern recognition. Academic Press, 1974.

References 53

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

King-Sun Fu and Taylor L. Booth. Grammatical inference: Introduction and survey -
part I. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(3),
May 1986.

King-Sun Fu and Taylor L. Booth. Grammatical inference: Introduction and survey
- part II. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
8(3), May 1986.

Patrick Chisan Hew. Pizels to Strokes to Digits. PhD thesis, Department of Mathe-
matics, The University of Western Australia, Australia 6907, 1999.

Gek Lim and Michael D. Alder. Calvin and Hobbes. Technical Report TR95-02, The
Centre for Intelligent Information Processing Systems, Department of Electrical &

Electronic Engineering, The University of Western Australia, Australia 6907, 1995.

Sok Gek Lim. Visual Object Shape Recognition Using Hierarchical Syntax Extraction.
PhD thesis, Department of Electrical & Electronic Engineering, The University of
Western Australia, Australia 6907, 1997.

David Marr. Vision. W.H. Freeman and Company, 1982.

Robert A. McLaughlin. Intelligent algorithms for finding curves and surfaces in real
world data. PhD thesis, Department of Electrical & Electronic Engineering, The
University of Western Australia, Australia 6907, 1999.

Robert A. McLaughlin and Michael D. Alder. Syntactic pattern recognition of simple
shapes. In Proceedings of the Australian and New Zealand Conference on Intelligent

Information Systems, pages 5-9, 1993.

Robert A. McLaughlin and Michael D. Alder. Recognising aircraft: Automatic ex-
traction of structure by layers of quadratic neural nets. In Proceedings of the IEEE

International Conference on Neural Networks, volume 7, pages 4288-4293, June 1994.

Robert A. McLaughlin and Michael D. Alder. Recognising cubes in images. In
E. S. Gelsema and L. N. Kanal, editors, Pattern Recognition in Practice IV: Multi-
ple Paradigms, Comparative Studies and Hybrid Systems, number 16, pages 45-58.
Elsevier Science B.V., June 1994.

Robert A. McLaughlin and Michael D. Alder. The Hough Transform and the Up-
Write: a comparison. In Proceedings of the IEEE International Conference on Neural
Networks, volume 1, pages 146-151, 1995.

Robert A. McLaughlin and Michael D. Alder. Recognition of infra red images of
aircraft rotated in three dimensions. In Proceedings of the Australian and New Zealand

Conference on Intelligent Information Systems, pages 82-87, November 1995.

54 References

[22] Robert A. McLaughlin and Michael D. Alder. The Hough Transform versus the Up-
Write. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(4):396—
400, April 1998.

[23] Paul S. Williams. The automatic hierarchical decomposition of images into sub-images
for use in image recognition and classification. PhD thesis, Department of Electrical
& Electronic Engineering, The University of Western Australia, Australia 6907, 1999.

Chapter 5

Design and Implementation of the
UpWrite Predictor

“I daresay my face looked as bewildered as yours did just now
when first I read this message. Then I reread it very carefully. It
was evidently as I had thought, and some secret meaning must

lie buried in this strange combination of words.”

The Memoirs of Sherlock Holmes
SIR ARTHUR CONAN DOYLE

5.1 Introduction

We shall now apply the UpWrite concept to symbolic time series, by modelling the data
using a simple predictive model, and using measures from Information Theory to discover
symbol sequences and symbol classes which constitute higher level structure in the data.
This structure may then be UpWritten to the root symbols of a higher level alphabet; a
process which creates a new, UpWritten form of the symbolic time series.

Another predictive model may then be inferred from this alternative representation
of the data, and the UpWrite process repeated to an even higher level. This produces a
family of predictors, each of which operate at different levels of abstraction of the original
data. This family of predictors, collectively referred to as the UpWrite Predictor, may

then be applied to various problems.

5.1.1 Overview

In this chapter we specify our design of the UpWrite Predictor, and explain how two types
of structure, symbol sequences and symbol classes, may be found in symbolic time series
via the application of information theoretic measures to the sequence of predictions made

by a predictive model. This is followed by a description of our implementation of the

56 5.2. The UpWrite Predictor

UpWrite Predictor, and a discussion of the various decisions which had to be made during

its implementation.

5.2 The UpWrite Predictor

Our aim in developing the UpWrite Predictor is to construct a modelling technique which
is generic enough to find structure in all sorts of symbolic time series, and which is able to
exploit this structure in order to improve its own performance. We hope to achieve this by
applying information theoretic measures to the predictions made by a simple predictive
model in order to find structure in the data, and then by UpWriting the data with respect
to the structure discovered. We would like the UpWrite Predictor to be capable of being
used in a wide range of applications, including data compression, speech recognition, and

various natural language processing tasks. In order to achieve this, we require that

e it should make as few assumptions as possible about the data;

e the only information available to the predictive model should be the data itself, and

the alphabet that it is represented in;
¢ it should not rely too heavily on a particular form of predictive model;

e the predictive model used in the UpWrite Predictor should not make assumptions

about a particular application;
e it should be possible to use the UpWrite Predictor adaptively;'” and

e ad hoc methods should be avoided wherever possible.

Figure 5.1 shows the proposed structure of the UpWrite Predictor. It consists of a
chain of Alphabet-Model-UpWriter modules which are connected together by the data
emitted and the predictions made by the previous module in the chain.'® Each module
represents a higher level of abstraction of the data and all of the modules, when taken
together, constitute a single hierarchical predictive model of the data.

Each model in the UpWrite Predictor is a simple predictive model, inferred from the
history available to it, and capable of making predictions about the next symbol in the
data in the form of a probability distribution over the alphabet. The UpWriter applies
information theoretic measures to the sequence of predictions made by the previous module
in the chain in order to extract two sorts of structure, symbol sequences (sub-objects) and
symbol classes (quotient-objects), from the data emitted by the previous module. This
structure is added to the alphabet of the current module, and the predictive model in that
module is inferred from the UpWritten data that results. The predictions made by the
predictive model are fed back into the UpWriter, so that it may correct any mistakes it may

have made during the UpWrite process. It should be noted that parsing and UpWriting

Chapter 5. Design and Implementation of the UpWrite Predictor 57

Module A Module B Module C

oSttt T T \ oSttt T T \ oSSttt o \‘

I I I

! } ! Alphabet B } ! Alphabet C \

! I ! I ! I

Data | | DataA | | DataB | ' DataC

| ! | - | -

! 1 L UpWriter B 1 L UpWriter C L
I I I

! I ! I ! I

| | | - | | - |

: I : I : I

1 A T o U A N Y G N

1 Model A ! : Model B ! l Model C !

1 ; ! \) 1 | - !

! I ! I ! I

! I ! I ! I

! 1 ‘\ 1 ! 1l

‘ Prediction A ' Prediction B Prediction C

FIGURE 5.1: The proposed structure of the UpWrite Predictor.

are the same process, as the data available to each predictive model is the instantaneous
output of the UpWriter in that module.

Each module is also capable of DownWriting, since its alphabet contains a mapping
between the symbols in it and the symbol sequences and symbol classes which they cor-
respond to.!” More importantly, it is capable of DownWriting its predictions, which is
imperative if the UpWrite Predictor is to be used for various real-world applications. For
example, a data compressor may require that the predictions of the various modules are
DownWritten to predictions over the lowest level alphabet, and a spell-checker certainly
would.?

Having given the design of the UpWrite Predictor, we must now state that better
techniques exist for discovering symbol sequences and symbol classes in data than simply
looking for patterns in the predictions made by predictive models. Information about
which symbols can occur between certain pairs of symbols may make the task of finding
symbol classes considerably easier, for instance. We shall discuss other techniques for
finding structure in data, but we shall not incorporate these into our implementation,
although this certainly would be possible, because we are more interested in developing a
modelling system which can augment itself with structure found from its own predictions
than we are with optimizing the performance of each of the individual components of
such a system. Our reason for handicapping ourselves in this way is to show that generic
information processing mechanisms can discover quite specific structures in data, without

having to be designed to do so.

5.3 Discovering Symbol Sequences

One feature of many types of data is that certain sub-objects of symbols, which we infor-

mally refer to as symbol sequences, occur with high frequency. For instance, in English

58 5.3. Discovering Symbol Sequences

text, at the character level, the character sequence (t,h,e) occurs much more frequently
than the character sequence (q,x,y). Forming a new symbol out of frequently occurring
symbol sequences has the advantages of increasing the context available to the predictive
model, and allowing further structure to be uncovered at a higher level by providing a

form of scaffolding which enables a bootstrapping process.

We are therefore interested in the problem of automatically discovering such symbol
sequences in data, and, due to our interest in the UpWrite Predictor, we wish to develop

techniques for using the predictions of simple predictive models to uncover this structure.

The process of finding symbol sequences in symbolic time series is often referred to as
chunking, in which case the symbol sequences themselves are known as chunks.?’ When
the data is natural language text, or natural language utterances, the task is commonly

referred to as segmentation.

The instantaneous entropy of a predictive model is generally recognised as a good
indicator of where the boundary between two words lies in natural language text. The
points where the uncertainty of the model as defined by its instantaneous entropy is high
generally correspond to boundaries between two chunks. We may therefore discover symbol
sequences in data by thresholding the instantaneous entropy of the predictive model. We

refer to this technique as thresholded entropic chunking.

The information provided to the predictive model by the next symbol in the data is a
good indicator of whether or not the symbol is part of the current chunk or the beginning
of a new chunk. Symbols which are deemed to be part of the current chunk may be paired
with the most recent symbol in the context to form a symbol pair in a process we dub
agglutination.

We shall present a brief overview of this area of research before describing how the
two techniques of thresholded entropic chunking and agglutination work. We shall also
introduce a third third technique which discovers symbol sequences in data by finding

separator symbols, such as the space character in English text.

5.3.1 Performance Measures

In order to evaluate the various techniques for discovering symbol sequences which we
shall present in this section, we introduce three measures: recall, accuracy and coverage,
as defined in equations 5.1, 5.2, and 5.3. In these equations C represents the alphabet of
symbol sequences found by the algorithm being evaluated, W represents the set of ‘correct’
symbol sequences, as determined by a human being, and S represents the multiset of
symbol sequences which form the data used for testing. A multiset S associates a count
with its elements, and |S| is defined as the sum of these counts, therefore giving the number

of ‘correct’ symbol sequences in the testing data.

The measures of accuracy and recall have previously been used to evaluate the success

of algorithms for discovering sequential structure in language [15].

Chapter 5. Design and Implementation of the UpWrite Predictor 59

|SNC|
recall = 5.1
5 (5.1)
accuracy = wadl (5.2)
C|
(Wwnc|
coverage = ————— (5.3)
W)

The recall measures the proportion of symbol sequences in the testing data which were
correctly identified by the algorithm, the accuracy measures the proportion of the symbol
sequences found by the algorithm which are correct, and the coverage is the proportion of

correct symbol sequences which were found by the algorithm.

5.3.2 Previous Work

There has been a small amount of work performed on the automatic segmentation of
utterances, particularly in the study of language acquisition in infants. Zellig Harris?? is
probably the most notable person to have pursued this line of research [5], and Gerry Wolff
has studied the segmentation of natural and artificial languages [25,26]. Harris applied an
ad-hoc technique which approximates thresholded entropic chunking, while Wolff applied
an ad-hoc technique which approximates agglutination.

There has also been some work that gives biological evidence of these processes. Hayes
and Clark showed that human subjects could identify word boundaries in artificial speech
after a short period of listening to it [7], while Kutas and Hillyard published results that
seem to indicate that the human brain experiences ‘surprise’ when listening to sentences
which violate expectations [11], suggesting something like an information theoretic model

implemented in the central nervous system.

Zellig Harris

The famous structural linguist Zellig Harris showed as early as 1955 that it is possible to
locate word boundaries in utterances via a stochastic process [5]. Harris achieved this by
measuring the number of different phonemes which could occur after the first n phonemes
of an utterance, and segmenting the utterance when this successor count reached a peak.
He stated that the fact that such a technique worked

. would suggest to us that sentences can be segmented into morphemic
elements, even if we did now know beforehand that such elements exist in

language.

60 5.3. Discovering Symbol Sequences

Like Shannon a few years earlier [22], Harris realised that the corpus required to gather
these statistics would be prohibitively large, and that the best source of data was therefore
a human informant. He did not consider restricting the context to a local one—all of the
phonemes, from the beginning of the utterance onwards, were used for segmentation.

We are not aware of any modern computational implementation of Harris’ technique,
so we have written one ourselves. In order to do this, we needed to introduce the concept
of a local context in order to guarantee that our estimate of the successor count is based on
a sufficient number of observations. We also needed to rigorously define what constitutes a
‘peak’ in the successor count—it appears that Harris performed the segmentation by eye.
We define a peak as a maximum value which occurs between two minimum values such
that the smallest difference between the maximum value and the two minimum values
exceeds three. In cases where two or more maximum values exist??, the rightmost one is
chosen. This definition serves to eliminate errors due to small fluctuations in the successor
count.

We performed two experiments; one on the Sherlock corpus, and one on the SHER-
LOCK corpus. In both cases the entire corpus was used to infer the successor counts of
each local context, and results were gathered over the Test section of each corpus. In order
to present Harris’ technique in the best light, we chose to perform the experiment for a
range of context lengths, and we present results for the context length which performed
the best.?* Curiously, this optimal length was 1 for the Sherlock corpus, and 5 for the
SHERLOCK corpus. We believe this is due to the fact that whether or not the previous
symbol in the data was whitespace is sufficient for segmentation, but, when no whitespace
exists, more contextual information needs to be taken into account.?®

The experiments were conducted by breaking the corpora into their constituent sen-
tences, and pre-pending sufficient ‘null’ symbols to each sentence in order to provide
sufficient context for the first non-null symbol. A Markov model of the required context
length was inferred from this data, and used to segment the Test section of each corpus
in accordance with Harris’ algorithm. Results of these experiments are presented in ta-
ble 5.1. Figures 5.2 and 5.3 plot the successor count over the first sentence of the corpora,

illustrating that peaks in the count do indeed correspond to word boundaries.

‘ Corpus ‘ Recall ‘ Accuracy ‘ Coverage ‘
Sherlock 75.00% | 51.67% 65.96%
SHERLOCK | 45.89% | 23.26% 30.53%

TABLE 5.1: Results of Harris’ segmentation algorithm.

We decline analysis of these results, as our intention is not to criticize or improve upon
Harris’ algorithm, but merely to illustrate that it works. With the benefit of hindsight, it
is plainly obvious that Harris was approximating the instantaneous entropy of a predictive
model, since the entropy is related to the number of different symbols which can occur

t.26

nex We shall show that genuine thresholded entropic chunking yields superior results.

Chapter 5. Design and Implementation of the UpWrite Predictor 61

80 I L L L L L L L L L L L L L L L D D D R N B B B |
70 .

£ 60 i

>

o

®]

>

k3

g 50 .

>

=)

Qo

E

>

D40 + -

o

2]

%]

[0]

Q

S

@ 30 e
20 .
10 | NS S Y N N N I S S N N I S I N U U S N N Iy S N I [S— |

Tor"Sherlock”"Holmes~she”®~is~always”~the”~woman .

FIGURE 5.2: Successor count over the Sentence section of the Sherlock corpus, for a
context of 1 symbol.

40 T 1T T 1T T 1T 1T 1T 1T 1T 17 17" 17T 1T 1T T T T 1T T T T T T T T T T T T TT
35 | .
30 | .

I

35

o

@]

> 25t i

@

T

>

8 20} -

£

>

(]

<]

2 15} i

[

(5]

o

=)

(]
10 F .
5_ -
O | I I | | I AN N N S N | I N IR N N |

T T T T N N Y NN N A S S B L1
TOSHERLOCKHOLMESSHEI SALWAYSTHEWOMAN

FIGURE 5.3: Successor count over the SENTENCE section of the SHERLOCK corpus, for a
context of 5 symbols.

62 5.3. Discovering Symbol Sequences

Kutas and Hillyard

It is widely accepted that language comprehension involves the continual formulation
and update of hypotheses concerning which words are likely to appear in the immediate
future—this is the act of prediction. Marta Kutas and Steven Hillyard tested this
theory of language comprehension by measuring event-related brain potentials in human
subjects [11]. They state that

. extensive human research [has shown] that certain components recorded
from the scalp are sensitive to a person’s expectations. In particular, unex-
pected or surprising stimuli are typically followed after some 300 to 600 msec

by a positive ERP component known as P300.

Their experiment involved asking subjects to read 160 different seven-word sentences
a word at a time. A random 25% of these sentences ended in a semantically inappropriate
word, although all of the sentences were syntactically correct. It was found that the
semantically deviant sentences typically elicited a large negative component after the final
word in the sentence had been read.

It is indeed encouraging that the notion of ‘surprise’ is detectable in human brain
function, and it is tempting to take this as evidence that the idea of segmentation via

thresholded entropic chunking is fundamentally correct [8].

Hayes and Clark

John Hayes and Herbert Clark studied the ability of the human brain to segment auditory
data via a chunking mechanism (which they refer to, more properly, as clustering [7]).
Their interest in this process began with observation of visual phenomenon, and they

write that

. even to a careful observer, an animal who remains motionless may merge
perfectly into its background, but it will be quite visible as soon as it moves.
When it moves, the correlations among the elements within its visual bound-
aries are much stronger than correlations between it and its surroundings.
Given a clustering mechanism, the same difference in correlation would estab-
lish the boundaries of auditory objects, that is, words. We very much prefer to
appeal to such general cognitive processes in explaining linguistic phenomena

than to more special processes which may apply uniquely to language.

We very much agree with the final sentence of the above quotation, and we find it
interesting that the study of visual cognition inspired Hayes and Clark, as it did the
UpWrite.

Chapter 5. Design and Implementation of the UpWrite Predictor 63

Hayes and Clark devised a set of phonemes by generating complex sounds in three or
four voices on a computer, and modulating these sounds in various ways. These phonemes
were divided into vowels and consonants, depending upon the degree of variation between
the beginning and end of the phoneme (vowels had little variation), and these were used
to create a small set of words, of between 6 and 8 phonemes each, which began with
a consonant, and thereafter alternated between vowel and consonant. Subjects listened
to a continuous stream of sound, formed by concatenating these words at random, for
approximately 45 minutes. Subsequent testing revealed that the subjects were able to
recognise a word sequence as familiar more readily if pauses were inserted into the stream
at the appropriate places.

This result suggests that the human brain is capable of segmenting unfamiliar data,
even in the absence of further information about what constitutes a valid symbol sequence.
In order to obtain a subjective view of the process, Hayes and Clark participated in their

experiment themselves, and reported that

. at first, the sound stream seems quite amorphorous and featureless. Af-
ter perhaps a minute of listening, an event—perhaps a phoneme or part of
a phoneme—stands out from the stream. When the event has recurred sev-
eral times, the listener may notice that it is typically preceded or followed by
another event. The combination of events can in turn be related to events
that happen in its neighborhood. Recognition of a word, then, seems to pro-
ceed from perceptually distinctive foci outwards in both directions towards
the word boundaries. Presumably, the process would tend to stop at the word

boundaries because the correlations across the boundaries are weak.

Human beings are capable of detecting patterns in other sources of auditory data, such
as the recurrent themes in a fugue, and this ability, along with the result of Hayes and
Clark, suggests that a general segmentation mechanism must be present in the human
brain, even in situations where a referent is lacking.?” The subject’s eye view of the

experiment given by Hayes and Clark is suggestive of a process of agglutination.

Gerry Wolff

Gerry Wolff developed a computational technique for the segmentation of artificial text in
an attempt to explain the results of Hayes and Clark. [25] He later applied his technique
to the segmentation of natural language [26]. Although Wolff was aware of the work of
Zellig Harris, he approached the task of segmentation as one of agglutination as opposed
to thresholding the value of some measure.

Wolff’s algorithm, MK10, proceeds by scanning over symbolic time series, keeping
a count of the number of times each pair of adjacent symbols appears. Whenever the

count of a particular pair exceeds some predetermined threshold, the pair is added to the

64 5.3. Discovering Symbol Sequences

alphabet as a new symbol, all counts are cleared, and the process is repeated, in a process
akin to the UpWrite [25].

Each symbol pair is stored along with the number of symbols which needed to be
scanned in order to form it. This provides a basic measure of the strength of associ-
ation between the symbols in the pair, and allows each symbol pair to be decomposed
hierarchically?® and viewed as a dendrogram.

Figures 5.4 and 5.5 show hierarchical decompositions of the first sentence of both the
Sherlock and SHERLOCK corpora, as formed by our implementation of Wolff’s algorithm,
plotted with a logarithmic vertical axis.?? Note that, in accordance with the MK10 al-
gorithm, new symbols were formed out of symbol pairs which had been seen 10 times.
Increasing this tolerance may produce superior results, but optimization of Wolff’s algo-
rithm is beyond the scope of this dissertation. In both figures it is apparent that words
have been found at various levels of the hierarchy, but it is not obvious where the resulting

dendrogram should be cut in order to segment the data.

i

ToASherlockAHolmesAsheAisAalwaysAtheAwoman.

FIGURE 5.4: Dendrogram formed by Wolff’s algorithm over the Sentence section of the
Sherlock corpus.

In a later paper, Wolff described the MK10H algorithm, which counts the occurrence
of each adjacent symbol pair over an entire corpus, and forms a new symbol out of the
most frequent pair, choosing arbitrarily if there are several such pairs [26]. This algorithm
avoids the problem of having to select a tolerance threshold, but, on the other hand, it
does not seem capable of providing a correlation measure, apart from the frequency with
which the pair occurred.

In table 5.2 we present the results of segmenting the Test section of both the Sherlock
and SHERLOCK corpora using Wolff’s MK10 algorithm. Segmentation was performed

by cutting the dendrogram at the point which maximised the recall measure.

Chapter 5. Design and Implementation of the UpWrite Predictor 65

] B

TOSHERLOCKHOLMESSHEISALWAYSTHEWOMAN

FIGURE 5.5: Dendrogram formed by Wolff’s algorithm over the SENTENCE section of the
SHERLOCK corpus.

‘ Corpus ‘ Recall ‘ Accuracy ‘ Coverage ‘
Sherlock 32.69% | 16.75% 23.40%
SHERLOCK | 20.29% | 16.28% 21.88%

TABLE 5.2: Results of Wolff’s agglutination algorithm.

Results indicate that although Wolff’s algorithm does not segment the data as well
as Harris’, it does have the advantage of providing a hierarchical view of the correlation
between various parts of the data. It is surprising that the algorithm performs poorly on
the Sherlock corpus—this seems to be due to the fact that the whitespace character has
a strong correlation with the characters that begin and end words, and is therefore glued
fairly arbitrarily to either the beginning or the end of a word fairly on in the process. This

much is apparent from the dendrogram of figure 5.4.

Wolff’s algorithm is similar to our proposed technique of forming symbol sequences
via agglutination, as the information provided to the predictive model by the next symbol
in the data, contextual on the current symbol, is inversely proportional to the number of
times the corresponding symbol pair has been observed. We shall show that the process

of agglutination yields superior results.

Other Work

Several other researchers have pursued the problem of segmentation within the overall
framework of attempting to understand how language is acquired, and many of these
have attempted to build computational models of the process. We acknowledge the work
of Hideki Kozima [10], Jenny Saffran, Elissa Newport and Richard Aslin [20], Walter
Stolz [24], Doug Beeferman, Adam Berger and John Lafferty [1], Jeffrey Reynar and Ad-
wait Ratnaparkhi [19], Tan Witten and Craig Nevill-Manning [15,16] and Steven Finch [4].

66 5.3. Discovering Symbol Sequences

5.3.3 Algorithms for Discovering Symbol Sequences

We shall present three techniques which may be used to discover symbol sequences in data
using nothing more than the sequence of predictions made by a simple predictive model.
The first of these is an obvious solution to the problem which may be applicable in certain
circumstances, while the remaining two are rigorous versions of the the algorithms of

Zellig Harris and Gerry Wolff respectively,

The identification of separator symbols: In written English, whitespace is used to
separate words from one another, and various forms of punctuation are used to
separate structure at higher levels. Accurate identification of such separator symbols
renders the problem of finding symbol sequences trivial. A predictive model may
identify separator symbols by observing which symbols cause it the greatest amount

of uncertainty about what is coming next.

Segmentation: When separator symbols do not exist in the data, more sophisticated
techniques are required to uncover symbol sequences. The first of these, segmen-
tation, searches for boundaries between two symbol sequences—regions of the data
where a separator symbol may reasonably be inserted. A predictive model may be
used to determine such regions by segmenting its instantaneous entropy whenever

this exceeds a predetermined value.

Agglutination: Rather than searching for boundaries between symbol sequences, we may
equally well search for symbol pairs which form parts of the same symbol sequence.
Symbol sequences may then be formed by gluing such symbol pairs together pro-
gressively. The information provided to the predictive model by the next symbol in
the data may be regarded as a measure of independence between the most recent
symbol in the context and the symbol which follows it. The symbol which provides
the least amount of information to the predictive model may be glued onto the most
recent symbol in the context in order to form a new symbol sequence. This process is
tantamount to beginning with a symbolic time series which is completely segmented,
with a boundary occurring between every symbol pair in the data, and gradually
removing boundaries between symbol pairs in order to progressively uncover symbol

sequences.

5.3.4 Identifying Separator Symbols

The segmentation of data is a trivial process when it is already segmented, as is the case
with printed English, where whitespace separates words. The automatic discovery of such
separator symbols would provide a more robust method of extracting symbol sequences
from data than presupposing which symbols function as separators.3°

In natural language text we find that the entropy of a predictive model peaks imme-

diately upon encountering a separator symbol. This suggests a rather naivé method of

Chapter 5. Design and Implementation of the UpWrite Predictor 67

determining which symbols these are—we can merely measure the average uncertainty of
the predictive model as it scans the data, and mark symbols which result in an abnormally
high uncertainty as being candidate separator symbols.

Figure 5.6 plots the ten characters in the Sherlock corpus which cause the highest
entropy in a 2™ -order Markov model. It can be seen that the whitespace character
A causes a significantly higher entropy than the other characters: H(A) = 4.59 bits, while
H(E) = 3.93 bits—a difference of 0.66 bits. This is strong evidence that the whitespace

character is a separator symbol.

4.6 - 1

42+ i

Uncertainty Caused by Symbol

3.8 1

n E 2 o - a r u 1

FIGURE 5.6: The ten characters which cause the highest uncertainty in a 2"?-order Markov
model over the Sherlock corpus.

The level of uncertainty of a 2"¢-order Markov model caused by characters in the
SHERLOCK corpus, as shown in figure 5.7, indicates that no separator symbol exists for
that text, simply because the difference between the two highest entropies is a mere 0.06
bits. It is interesting to note that in this case the symbols E, D, S and 0, which are four of
the ten symbols which cause the highest uncertainty in the predictive model, are found at
the end of 46.71% of the words in the corpus. This is an encouraging vindication of our
choice of the instantaneous entropy of a predictive model as the primary indicator of the
location of boundaries between symbol sequences in the data.

As we are interested in implementing an UpWrite Predictor which is capable of finding
structure in all sorts of data, we shall not use this technique to find symbol sequences. In
applications which are concerned only with processing natural language texts, however, a

method for discovering separator symbols automatically may be of some use.

5.3.5 Segmentation

The instantaneous entropy of a predictive model fluctuates as it scans across a symbolic

time series, and we observe in natural language text that this entropy reaches maximum

68 5.3. Discovering Symbol Sequences

46 i

4.4 g

42 1

Uncertainty Caused by Symbol

38 1

3.6 - 1

FIGURE 5.7: The ten symbols which cause the highest uncertainty in a 2"¢-order Markov
model over the SHERLOCK corpus.

values at the beginning of words. This is illustrated by figure 5.8, which plots the en-
tropy of a 1%'~order Markov model, trained on the Sherlock corpus, as it scans across the
Sentence section of that corpus. It is clear that a well-chosen threshold will result in
perfect segmentation of the text.

Word boundaries are not so clearly marked in natural language text which is devoid of
whitespace and punctuation, as is apparent from figure 5.9. It is obvious that techniques
other than thresholded entropic chunking are required to successfully segment data such
as this.

The only problem with discovering symbol sequences via thresholded entropic chunking
is that a threshold value needs to be selected a priori. If the threshold value is set too low,
no symbol sequences will be found; if it is set too high, the entire data will be deemed to
constitute a single symbol sequence. We shall not introduce any strategies for estimating
good thresholds here, apart from mentioning that, without any additional information
about the data, a threshold of logs|A| has been found to be as good as any other, and
would function well for the plot shown in figure 5.8.

Thresholded entropic chunking works remarkably well on natural language text when
whitespace is present between words. On data where no such separator symbol is present,
though, it is generally impossible to find a single ideal threshold value. It is common
for very long anomalous?! symbol sequences to be extracted, along with symbol sequences
which we would consider to be useful, and procedures are then required for identifying and
rejecting anomalous symbol sequences. The feedback mechanism present in the UpWrite
Predictor, illustrated in figure 5.1, enables such a process.

Table 5.3 summarises the results of various experiments performed on the two Sherlock

corpora. As usual, we have reported the best results without offering any solution to the

Chapter 5. Design and Implementation of the UpWrite Predictor 69

5 rrrrrrTr T
4l 4
>
S
5 3r .
c
T
(2]
=}
o
Q
c
8
c
g 2r .
]
£
1_ -
OIII

To~Sherlock”Holmes”*"she”~is~always”~the”~woman.

FIGURE 5.8: Instantaneous entropy of a 1%¢~order Markov model over the Sentence section
of the Sherlock corpus.

5 T T T rrrrrrrrrrTrrrrTrTr T T T rrrrrr T T 1T T T T T T T T T T T T°T
4l 4
>
S
5 3r .
c
T
(2]
=}
o
Q
c
8
c
g 2r .
]
£
1_ -
O 1 — ! | I | | Y I NN [S |

1 1 1 1 1 1 1 1 1 1 1
TOSHERLOCKHOLMESSHEI SALWAYSTHEWOMAN

FIGURE 5.9: Instantaneous entropy of a 1*~order Markov model over the SENTENCE section
of the SHERLOCK corpus.

70 5.3. Discovering Symbol Sequences

problem of automatically finding the model parameters to reproduce them. We do this in
order to give an upper-bound in performance which can be reasonably expected from the

algorithm.

‘ Corpus ‘ Recall ‘ Accuracy ‘ Coverage ‘

Sherlock 100.0% | 100.0% 100.0%
SHERLOCK | 52.66% | 36.18% 41.98%

TABLE 5.3: Results of thresholded entropic chunking.

When segmenting the Test section of the Sherlock corpus, a Markov model of order 1
with an entropy threshold of 4 bits was found to produce perfect results. When segmenting
the TEST section of the SHERLOCK corpus, a Markov model of order 5 with an entropy
threshold of 2.5 bits produced the best results. We note that these models take into
account the same amount of context as the ones we used to illustrate Harris’ algorithm.

The results of thresholded entropic chunking, however, are superior.

SHERLOCKHOLMES)
ITWAS)

MENT) (ION)
QUESTION)(ABLE)
THE) (YWERE)
IT)(AKE)

o~~~ o~~~

TABLE 5.4: Some examples of erroneous symbol sequences discovered by thresholded
entropic chunking on the SHERLOCK corpus.

It is worth considering the nature of the mistakes the algorithm made when segmenting
the SHERLOCK corpus. Words, parts of words, and concatenations of words and word-
parts were all discovered, and this result is disheartening for the researcher trying to
extract words from the data automatically, as it means that words can never be completely
recovered via a thresholding process alone. Table 5.4 gives some examples of erroneous
symbol sequences formed by the algorithm. The first two of these are common word
pairings which have been formed into a single symbol sequence, which is quite reasonable
and perhaps even useful. The next two examples are single words which have been split
in twain, but, again, the location of the break in the word seems quite reasonable, and
the word parts could be considered to be morphemes. The final two examples are truly
erroneous—a concatenation of two words has been split at an inappropriate location.

This final error may be attributed to the fact that the algorithm is blind to the con-
text of symbols which follows each hypothesised boundary in the data, and therefore
must immediately decide whether to insert a boundary or not, without the advantage of
look-ahead. The algorithm greedily forms the symbol sequences (THE) and (IT), which
correspond to common English words, at the expense of forming poor symbol sequences

immediately afterwards.

Chapter 5. Design and Implementation of the UpWrite Predictor 71

It has been suggested to us that segmentation on the basis of the information provided
to the predictive model upon observation of the next symbol in the data may produce
superior results. This has been investigated, and it was found that performance was
considerably poorer than thresholded entropic chunking. The information measure does
have the advantage of taking into account symbols on both sides of the hypothesised

boundary, and we shall use it to form symbol sequences in a process of agglutination.

5.3.6 Agglutination

Segmentation via thresholded entropic chunking has the advantage of taking into account
as much context as is deemed necessary, but the fact that this context must precede the
hypothesized boundary results in various types of unavoidable errors. An agglutination
algorithm which takes into account the correlation between adjacent pairs of symbols in the
data, and which effectively inserts a boundary between them if their correlation is weak,
may avoid these problems. An iterative agglutination algorithm in the style of Wolff’s has
the additional advantage of gradually extending the range of the context available to the
model as more symbol sequences are added to the alphabet.

The information provided to the predictive model by the next symbol in the data may
be considered to be a measure of the degree of independence between the most recent
symbol in the context and the next symbol, with low values of information signifying a
high degree of correlation between these symbols. Figure 5.10 plots the instantaneous
information provided to a 1%~order Markov model trained on the entire Sherlock corpus
as it makes predictions over the Sentence portion of that corpus, with figure 5.11 showing
a similar plot for the SHERLOCK corpus. In both cases, it is immediately apparent that
symbol sequences cannot be discovered by thresholding the instantaneous information
provided to the model by the data.

In figure 5.10, the symbol pair (H, o) is the most correlated, as the information provided
to the predictive model by the symbol o when the most recent symbol in the context is H
is minimum. Similarly, the symbol pair (H,E) is a good candidate for agglutination in the
plot of figure 5.11.

The agglutination process works by finding the most correlated symbol pair in the
data, forming a new symbol sequence from that pair, UpWriting the data with respect
to this new symbol sequence, and iterating until some stopping criterion is reached. This
procedure is similar to that introduced by Wolff, with the main difference being the method
used to calculate the correlation between adjacent symbols.

In figure 5.12 we show the dendrogram formed when agglutination is performed over
the Sentence section of the Sherlock corpus. The process was halted when the Sentence
section of the Sherlock corpus was UpWritten to a single higher level symbol. Figure 5.13
shows a similar dendrogram formed from the SHERLOCK corpus.

It is interesting that both dendrograms shown have a very similar structure. In fact,

the agglutination process makes identical errors in each case—the first character of the

72 5.3. Discovering Symbol Sequences

g|||
8_ -
7_ -
§ 61 T
g
£
o
£ 57 T
1]
35
o
e 4 4
©
£
g
%)
£ 3t g
2_ -
1_ -
OIII

To~Sherlock”"Holmes”*"she”~is~always”~the”~woman.

FIGURE 5.10: Instantaneous information provided to a 1%-order Markov model by the
Sentence section of the Sherlock corpus.

g T T T T T 11111717 1717 17" 17T 7T 71T T T T T T T T T T T 1T T T T T T°T
8_ -
7_ -

§ 61 T

g

£

o

£ 57 T

1]

35

o

e 4 4

©

£

8

%)

£ 3t g
2_ -
1_ -
O | I I | | I N N I |

Lo L1
EI SALWAYSTHEWOMAN

—
O_
wn
T |
m
X
-
O_
(‘)_
x |
T |
o_
r
Z_
m
wn
wn |+
T |+

FIGURE 5.11: Instantaneous information provided to a 1%'—order Markov model by the
the SENTENCE section of the SHERLOCK corpus.

Chapter 5. Design and Implementation of the UpWrite Predictor 73

o il

ToASherlockAHolmesAsheAisAalwaysAtheAwoman.

FIGURE 5.12: Dendrogram formed by agglutination using the information to measure
correlation over the Sentence section of the Sherlock corpus.

Al

TOSHERLOCKHOLMESSHEISALWAYSTHEWOMAN

FIGURE 5.13: Dendrogram formed by agglutination using the information to measure
correlation over the SENTENCE section of the SHERLOCK corpus.

74 5.4. Discovering Symbol Classes

word ‘she’ is incorrectly glued to the word ‘Holmes’, and the word ‘always’ is incorrectly
split in two. Furthermore, on the SHERLOCK corpus, the first character of the word
‘Sherlock’ is incorrectly glued to the word ‘To’. Apart from these errors, the hierarchical
structure which results from the agglutination process seems quite reasonable.

Results for using the agglutination process to discover symbol sequences in the Test
section of the Sherlock and SHERLOCK corpora are given in table 5.5. In both cases, the
information was measured with respect to a 1**~order Markov model, and the dendrogram

was cut at the point which maximised the recall measure.

‘ Corpus ‘ Recall ‘ Accuracy ‘ Coverage ‘
Sherlock 38.46% | 18.78% 26.24%
SHERLOCK | 46.86% | 22.73% 23.44%

TABLE 5.5: Results of agglutination.

These results are superior to those of Wolff’s algorithm, but they are particularly poor
when compared to those of thresholded entropic chunking. This is due to the fact that
although the agglutination process is quite successful at forming words, these words are
formed at different levels of the dendrogram, and segmenting the data by merely cutting
the dendrogram at some point therefore does not work particularly well, resulting in a
mixture of words, word parts and word concatenations. The fact that results on the
SHERLOCK corpus are superior to results on the Sherlock corpus is attributable to the
fact that a 15'—order Markov model was used in each case, and the existence of whitespace
in the Sherlock corpus limits the context available to the model.

Agglutination using the information provided to the model by the next symbol in the
sequence as a measure of the correlation between adjacent symbol pairs has the advantages
of using the predictions of a predictive model, and of incorporating information from both
sides of the posited chunk boundary. However, it is a slow process, due to the fact that a

single symbol sequence is added to the alphabet on each iteration.

5.4 Discovering Symbol Classes

A second feature of many types of data is that certain quotient-objects of symbols, which
we informally refer to as symbol classes, occur in similar contexts. For example, in English
text, at the word level, we find that various syntactic categories of words exist, including
verbs, nouns, adjectives, adverbs et cetera. Incorporating structure of this sort into a
predictive model enables a process of generalisation, whereby several lower level contexts
are UpWritten to the same higher level context. This generalisation process lessens the
problems due to sparse data, because observations made of one symbol may be used to
draw conclusions about every symbol in the class to which it belongs.

The problem of automatically discovering symbols classes in data is considerably more

difficult than that of discovering symbol sequences, and we have made less progress in this

Chapter 5. Design and Implementation of the UpWrite Predictor 75

area than we would have liked. Our interest in using the predictions made by a simple
predictive model in order to determine what the symbol classes are has proven to be a
handicap, but it is felt that the problem would remain difficult even if this restriction was
lifted.

The process of finding symbol classes often involves finding clusters of vectors in a
high-dimensional space, and for this reason it is informally known as clustering. When
the data under consideration is natural language text or natural language utterances, the
process is referred to as syntactic category acquisition.

Information theoretic measures, such as the Kullback-Leibler divergence, may be used
to determine the similarity between the probability distributions given as predictions by

132 We may find the two most similar predictions by examining the

a predictive mode
predictions made by the predictive model for every possible context. A new symbol class
may be formed from the most recent symbol of each of the two contexts which resulted
in the two most similar predictions, and this process may be iterated, in a similar fagshion
to the agglutination process for discovering symbol sequences, to uncover larger symbol
classes. We refer to this process as agglomeration.

The predictions themselves may be considered to represent noisy approximations to
stochastic symbol classes, and in this case a large number of similar predictions provides
evidence that the corresponding symbol class exists. A symbol class may then be formed
from the centroid vector of an appropriately large cluster of similar predictions. We refer
to this process as clustering.

We begin this section by presenting a brief overview of this area of research before
considering the reasons why the problem is so difficult, and offering some insights which
may prove helpful in the future. We then present the two methods of agglomeration and

clustering for discovering symbol classes.

5.4.1 Previous Work

Several groups have pursued the problem of devising an algorithm which is capable of
discovering symbol classes in a corpus of data, and all of the approaches investigated are

similar in that they tend to consist of the following three stages.
e Construct a distribution vector for each of the symbols which is being classified;

e Cluster the space of distribution vectors using methods of numerical taxonomy [23]

in order to determine the symbol classes;
e Assign each symbol in the alphabet to some number of these classes.

This distributional approach was common in linguistics prior to the Chomskian revo-

lution, with Zellig Harris pioneering the field [6]. Harris writes that

. the distribution of an element [is] understood as the sum of all its envi-

ronments.

76 5.4. Discovering Symbol Classes

Algorithms for classifying symbols generally define a symbol’s environment as a local
context which typically consists of the two symbols which precede it and the two symbols
which follow it. Distribution vectors are formed by collecting statistics about the relative
frequencies of contexts observed for each symbol in the alphabet. Classes are then formed
from symbols which occur in similar contexts, according to the results of clustering these
distribution vectors.

We shall present a brief overview of previous work on this problem, focusing on the
pioneering work of George Kiss [9], who effectively clustered the predictions of a 1%¢-order
Markov model to determine symbol classes, followed by the work of Hinrich Schiitze [21]
and Redington, Finch and Chater citeRedington6, who both used similar methods of

discovering symbol classes from distribution vectors in high-dimensional space.

George Kiss

In 1973 George Kiss proposed a model, conducive to computational implementation, in
order to account for the learning of syntactic categories from positive data, based upon
current theories of child language acquisition [9].

The basic assumption made by Kiss was that words can be classified based upon

“word

statistical regularities observed in a training corpus. Kiss’ model is based upon a
store” in which nodes corresponding to words are connected with unidirectional links,
with the strength of each link in this association network corresponding to the normalised

frequency with which the target word of the link follows the source word. Kiss notes that

the network built up by this learning process is a particular physical represen-

tation of the Markov chain inherent in the input corpus.

A separate set of bidirectional links are established between the nodes in the network
following the inference of this implicit 1*!~order Markov model. This second set of links
reflects the similarity between words, determined by measuring the similarity between the
distribution vectors corresponding to the two words which the link connects. The distri-
bution vector of a word is determined by activating the node of the network corresponding
to the word, and measuring the activations of all its neighbouring nodes. This amounts to
determining the prediction made by the implicit 1**~order Markov model when the word
appears in the context.

Kiss used 1 — C(z,||zp) as a similarity measure between two words z, and z;, where
C(z4||zp) is the Canberra metric, as defined in equation 5.4, where d(z;|z,) is the nor-
malised frequency with which the word z, is followed by the word x; in the training corpus,
as determined from the distribution vector of z,. The distribution vectors are truncated
by excluding all elements which fall below some predetermined threshold, and this has the
effect of excluding unreliable probability estimates based on infrequent events. Kiss states

that this process reflects the property of ‘forgetting’ in biological memory.

Chapter 5. Design and Implementation of the UpWrite Predictor 77

|d(zi|xq) — d(zi|z4)|
C(zql||zp) = E : (5.4)
= d(zi|zq) + d(zi|zp)

The final stage of the process is to form classes of words, and Kiss achieves this by using
the principles of numerical taxonomy to hierarchically cluster words deemed similar [23].
Uni-directional connections between words and classes are then formed, with the strength
of these connections being determined by calculating the average similarity between the

word and all words in the class. Kiss defended his choice of model when he wrote that

I am arguing here for a kind of “bootstrapping” process, which gets under way
using some simple machinery, and then makes use of the results to improve
itself.

We find the similarities between this statement and the UpWrite process to be quite
striking. Furthermore, Kiss’ algorithm is unique among those presented in this section in
that it is capable of assigning a single word to multiple classes, and it quantifies the degree
of membership which a word has to a particular class via the strength of the link between
the word and the class.

Experiments were performed using a corpus of transcribed child directed speech, and
31 words were selected for further analysis. Results indicated that word classes exhibited
some of the expected structure, but association between words and clusters tended to be
weak, and some of the expected clusters did not separate from each other. Kiss stated
that word classes could in fact only be detected by applying “sensitive methods”. Further
experiments performed with all words in the corpus resulted in a clear-cut organisation of

nouns, and a less cohesive clustering of verbs.

Hinrich Schiitze

Hinrich Schiitze presented a method for inducing the parts of speech of words from a
corpus of natural language text [21]. His method works by forming distribution vectors
for each word by collecting frequency counts for a context of two predecessor words and
two successor words. Initially, this process is limited to the five thousand most common
words in the corpus. This results in 5,000 distribution vectors in R?°°°° and these vectors
are clustered using the cosine of the angle between vector pairs as a measure of their
similarity. In order that this clustering process should be time efficient, a singular value
decomposition is performed in order to map the vectors into R'® such that their similarity
with one another is preserved.

Schiitze used a different method of forming distribution vectors in a second phase in
order to classify the remaining words. The 278 most frequent words in the corpus were

used as features, as were the 222 classes found by the algorithm in the first phase when

78 5.4. Discovering Symbol Classes

operating on the remaining 4722 most frequent words in the corpus. This process resulted
in a distribution vector in R?°%° for each word yet to be classified, and these vectors
were mapped into R' prior to clustering being performed. Schiitze effectively applied a
bootstrapping process by using existing classes as scaffolding, something which facilitates
the classification of infrequent words.

The classes discovered by this algorithm range from the reasonable to the noisy, and

Schiitze observes that

. ambiguity is a problem for the vector representation used here, because
the two components of an ambiguous vector can add up in a way that makes

it by chance similar to an unambiguous word of a different syntactic category.

This problem is caused by the fact that more than one word class often occurs within

any given context, and we shall analyse the ramifications of this in section 5.4.2.

Redington, Chater and Finch

Martin Redington, Nick Chater and Steven Finch have also investigated the acquisition of
syntactic categories from a corpus of natural language text via distributional methods [18].
They write that

... the problems involved in computationally acquiring many aspects of lan-
guage from realistic linguistic input are indeed formidable, and have led many

to argue that the majority of linguistic knowledge must be innate.

Redington, Chater and Finch aimed to show that distributional statistics provide suf-
ficient evidence about the syntactic category of some words, even in the absence of other,
potentially highly informative, sources of information. Their method collects statistics
about the distribution of contexts for each word being classified, where the contexts used
consist, as with Schiitze’s algorithm, of the two preceding words and the two succeeding
words.

The Spearman Rank Correlation Coefficient is used to measure the similarity between
the resulting distribution vectors, rescaled so that its value falls in the range [0, 1], and
standard methods of numerical taxonomy are used to determine a hierarchical clustering
of the vectors [23]. The Spearman Rank Correlation Coefficient is defined in equation 5.5,
where 7, (i) is the rank assigned to the i’ element of the distribution vector of z,, and n
denotes the number of elements in each distribution vector. The rank r,(7) is determined
by assigning a rank of 1 to the element of the vector which has the lowest value, assigning
higher ranks to elements of higher values, and assigning an average rank to several elements

which share the same value.

n(n? —1)

pabzl—ﬁiM (5.5)
=1

Chapter 5. Design and Implementation of the UpWrite Predictor 79

Experiments were performed using the CHILDES corpus of child-directed speech. The
most frequent 1000 words in the corpus were classified using the most frequent 150 words
to provide context, resulting in 1000 distribution vectors in R%°?. Results indicate that
37 clusters were formed, with the most populous of these corresponding to standard syn-
tactic categories such as verbs, nouns, prepositions, adjectives and so on, with a degree of
misclassification resulting from syntactic ambiguity, which the algorithm does not account
for.

Redington, Chater and Finch analysed the contribution of different portions of the
context to the quality of the resulting word classes, and found that generally the closer a
context word is to the word being classified, the more information it provides about its
syntactic category. The also found that although the best results were obtained by using
a context which contained both preceding and succeeding words, words in the preceding

context were generally much more useful than those in the succeeding context.

Other Work

Other researchers have worked on the problem of the automatic assignation of symbols to
classes, and we acknowledge the work of Hang Li and Naoki Abe [13], Timothy Cartwright
and Michael Brent [3], and Fernando Pereira, Naftali Tishby and Lillian Lee [17].

5.4.2 The Problem of Noise due to Ambiguity

Before describing our methods of agglomeration and clustering, we would like to consider
why the problem of discovering symbol classes in data is so difficult. Consider the phrase-
structure grammar shown in figure 5.14, which generates a symbol sequence over a lowest
level alphabet of four symbols. We would like to recover the three symbol classes (1) —
[AB], (2) — [B|C] and (3) ~ [C|D].

4 o (D@)6)3)(6)
1 +— AB

2 — B|C

3 ~— ¢Cp

4 = (1)E)

5 - (D)

6 — (32

Sample: ACBCDBAABBCDABBACCAACBDBBBBBDCABCCDCBCCCCBBC ...

FIGURE 5.14: A phrase-structure grammar which generates a sequence of symbols which
exhibit several kinds of ambiguity.

The first thing to note is that these symbol classes are ambiguous in that the symbols
B and C belong to two classes; this is presumably a feature of many types of data, and
ambiguity of this kind obviously occurs in natural languages. A second form of ambiguity

is due to the fact that any given symbol class may be followed by exactly two others, with

80 5.4. Discovering Symbol Classes

equal probability, due to the fact that meta-classes, such as (5), exist in the grammar. For
example, P((1)|(2)) = % and P((2)|(2)) = % This second type of ambiguity also exists in
natural languages—consider, for example, the fact that an adjective may be followed by
either an adjective or a noun in a sequence of English words.

This second form of ambiguity at the level of symbol classes means that the observa-
tions which we actually make at the lowest level representation of the data (which is the
level at which we must necessarily begin) will consist of a convex combination of some
unknown number of symbol classes. For example, P(B|(2)) = 2P (B € (1)) + 3 P(B € (2)).

Let us continue this exposition by considering the nature of the space of probability dis-
tributions. This is the space in which clustering is to be performed, as we are interested in
finding clusters of predictions. Each element of a probability distribution is non-negative,
and the sum of all elements is unity. Therefore, a probability distribution represented
as a vector in R will lie on the (|A| — 1)-simplez—the region of space defined by all
possible points which satisfy the constraints placed on vectors which represent probability
distributions.

Consider the predictions made by a predictive model about a string of symbols taken
from a binary alphabet. If we consider the predictions to be vectors in R?, we will find that
all of the vectors lie on the the simplex corresponding to the line segment which has (0, 1)
and (1,0) as its end-points, as shown in figure 5.15. Similarly, for a ternary alphabet, the
predictions made by a predictive model will lie in the region of space corresponding to the
equilateral triangle which has (0,0, 1), (0,1,0) and (0,0, 1) as its vertices, as in figure 5.16.
In general, over the alphabet A, all predictions lie in the region of space corresponding to
the (|A| — 1)-simplex, in RA!.

05 T

0.5 1

FIGURE 5.15: A simplex in R? is the line segment connecting (0,1) and (1,0).

We are now in a position to consider how the vectors may be distributed within the

space. We do this by recalling that all of the probability distributions we observe will be

Chapter 5. Design and Implementation of the UpWrite Predictor 81

FIGURE 5.16: A simplex in R3 is the region of space corresponding to the equilateral
triangle which has (0,0, 1), (0,1,0) and (1,0,0) as its vertices.

convex combinations of some unknown number of probability distributions at a higher level
of abstraction. This means that each observed probability distribution will lie somewhere
within the simplex which has as its vertices the k higher level probability distributions
which the lower level probability distribution is a convex combination of. The exact lo-
cation of the observed probability distribution within this simplex is determined by the
coefficients of the convex combination, and these are equivalent to a probability distribu-
tion over the higher level alphabet.

Another way of thinking about this is that the observed probability distributions are
the DownWritten versions of higher level probability distributions. For example, the
higher level probability P(B|(2)) is DownWritten to the lower level probability $P(B €
(1)) + P(B € (2)) = 3, as we have previously shown. We assume, of course, that each
symbol class may also be represented by a probability distribution over the lower level
alphabet, and this is true in the case where the symbol classes are stochastic.

It is therefore apparent that the observed probability distributions are not noisy ver-
sions of a single underlying symbol class—they are noisy convex combinations of some
unknown number of symbol classes. The evidence we observe is therefore rather indirect;
instead of looking for clusters of points, we should be looking for the set of points which
define the vertices of some unknown number of k—simplices, for various k. Obviously there
are many candidate point sets, with the unit vectors of the (].4] — 1)-simplex being a
possible (and uninteresting) solution. Therefore, we should search for a solution according
to the principle of Occam’s razor; we want to find the vertices which describe the observed
distribution of vectors well, while at the same time minimizing the combined description
length of these vertices and the data relative to the k-simplices which they define.?3

As an example of the sort of data we have been talking about, we show in figure 5.17 a

plot of the vectors which correspond to the predictions made by a 2"*-order Markov model

82 5.4. Discovering Symbol Classes

over the data defined by the grammar of figure 5.14.3* In this diagram, the four vertices
of the (] A] — 1)-simplex are denoted by crosses, and connected with solid lines. These
vertices define a tetrahedron in R*, and all possible probability distributions fall within
this simplex. The probability distributions corresponding to the three symbol classes of
the grammar are denoted by circles, and it is obvious that the sixteen vectors?® which
represent the predictions made by the 2"¢-order Markov model all fall on the simplex
defined by these three vectors. An algorithm which searched for these vertices in the
manner prescribed above would successfully recover the three symbol classes, while any

standard clustering algorithm would not.3

FIGURE 5.17: The sixteen vectors representing predictions made by a 2"?—order Markov
model over data generated by the grammar of figure 5.14 lie on the 2—simplex which is
defined by the three vectors which represent the symbol classes, and this, in turn, lies
within the 3-simplex in R*.

Chapter 5. Design and Implementation of the UpWrite Predictor 83

Note that increasing the context available to the predictive model will serve to disam-
biguate the predictions it makes to an extent, and that symbol classes will therefore be
more readily obtained by clustering the predictions made by higher order Markov mod-
els. However, this has the disadvantage of limiting the number of observations made per
context, and the sparse data problem raises its ugly head. A more intelligent technique
of finding symbol classes is required, and we hope that the insight presented above marks
the genesis of such a technique.

A clustering mechanism which takes account of the fact that the vectors being clustered
are likely to be distributed in this way may be more successful in finding symbol classes
in data than the traditional approaches we have previously presented. Alas, we have not
yet been able to explore this promising line of work, and we only mention it here to draw
the reader’s attention to the nature of the problem, and to suggest a possible technique

for solving it.

5.4.3 Algorithms for Discovering Symbol Classes

We are now in a position to consider methods for discovering symbol classes in data;
we are interested in methods which achieve this using the predictions made by a simple
predictive model, and nothing more. Both of the methods we shall consider involve treating
the predictions made by the predictive model as vectors in R 37 and clustering these
vectors in order to determine what the symbol classes should be.?® The two methods differ

only in the way the symbols are assigned to classes once the clusters have been formed.

Agglomeration: The most recent symbols in the contexts which correspond to the pre-
dictions in a particular cluster may be considered to belong to the same symbol
class. This is motivated by the fact that similar predictions are likely to be made

upon encountering any of the symbols in a particular class.

Clustering: The centroids of the various clusters found may be considered to be stochas-
tic symbol classes. This is motivated by the fact that each prediction made by the
predictive model may be considered to be a noisy version of some underlying symbol

class.

In both cases stochastic symbol classes are formed, in the case of agglomeration this is
achieved by gathering frequency statistics about the symbols in each class as the UpWrite
is being performed. Stochastic symbol classes are desirable because the probability of a
symbol being a member of a class may be used to DownWrite the predictions made by
the predictive model, something which is useful in many applications. Note that neither
of these techniques attempt to address the problems of noise due to ambiguity—we have
reluctantly assigned this problem to future work.

We had originally planned to use an information theoretic measure to calculate the

similarity between two probability distributions—the Kullback-Leibler divergence may

84 5.4. Discovering Symbol Classes

have been suitable, for instance. Our experiments have indicated that the measure used is
fairly inconsequential, and we have therefore chosen to use the standard Euclidean distance
due to the fact that it is relatively straightforward to compute.

It should be noted that our technique of clustering the predictions made by a predictive
model is equivalent to forming a distribution vector of contexts, where the context follows
the symbol being classified. That is, the prediction made by a model is equivalent to a
distribution over all such contexts. Redington, Chater and Finch studied the performance
of their classification scheme for various contexts, and concluded that the context which we
have implicitly chosen produces poor results [18]. On the other hand, Kiss’ algorithm made
use of an identical distribution vector [9]. Furthermore, the fact that the agglomeration
algorithm is iterative does tend to make better use of the available data than traditional

algorithms, which form symbol classes in a single pass.

5.4.4 Agglomeration

Both of the methods we propose for discovering symbol classes in data are based on the
notion that clues as to what these symbol classes are are contained in the predictions made
by simple predictive models. The first method, agglomeration, is similar to the aggluti-
nation technique for finding symbol sequences in data. The general idea of agglomeration
is that symbols may belong to the same class if the predictive model makes similar pre-
dictions about which symbols are likely to follow them. The technique consists of finding
the two most similar symbols in the data, forming a new class out of them, UpWriting the
data with respect to this new class, and iterating. During the UpWrite process, frequency
counts for the symbols in the class are collected, enabling us to estimate the probability
of a particular symbol appearing given that we know which class occurred, resulting in a
hierarchy of stochastic symbol classes.

The motivation for this technique is that we wish to use a simple predictive model to
find structure in the data, but this predictive model may not be sufficiently powerful to
find the required structure in a single pass of the data. We therefore favour a ‘skeptical’
approach; the single most likely class is added each iteration, with the data being UpWrit-
ten at the end of each iteration. This process bootstraps the discovery of less likely classes,
with the classes which have been found already functioning as scaffolding. Agglomeration
may be considered to be a form of hierarchical clustering, with the similarity matriz [23]
being recalculated whenever a pair of symbols is joined, not by the standard techniques,
but by UpWriting the data, inferring a new language model, and calculating the simi-
larity matrix afresh. This results in dendrograms which look different to those formed
from a standard hierarchical clustering process, as the iterative nature of our algorithm
often results in classes becoming more similar than the average similarities between their
elements.

For large alphabets, the agglomeration algorithm can be quite slow. We therefore

restrict the algorithm so that it only considers the 1000 most frequently occurring symbols

Chapter 5. Design and Implementation of the UpWrite Predictor 85

on each iteration—this means that our job is one of finding the two most similar vectors out
of up to 1000 vectors in RMI. This restriction does speed up the algorithm substantially,
and, contrary to first appearance, it does not mean that only the most frequent 1000
symbols will be classified. Each iteration of the algorithm removes two symbols from the
alphabet and replaces them with a single new symbol, meaning that the algorithm will
eventually assign every symbol in the alphabet to a class.

It is considerably more difficult to evaluate the performance of an algorithm whose
job it is to discover symbol classes, as we simply do not know what the desired classes
look like. We therefore decline to give any sort of performance criteria of the algorithm,
preferring to evaluate its performance by eye.

The agglomeration algorithm was used to find symbol classes in the Sherlock corpus
at both the character level and the word level. When operating at the word level, the
algorithm converted all words to their uppercase equivalents prior to inferring the model
in order to make the most of the limited data available. In both cases a simple 15/~order
Markov model was used, and no attempt was made to smooth the predictions it made.

Figures 5.18 and 5.19 show two of the hierarchical classes formed at the character
level by the agglomeration algorithm, the first corresponding to the class of digits, and
the second corresponding to a class of various forms of punctuation. Apart from the two
classes illustrated, two other classes of punctuation were found—one of these contained
the two closing brackets) and]—and a single large class containing all members of the

modern Roman alphabet, apart from I, was also formed.

QU O P NONWRFHO

FIGURE 5.18: The class of digits discovered from the Sherlock corpus at the character
level by the agglomeration algorithm.

It is interesting to note that the digits 1 and 8 are deemed to be more similar to each
other than they are to the remaining eight digits. This is almost certainly due to the
fact that many of the numerical sequences in the Sherlock corpus denote dates in the
nineteenth century. The class of punctuation symbols shown in figure 5.19 consists mostly
of symbols which signify the beginning of a new phrase, including the two opening brackets
(and [. The inclusion of the symbol I in this class is attributable to the fact that the the
optical character recognition process used to form the Sherlock corpus occasionally made

an error whereby the symbol [appeared rather than the symbol I.

86 5.4. Discovering Symbol Classes

R A~ v

H

FIGURE 5.19: One of several classes of punctuation characters discovered from the Sherlock
corpus at the character level by the agglomeration algorithm.

Figures 5.20 to 5.27 show eight of the classes formed by the agglomeration algorithm
at the word level. These range from the good, as is the case with the class of figure 5.20,
which contains two separate groups of words which are very similar to one another, to the
rather esoteric, as is the case with the class of figure 5.27, which appears to have been

formed from many ambiguous contexts.

—

THEY
— HE
L SHE

WE

————— MUST
L MIGHT

— P
WOULD
MAY

SHALL

FIGURE 5.20: A class containing pronouns which are used to describe persons and groups
of persons, and auxiliary verbs which are used to express possibility, as discovered from
the Sherlock corpus at the word level by the agglomeration algorithm.

It is interesting that all of these classes are very strongly semantic in nature, and
this validates our earlier claim that algorithms which are designed to find word classes
in natural language text invariably find classes of a quasi-semantic sort. The class of
figure 5.26 is a good example of this; the class contains words which describe parts of
buildings and parts of towns, such as WINDOW, ROOM, HOTEL and STREET. Classes of these
sorts are potentially much more useful than classes which correspond to coarse syntactic
categories such as noun and verb, as they allow a predictive model to make quasi-semantic

generalisations.

Chapter 5. Design and Implementation of the UpWrite Predictor 87

BOY

GIRL

————— MAN
L WOMAN

GENTLEMAN

PERSON

[eROPLR
MEN

STRANGER

LAD

FRIEND
CREATURE

MINUTES

F__

HOUR

DAYS

FIGURE 5.21: A class containing nouns which are used to describe human beings, and
nouns which are used to indicate periods of time, as discovered from the Sherlock corpus

at the word level by the agglomeration algorithm.

YOUR
HIS
THEIR
A

THE
LITTLE
OUR
OWN
ITS
GREAT
MY
SOME
ANY

FIGURE 5.22: A class containing, among other things, the definite and indefinite articles,
and attributive possessive pronouns, as discovered from the Sherlock corpus at the word

level by the agglomeration algorithm.

CLIENT

__4

PRACTICE
LESTRADE

HOLMES
MCGINTY

MASON

DETECTIVE

FIGURE 5.23: A class containing proper nouns, among other things, as discovered from
the Sherlock corpus at the word level by the agglomeration algorithm.

88

5.4. Discovering Symbol Classes

MORSTAN
DOCTOR
BALDWIN
SMITH
FELLOW
MAID
STANGERSON
GREGSON

FIGURE 5.24: A class containing proper nouns, among other things, as discovered from
the Sherlock corpus at the word level by the agglomeration algorithm.

SO0N

EVER
HARDLY

NOT

ALREADY
REALLY

NEVER

OFTEN

ALWAYS

FIGURE 5.25: A class containing for the most part adverbs which express time-relative
possibilities, as discovered from the Sherlock corpus at the word level by the agglomeration

algorithm.

g I

L

[

PASSAGE
WINDOW
BED
OFFICE
HOUSE
ROOM
ROAD
STREET
NIGHT
LONDON
FIRE
TOWN
HOTEL
EVENING
DAY
MORNING

FIGURE 5.26: A class containing for the most part nouns which describe parts of buildings,
parts of towns, and times of day, as discovered from the Sherlock corpus at the word level

by the agglomeration algorithm.

Chapter 5. Design and Implementation of the UpWrite Predictor 89

— MOTHER
BOOTS

I HAIR

F HAT
CLOTHES

HUSBAND

WOMEN

BRIDGE

BEARD

SURPRISE

F ALARM

DATE
SHOLTO
INN
SISTER

FIGURE 5.27: A rather esoteric class containing, amongst other things, nouns which de-
scribe parts of the body, clothing and familial relationships, as discovered from the Sherlock
corpus at the word level by the agglomeration algorithm.

The advantages of the agglomeration algorithm are that it is computationally effi-
cient (as it restricts the process to the most frequently occurring symbols), it mirrors the
agglutination technique in that it is skeptical, greedy and iterative, and it finds rather
good, albeit noisy, symbol classes. Its major disadvantage is that, although the classes are

stochastic, a particular symbol can belong to, at most, a single class.

5.4.5 Clustering

A second method of using the predictions made by a simple predictive model to find
symbol classes is simply to assume that each prediction, when expressed as a probability
distribution, is a noisy version of exactly one stochastic symbol class. A cluster of prob-
ability distributions can then be regarded as strong evidence that the centroid vector of
that cluster is itself the noise-free version of the symbol class to which the members of the
cluster are approximations.

The motivation for this technique is that the symbol classes found are immediately
stochastic, and that they are contextually constrained, with the consequence that a symbol
may belong to different symbol classes in different contexts.

Our technique is to infer a simple 1%—order Markov model from a corpus, and to
apply standard hierarchical clustering methods to the predictions made by this predictive
model. Clusters may be recovered from the resulting hierarchy by specifying a minimum
similarity threshold, with the centroids of the resulting clusters representing new symbol
classes which may then be used to UpWrite the data. These classes are context-sensitive,
as they are based on predictions which are themselves context sensitive; the UpWrite will
take this into account, meaning that a particular symbol may be UpWritten to one of

many classes depending upon the value of the symbol which immediately precedes it.

90 5.4. Discovering Symbol Classes

To speed up the hierarchical clustering process, we decided to restrict the symbols in the
context to the 1000 most frequently occurring symbols, as was the case for agglomeration.
The classes are formed from the centroids of the clusters which result, and may therefore

contain any of the symbols in the alphabet, not just the most frequent 1000.

The clustering algorithm was used to find symbol classes in the Sherlock corpus at the
word level only, with all words converted to their uppercase equivalents in order to make
better use of the limited data available. As before, a simple 1%~order Markov model was

inferred from the corpus, and no attempt was made to smooth its predictions.

Figures 5.28 to 5.31 show four of the symbol classes found by this process. The figures
indicate the context words for which predictions were made, and list the most frequent
ten words according to the centroid vector of the resulting cluster, which was regarded
as being a probability distribution in its own right. For instance, in figure 5.28, the
predictions made by the model upon encountering each of the five words TELL, TOLD, ASK,
LET and EXCUSE were clustered, and the ten most probable words in the resulting symbol
class, listed by decreasing probability, are ME, YOU, US, HIM, THE, HER, IT, MY, FOR and
THEM.

ME
YOU
Us
HIM
THE
HER
IT
MY
FOR
\THEM

[TELL|TOLD|ASK|LET|EXCUSE] predicts ¢

FIGURE 5.28: A symbol class containing pronouns used to refer to persons as its most
frequent elements, as discovered in the Sherlock corpus at the word level by clustering the
predictions made by a 1% -order Markov model.

It is immediately obvious that the set of context words themselves represent valid word
classes, and it is these that were found by the agglomeration technique. It is our opinion
that agglomeration produces far superior classes, and this may be due to the fact that it
1s not context sensitive, allowing more observations to be taken into consideration when

forming a symbol class.

Chapter 5. Design and Implementation of the UpWrite Predictor

91

[TEN|FIVE|FEW|NINE] predicts ¢

(MINUTES
YEARS
DAYS
0°CLOCK
HOURS
WORDS
HUNDRED
MILES
A

\

FIGURE 5.29: A symbol class containing units of time measurement as its most frequent el-
ements, as discovered in the Sherlock corpus at the word level by clustering the predictions

made by a 1%*—order Markov model.

[YOU|I|WE|THEY|HE|SHE|WHO] predicts <

(HAD
HAVE
WAS
COULD
WILL
ARE
AM
CAN
WOULD

| WERE

FIGURE 5.30: A symbol class containing the words HAVE and HAD, and auxiliary verbs
which express possibilities as its most frequent elements, as discovered in the Sherlock
corpus at the word level by clustering the predictions made by a 1¥*-order Markov model.

92 5.5. The Final Structure of the UpWrite Predictor

AT
ouT
OoF
INTO
ROUND
UPON
UP
IN
AFTER
{ BACK

[LOOK|LOOKED|GLANCE|ARRIVED|STARED|GLANCED] predicts

FIGURE 5.31: A symbol class containing prepositions which describe motion or position as
its frequent elements, as discovered in the Sherlock corpus at the word level by clustering
the predictions made by a 1%—order Markov model.

Apart from the symbol classes shown, which are rather good, the clustering method
also found a very large number of similar classes, all of which contained the indefinite
article, the definite article, and common pronouns and punctuation characters in various
ratios. The preponderance of such classes would almost certainly adversely affect the
performance of any algorithm which used them, as the total number of symbols in the
alphabet would not be decreased by their inclusion, and the predictor would not be able
to generalise about the data significantly as a result. Classes of nouns tended not to be
formed by the algorithm.

The advantages of forming symbol classes by finding clusters of prediction are that
the resulting symbol classes are context sensitive and immediately stochastic, and that
the process may be performed in a single pass of the data. However, the results of the
algorithm are inferior to those of agglomeration, and this may be a consequence of the

fact that a rather unconstraining context of one previous symbol was used.

5.5 The Final Structure of the UpWrite Predictor

We are now in a position to present the structure of the UpWrite Predictor as we have
implemented it. The reader should note that different implementations are possible; we
selected ours based upon the fact that we hope to test the performance of the UpWrite
Predictor as part of an adaptive statistical data compressor, and this requires a predic-
tive model which may be used adaptively. There are several problems which need to be

addressed when implementing the UpWrite Predictor.

e A simple predictive model needs to be selected, and a default alphabet needs to be

determined;

Chapter 5. Design and Implementation of the UpWrite Predictor 93

Methods need to be chosen for discovering symbol sequences and symbol classes in

the data at all levels of abstraction;

The UpWrite and DownWrite processes need to be defined with respect to these

methods;

A technique for removing anomalous symbol sequences and symbol classes from the

higher level representation of the data needs to be devised; and

A stopping criterion needs to be determined.

We shall now discuss the various decisions that were made during the implementation
of the UpWrite Predictor. We postpone evaluation of our implementation until the next

chapter, in which we shall be performing a series of experiments to test its performance.

5.5.1 Selecting the Predictive Model

The UpWrite Predictor makes use of a family of predictive models, each of which process
the data at a different level of abstraction. These models make predictions which are
used both internally and externally, to find structure in the data being processed, and to
provide information about the data to whatever application is making use of the UpWrite
Predictor.??

The UpWrite Predictor is intended to be used both statically (i.e. trained on a corpus
prior to being applied to a problem) and adaptively. For this reason, the predictive
model employed should be time-efficient, and should be able to make predictions prior to
observing any data.

Using an extremely simple model has the advantage that the performance of the final
UpWrite Predictor will be more easily evaluated; we need not worry about how the perfor-
mance of the predictor changes as the parameters of the model are varied if the model has
no parameters. We are therefore interested in choosing the simplest model which is able
to assign a non-zero probability to every symbol, even when no data has been observed.

This model will still need to be context-dependent, and it will still need to express the
relative frequencies of the symbols in the alphabet. These two constraints are evident in all
complex systems, according to Lila Gatlin [2], and must be included if symbol sequences
and symbol classes are to be extracted by any of the methods presented in sections 5.3
and 5.4.

For these reasons we choose to use a simple 1%'—order Markov model in the UpWrite
Predictor. In order to ensure that its predictions are smoothed, we apply Laplace’s Law
of Succession, whereby all frequency counts, for every context in the predictive model,
including those yet to be observed, are initialised to 1. Using such a short context has the
additional advantage of making the best best use of the limited amount of data available

for inference.

94 5.5. The Final Structure of the UpWrite Predictor

5.5.2 Discovering Symbol Sequences and Symbol Classes

The predictive model we have selected uses a context of a single symbol, and this makes
it perfectly suited to the two methods of agglutination and agglomeration. Both of these
methods are highly iterative in nature, in that they construct a hierarchical description of
the data by UpWriting it gradually. We consider this property to be a distinct advantage.
Our implementation of the UpWrite Predictor is therefore highly iterative itself—on each
iteration the most promising symbol sequence and the most promising symbol class is
discovered from the data, and either one of these two types of structure may then be used
to UpWrite the data.

The iterative nature of the methods of agglutination and agglomeration also makes
them ideal for use in an adaptive system, as the most promising symbol sequence and the
most promising symbol class can be constantly monitored and updated during inference—
the lone context of the predictive model which is updated with the next symbol in the
sequence is the only context which needs to be re-evaluated to determine whether or not
better candidate symbol sequences and symbol classes exist.

Finally, our decision to form symbol sequences via agglutination alleviates the parsing

problem, as we shall soon see.

5.5.3 UpWriting and DownWriting

UpWriting symbols to symbol classes is trivial, as each symbol belongs to exactly one
class. UpWriting is therefore a matter of replacing each occurrence of the symbol in the
data with the class to which it belongs. The DownWrite is not unique for symbol classes,
but it is possible to generate data which has the property that its UpWritten form is
identical to that of the data under consideration. We may ‘DownWrite’ a symbol class by
selecting a symbol from the class at random, according to the probabilities of the symbols
in that class. We shall find this useful when evaluating the performance of the UpWrite
Predictor, as it allows us to use the UpWrite Predictor generatively.

UpWriting symbol pairs to symbol sequences is slightly more problematic, as an am-
biguous sequence of symbols may be encountered. Because our implementation of the
UpWrite Predictor is iterative, with only a single symbol sequence being UpWritten on
each iteration, and because these symbol sequences always consist of a pair of symbols,
ambiguity only occurs when the symbol sequence being UpWritten consists of a pair of
identical symbols.

Consider, for example, the data AAA and the symbol sequence (AA). There are two
possible ways in which this data can be UpWritten, either as (AA)A or as A(AA). We choose
to UpWrite data in a greedy manner, by UpWriting symbol sequences as soon as they are
encountered while scanning the data. This decision was motivated in part by the fact that
an adaptive system must necessarily scan the data in this way, and that therefore a greedy
parser is the only possible solution to this parsing problem in certain applications.*! In

general, though, the UpWrite Predictor circumvents the parsing problem by UpWriting

Chapter 5. Design and Implementation of the UpWrite Predictor 95

the data on the fly, while structure is being discovered.
DownWriting symbol sequences is trivial; we merely emit the sequence of lower level

symbols which the higher level symbol represents.

5.5.4 Correcting Mistakes via Feedback

The UpWrite Predictor features a feedback mechanism within each module, as shown in
figure 5.1, whose purpose is to correct any errors which the UpWriter may have made while
discovering symbol sequences and symbol classes. The inclusion of this mechanism was
motivated by the fact that the UpWrite is hierarchical in nature, and yet the process of
finding structure in data tends to occur at a single level of this hierarchy—new symbols are
added to the alphabet without consideration of the overall implications of their existence.

The feedback mechanism allows us to tentatively add new symbols to the alphabet,
evaluate the performance of the higher level predictive model which is inferred from the
UpWritten data, and decompose any higher level symbols which prove detrimental to its
performance.

Consider, for example, the symbol sequence shown in figure 5.32. A low order Markov
model which discovers symbol sequences in this data via agglutination may produce the
UpWritten form of this data shown in figure 5.33. A model inferred from the UpWritten
data will, assuming that sufficient data is available for probability estimation, exhibit
a high level of surprise upon encountering the symbol EAR in the context THEY. This
may be sufficient evidence to deem the symbol pair (THEY, EAR) erroneous. The feedback
mechanism may then be used to ask the UpWriter to correct this symbol pair, and this
may be achieved by decomposing the recently added symbol sequence (THE,Y) into its
constituent symbols. The correct symbol sequence (THE, YEAR) may then be formed via

agglutination at a later stage.

THE|Y|CAME|THE|Y |[EAR|LATER.

FIGURE 5.32: Example data which is to be UpWritten with the symbol sequence (THE, Y).

THEY|CAME|THEY |[EAR|LATER

FIGURE 5.33: A greedy UpWriting process results in an erroneous chunk.

While it is obvious that a feedback mechanism of this sort would prove beneficial,
we have not implemented anything so ambitious in the version of the UpWrite Predic-
tor which we have developed. Instead, we decided to simply form a candidate symbol
sequence and a candidate symbol class on each iteration of the algorithm, and evaluate
the performance of two hypothetical UpWrite Predictors, one of which incorporates the
candidate symbol sequence, and the other of which incorporates the candidate symbol

class. The UpWrite Predictor which was found to perform the best effectively selects the

96 5.6. Summary and Conclusion

type of structure which will be incorporated, and the process is then iterated. This process
uses the feedback mechanism of the UpWrite Predictor to tentatively UpWrite the data
with two candidate symbols, and then discards the symbol which results in the greatest
performance degradation.

In the static case, inference is performed on a training corpus, and evaluation is per-
formed by measuring the average information provided to the predictive model by a sepa-
rate testing corpus. In the adaptive case, evaluation can be performed on the most recent
portion of the data with respect to a predictive model inferred from the remaining data

in the history.

5.5.5 Stopping Criterion

It seems intuitive that a suitable stopping criterion for the UpWrite Predictor would be
to constantly monitor its performance and cease the UpWrite process as soon as this
performance degrades. However, we have found that the performance of our particu-
lar implementation occasionally degrades immediately. This is due to the fact that the
predictive model used is of a very low order, and the structure needed to improve the
performance of such a model can sometimes only be found after several iterations of the
algorithm, during which the processes of agglutination and agglomeration gradually form
useful structure from the detrimental structure extracted at the beginning of the process,
which serves as scaffolding.

A suitable stopping criterion is therefore not as easy to find as may have been imagined.
In our experience we find that the UpWrite process may be stopped when a gradual
degradation in performance is observed; this is usually indicative that all useful structure
has been found, and that hapax legomena are now being uncovered. Their addition to the
model serves to water down the statistics, resulting in a slight performance degradation
on each iteration of the algorithm.

For some applications it may not be necessary to specify a stopping criterion at all. If
one can afford the time, the UpWrite Process will halt naturally as soon as the entire data
has been UpWritten to a single symbol. When this occurs the hierarchical description
of the data is complete, and applications may select a level of abstraction a posteriori.
Needless to say, it is difficult to imagine a circumstance when this approach is viable,

unless the data being modelled consists of a relatively small number of symbols.

5.6 Summary and Conclusion

In this chapter we have shown how the UpWrite concept may be applied to a simple
predictive model. The result is the UpWrite Predictor, a language model which uses
none of the standard methods to improve its performance; rather, it bootstraps itself with
structure discovered in the data from its own predictions. We have shown that two types of

structure, symbol sequences and symbol classes, may be successfully uncovered in data via

Notes 97

the gradual iterative processes of agglutination and agglomeration. In the next chapter we
shall perform a variety of experiments using the implementation of the UpWrite Predictor

which we have presented.

Notes

17 Although for many tasks it is reasonable to train the predictive model before applying
it to a problem, in some applications, particularly that of data compression, it is desirable

to train the predictive model on the fly, while it is being applied to the problem.

18 Module A implicitly knows the lowest level alphabet, which, for the purposes of this
dissertation, is usually the set of bytes. Furthermore, Module A has no UpWriter, because

it uses the lowest level alphabet instead of an UpWritten version of a lower level alphabet.

19 Recall that DownWriting a symbol class is not defined, but lower level data can be
generated by choosing a member of the symbol class at random, in accordance with the

probabilities of the various symbols in the class.

20 Bach module will make its predictions at different times, and the problem of combining

DownWritten versions of these predictions into a single prediction is therefore non-trivial.

21 The term chunk was introduced by Miller in 1956 as a unit of immediate memory,

and it is a vital concept of human information processing research [12,14].
22 Zellig Harris was Noam Chomsky’s mentor, and was a well-known structural linguist.
23 Such cases occur only when the successor count plateaus.

24 The best performing context length was chosen to be the one which yielded the

highest value of the recall.

25 Note that the average word length in the Sherlock corpus is 4.18 characters, and
4.43 characters in the Test section. It seems probable that the optimal context length is
related to the average word length, since the context will be observed more frequently if

all of it falls within the same word.

26 This is true only if all the symbols are equiprobable. In reality, the entropy is also
related to the probability distribution over these symbols, something which Harris did not
take into account, possibly due to the impossibility of getting frequency information from

a human informant.

2T A referent is a relationship with a linguistic form, such as a word or a sentence, and

something in the real word, such as the object or action that is being referred to.

98 Notes

28 This hierarchical decomposition is possible because the symbols which constitute the

symbol pair may be lower level symbol pairs themselves.

29 For clarity, the plot was truncated, with the most similar symbol pairs appearing to

be much more closely correlated than they actually are.

30 Consider, for example, the text formed by performing a search-replace function on
whitespace, as with the command “cat Sherlock | tr ’[:space:]1’ ’*’”. Automatic
identification of separator symbols would make it possible to easily segment this text, by

recognizing that the asterisk character functions as a separator symbol in this instance.
31 Anomalous in that they are infrequent, often only occurring once in the data.
32 We shall show, however, that the Euclidean distance is a sufficient similarity measure.

33 This should be possible, because knowledge of the k-simplices reduces the degrees of

freedom of the observed data.
34 This plot is a projection from R* onto R?, as produced by the xgobi program.

35 There are sixteen distinct vectors corresponding to the predictions made after the
sixteen possible contexts observed by the 2"¢-order Markov model. Note that two of
these vectors lie very near the symbol classes [B|C] and [A|B], and are therefore difficult to

distinguish in the diagram.

36 The problem is compounded by the fact that the bottom-most symbol class in the
diagram is separated from the vectors which correspond to predictions by a significant

amount.

37 Actually, such a vector lies on the (JA| — 1)-simplez in R as we have previously

shown.

38 We have made the implicit assumption throughout that clustering vectors of some
sort is the best way of discovering symbol classes, but other, non-stochastic approaches
exist. For instance, see Wolff’s SNPR algorithm [27].

39 Even so, an application which makes use of the hierarchical representation of the data
formed by the UpWrite Predictor may supply its own predictive model which it can use

externally for whatever purpose is required.

40 This is due to the method of agglutination, which forms symbol sequences from highly

correlated adjacent pairs of symbols.

41 This is true of adaptive statistical data compressors, for example. The receiver must
be able to parse the data in an identical fashion to the transmitter, which means that the
transmitter cannot look-ahead into the sequence in order to make a parsing decision. We

meet such systems in chapter 7.

References 99

References

1]

[9]

[10]

[11]

[12]

[13]

Doug Beeferman, Adam Berger, and John Lafferty. Text segmentation using expo-
nential models. In Proceedings of the Second Conference on Emperical Methods in

Natural Language Processing, 1997.

Jeremy C Campbell. Grammatical Man: Information, Entropy, Language and Life.
Pelican Books, 1984.

Timothy A. Cartwright and Michael R. Brent. Syntactic categorization in early lan-
guage acquisition: Formalizing the role of distributional analysis. Cognition, 62:121—
170, 1997.

Steven Paul Finch. Finding Structure In Language. PhD thesis, University of Edin-
burgh, 1993.

Zellig S. Harris. From phoneme to morpheme. Language, 31:190-222, 1955.

Zellig S. Harris. Distributional structure. In Henry Hiz, editor, Papers on Syntaz,
pages 3-22. Kluwer Boston, 1981.

John R. Hayes and Herbert H. Clark. Experiments on the segmentation of an arti-
ficial speech analogue. In John R. Hayes, editor, Cognition and the Development of
Language, pages 221-234. John Wiley & Sons, Inc., 1970.

Jason L. Hutchens. Natural language grammatical inference. Honours thesis, Depart-
ment of Electrical & Electronic Engineering, The University of Western Australia,
Australia 6907, 1994.

G.R. Kiss. Grammatical word classes: A learning process and its simulation. Psy-
chology of Learning and Motivation, 7:1-41, 1973.

Hideki Kozima. Text segmentation based on similarity between words. In Proceedings
of the 315" Annual Meeting of the Association of Computational Linguistics, pages
286—288, 1993.

Marta Kutas and Steven A. Hillyard. Reading senseless sentences: Brain potential

reflects semantic incongruity. Science, 207(11):203-205, January 1980.

W.J.M. Levelt. Hierarchical chunking in sentence processing. Perception & Psy-
chophysics, 8:99-103, 1970.

Hang Li and Naoki Abe. Word clustering and disambiguation based on co-occurrence
data. In Proceedings of the 36" Annual Meeting of the Association for Computational
Linguistics and the 17" International Conference on Computational Linguistics, vol-
ume 2, pages 749-755, 1998.

100 References

[14] George A. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. The Psychological Review, 63(2):81-97, March
1956.

[15] Craig G. Nevill-Manning. Inferring Sequential Structure. PhD thesis, University of
Waikato, 1996.

[16] Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical structure in
sequences: A linear-time algorithm. Journal of Artificial Intelligence Research, T:67—
82, 1997.

[17] Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional clustering of English
words. In International Colloguium on Grammatical Inference, pages 5/1-3, April
1993.

[18] Martin Redington, Nick Chater, and Steven Finch. Distributional information: A
powerful cue for acquiring syntactic categories. Cognitive Science, 22(4):425-469,
1998.

[19] Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy approach to identi-
fying sentence boundaries. In Proceedings of the Fifth Conference on Applied Natural
Language Processing, March 1997.

[20] Jenny R. Saffran, Elissa L. Newport, and Richard N. Aslin. Word segmentation: The
role of distributional cues. Journal of Memory and Language, 35:606-621, 1996.

[21] Hinrich Schiitze. Part-of-speech induction from scratch. In Proceedings of the 31%
Annual Meeting of the Association for Computational Linguistics, pages 251-258,
1993.

[22] C.E. Shannon. Prediction and entropy of printed English. The Bell System Technical
Journal, XXX (1):50-64, January 1951.

[23] Peter H.A. Sneath and Robert R. Sokal. Numerical Taxonomy. W.H. Freeman and
Company, 1973.

[24] Walter Stolz. A probabilistic procedure for grouping words into phrases. Language
and Speech, 8:219-235, 1965.

[25] J. G. Wolff. An algorithm for the segmentation of an artificial language analogue.
British Journal of Psychology, 66(1):79-90, 1975.

[26] J. G. Wolff. The discovery of segments in natural language. British Journal of
Psychology, 68:97-106, 1977.

[27] J. Gerard Wolff. Language acquisition, data compression and generalization. Lan-
guage & Communication, 2(1):57-89, 1982.

Chapter 6

Experiments with the UpWrite

Predictor

“I have no data yet. It is a capital mistake to theorize before one
has data. Insensibly one begins to twist facts to suit theories,

instead of theories to suit facts.”

The Adventures of Sherlock Holmes
SIR ARTHUR CONAN DOYLE

6.1 Introduction

The UpWrite Predictor has been designed, and our particular implementation of it de-
scribed, so we are now in a position to evaluate its performance. Ultimately we would like
to show that the UpWrite Predictor is capable of finding structure in all sorts of data, and
that it may be used in a wide range of real-world applications. However, given that this
dissertation has seen the development of the UpWrite Predictor as a new paradigm for
the modelling of symbolic time series, we shall content ourselves with evaluating its per-
formance on a range of artificially generated data, and a small corpus of natural language
text, leaving exploration of applications of the technique for future work.

We choose to perform experiments with data generated by simple phrase-structure
grammars, and this choice is motivated in part by the fact that such grammars have been
used in the past to evaluate the performance of other language acquisition algorithms [4].
Phrase-structure grammars are capable of embodying the two types of structure which
the UpWrite Predictor has been designed to detect. In all cases where a phrase-structure
grammar is used to provide data for experimental purposes, we create a testing corpus
from 10000 generations of the grammar and a training corpus from 1000 generations of
the grammar. The final length of these corpora is dependent on the average length of a
generation in the phrase-structure grammar being used.

Note that throughout this chapter experiments shall be performed using a 1% -order

102 6.2. Discovering Symbol Sequences

UpWrite Predictor only; although it is possible to use higher order Markov models in the
UpWrite Predictor we are will not be exploring the performance of such models, as our
interest lies in improving the performance of simple predictive models by augmenting the

models with structure found in the data by other means.

6.1.1 Overview

In this chapter we use simple phrase-structure grammars to test the performance of the
UpWrite Predictor at acquiring symbol sequences, symbol classes, and a combination of the
two, both in cases where the symbol classes are ambiguous, and in cases where they are not.
We then proceed to evaluate the performance of the UpWrite Predictor on the seven texts
developed by Gerry Wolff in order to evaluate the performance of his SNPR algorithm [4].
In all cases we specify the phrase-structure grammar used in a way consistent with Wolff.
Following this, we evaluate the performance of the UpWrite Predictor on natural language
text, and we show that an intuitive feeling for the performance of the UpWrite Predictor
can be obtained by eye-balling the DownWritten form of the abstracted version of the data
it creates, and the data which it generates. These experiments go some way to illustrating
the potential advantages of the UpWrite technique in the domain of automatic natural

language acquisition.

6.2 Discovering Symbol Sequences

The phrase-structure grammar shown in figure 6.1 was designed with the intention of
creating a basic data source capable of generating data containing unambiguous higher
level symbol sequences. It was used to generate a training corpus 30000 bytes in length,

and a testing corpus 3000 bytes in length.
= (DI2)I0B)

1 +— AAA
2 +~— BBB
3 ~— CCC

Sample: CCCBBBCCCAAAAAACCCBBBBBBCCCBBBCCCAAABBBAAA ...

FIGURE 6.1: The phrase-structure grammar used to generate data for testing the acquisi-
tion of symbol sequences.

The UpWrite Predictor was inferred from the training corpus, and its performance on
the testing corpus was evaluated on each iteration. The structure found by the UpWrite
Predictor which resulted in the lowest performance degradation was selected, both corpora
were UpWritten, and the process was iterated.

The plot shown in figure 6.2 shows how the performance of the UpWrite Predictor
changes as the data is UpWritten to higher levels of abstraction. Note that the first
three iterations of the algorithm result in the greatest gains in performance, and that

performance continually improves until the thirty-eighth iteration, at which stage it begins

Chapter 6. Experiments with the UpWrite Predictor 103

to gradually degrade. The best performance the UpWrite Predictor attains is 40.8% better
than the performance of a 1%—order Markov model, even though the UpWrite Predictor
is nothing more than a 1'-order Markov model which processes a higher level version of

the data constructed from an analysis of its own sequence of predictions.

1.05 T T T T T T T T T

0.95

0.9

0.85

0.8

0.75

Average Information (bps)

0.7

0.65

0.6

0.55 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Number of Iterations

FIGURE 6.2: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.1.

Table 6.1 shows the first thirteen higher level symbols which were discovered by the
UpWrite Predictor and used to UpWrite the data, in the order of discovery. Note that the
first three UpWrites performed were with respect to the symbol sequences CC, BB and AA,
and it is not surprising that the greatest performance gain is observed at this stage, as
these symbol sequences provide enough context to enable the UpWrite Predictor to make
a low entropy prediction about the next symbol in the data.

Unfortunately, the three symbol sequences which exist in the grammar of figure 6.1
were not found by the UpWrite Predictor. This is due to the fact that the corpora contain
long repetitions of the symbols A, B and C, with the consequence that in the UpWritten
representation of the corpora the symbol AA, for example, may be followed by the symbols
A, AA, BB and CC, while the symbol A, for example, may be followed only by BB or CC. This
is a side-effect of the form of greedy parsing used to UpWrite the data.

It should be noted that the longer repetitions of symbols such as AAAAAA, BBBBBB and
CCCCCC are eventually discovered and UpWritten by the algorithm, and the points at which
this occurs correspond to the noticeable performance improvements at the nineteenth,

twenty-seventh and thirty-fourth iterations.

104 6.3. Discovering Symbol Classes

TABLE 6.1: A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.1, shown in the order of acquisition.

6.3 Discovering Symbol Classes

In order to test the performance of the UpWrite Predictor in discovering symbol classes in
data, the simple phrase-structure grammar of figure 6.3 was used to generate a 30000 byte
training corpus and a 3000 byte testing corpus, and the UpWrite Predictor was inferred

from and evaluated on these corpora in the standard manner.

= (DE)B)
1 +— AB
2 — P[Q
3 — XY

Sample: APYAQYAPXBPYBPYBPXBQYAQXAQYAPXBQXAPYBPXBPX ...

FIGURE 6.3: The phrase-structure grammar used to generate data for testing the acquisi-
tion of unambiguous classes.

Note that the data generated by the grammar contains three unambiguous symbol
classes. It also contains a single symbol sequence at a higher level than these symbol
classes. Table 6.2 lists the five higher level symbols which were discovered by the UpWrite
Predictor, in the order of acquisition, and it can be seen that the first three of these
correspond to the three symbol classes of the grammar, while the last of these corresponds
to the higher level symbol sequence (1)(2)(3). Once the data has been UpWritten using
this structure, no more symbol classes exist to be found, and so the UpWrite Predictor
halts.

It should be noted that UpWriting the data with the structure discovered by the
UpWrite Predictor doesn’t significantly alter its performance, as evaluation is performed
over the lowest level alphabet, meaning that predictions made at a higher level must be
DownWritten. Symbol classes were discovered merely because the addition of symbol

sequences such as AQ would have adversely affected performance. If, however, evaluation

Chapter 6. Experiments with the UpWrite Predictor 105

[P|Q]

[A|B]

[Yx]
([Pla][Y|x])
([A[B][P|Q]Y[x])

TABLE 6.2: A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.3, shown in the order of acquisition.

was performed by measuring the performance of the UpWrite Predictor on the higher
level data, without DownWriting the predictions, we would find that the performance of
the UpWrite Predictor would improve dramatically with the addition of the three symbol
classes. This evaluation procedure is equivalent to a process of lossy compression, as the
exact form of the lower level data is not recoverable from the higher level predictions,
and we shall use this evaluation procedure in section 6.9 when we generate data using an
UpWrite Predictor inferred from natural language text.

A second phrase-structure grammar, shown in figure 6.4, was used to test the ability of
the UpWrite Predictor to acquire symbol classes which are ambiguous insofar that some
of the symbols in the alphabet belong to more than one symbol class. A training corpus
of 30000 bytes and a testing corpus of 3000 bytes were generated from the grammar, and

the performance of the UpWrite Predictor was then evaluated.

= (D))

1 +— ABJP
2 —~ PIQ
3 — X|YQ

Sample: BPYBPXBQXAPYAQQAPYPPXPPYBPXBQQPQQPQQAPXBQY ...

FIGURE 6.4: The phrase-structure grammar used to generate data for testing the acquisi-
tion of ambiguous classes.

In figure 6.5 we show a plot of the performance of the UpWrite Predictor on this data,
and it is immediately obvious that the performance of the UpWrite Predictor degrades
initially before improving—it is this phenomenon which makes determining a suitable
stopping criterion difficult.

Table 6.3 lists the first nine symbols found by the UpWrite Predictor from this data.
The first three symbols found correspond to unambiguous symbol classes, identical to
those of the previous example. An immediate problem is apparrent—because the UpWrite
Predictor assigns a symbol to one, and only one, symbol class, every occurence of the
symbols P and Q in the data are UpWritten to the symbol class [P|qQ], making it impossible
to discover the ambiguous symbol classes at a later iteration of the algorithm.

Even so, the discovery of the symbol sequences shown does serve to disambiguate
the predictions made by the UpWrite Predictor, and its performance improves as a conse-
quence of their inclusion. Overall, though, the performance of the algorithm in discovering

ambiguous symbol classes is poor, and this is to be expected in the light of the discussion

106 6.3. Discovering Symbol Classes

2.05 T T T T T T T

1.95

1.9

1.85

1.8

Average Information (bps)

16 1 1 1 1 1 1 1

Number of Iterations

FIGURE 6.5: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.4.

TABLE 6.3: A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.4, shown in the order of acquisition.

Chapter 6. Experiments with the UpWrite Predictor 107

as to the nature of this problem in the previous chapter. The UpWrite Predictor is further
hampered due to the fact that a context of only one symbol is not sufficient to disam-
biguate its predictions—better performance would be attained with a larger context, or

the ability to contextually constrain the symbol classes discovered.

6.4 Finding Both Types of Structure

We are now interested in evaluating the ability of the UpWrite Predictor to find both
symbol classes and symbol sequences in data. The phrase-structure grammar of figure 6.6
was used to generate a training corpus of 90000 bytes and a testing corpus of 9000 bytes.

The generated data exhibits symbol sequences at two levels, and unambiguous symbol

classes.
= (1)(2)@3)
1 ~ AAA|BBB
2 +— PPP|QQQ
3 — XXX|YYY

Sample: AAAQQQXXXBBBQQQYYYBBBQRAQYYYAAAQQQXXXAAAPPP ...

FIGURE 6.6: The phrase-structure grammar used to generate data for testing the acquisi-
tion of symbol sequences and unambiguous symbol classes.

In figure 6.7 we plot the performance of the UpWrite Predictor as it is inferred from
this data. This plot has an interesting ‘staircase’ structure, descending from an initial
performance equivalent to that of an ordinary 1**—order Markov model, and levelling off
after eleven iterations of the algorithm.

All of the symbols discovered by the UpWrite Predictor, and used to UpWrite the
data, are listed in table 6.4—the algorithm halted after these symbols were discovered
due to the fact that no symbol classes remained to be found. All of the lower level
symbol sequences are discovered by the algorithm first; the ‘staircase’ nature of the plot
being explained by the fact that incorporation of symbol sequences such as XX provides a
significant performance improvement, due to the fact that it allows the model to make a
low entropy prediction about the next symbol in the data,*? while incorporation of longer
symbol sequences such as XXX do not alter the performance of the model.*?

Once the symbol sequences had been discovered by the UpWrite Predictor, and used to
UpWrite the data, the three symbol classes were found. The incorporation of these classes
into the alphabet do not significantly alter the performance of the UpWrite Predictor, but
the incorporation of larger symbol sequences would adversely affect the performance by a
significant amount, which explains why the symbol classes are added. Once the data has
been UpWritten with respect to the three symbol classes, the higher level symbol sequence
(1)(2)(3) is uncovered in two iterations of the algorithm. The performance of the UpWrite
Predictor in this simple example is perfect.

The phrase-structure grammar shown in figure 6.8 was used to generate a similar data

108 6.4. Finding Both Types of Structure

1.3 T T T T T T T T

1.2 E

1.1 E

1k]
m
Qo
2

c 09]
o
g

5 08¢ h
£
[

? 0.7 E
g
<

0.6 E

0.5]

04 E

0.3 1 1 1 1 1 ; ‘ ; ‘ ;
0 2 4 6 8 10 12 14 16 18

Number of Iterations

FIGURE 6.7: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.6.

]
[XXX|YYY]
[QQQ|PPP]
([AAA|BBB][QQQ|PPP])
([AAA|BBB][QQQ|PPP][XXX|YYY])

TABLE 6.4: A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.6, shown in the order of acquisition.

Chapter 6. Experiments with the UpWrite Predictor 109

sequence to that shown of the previous example, but in this case the symbol classes were
made ambiguous in two ways: some of the symbol sequences belong to more than one
symbol class, and two higher level symbol sequences exist, meaning that a particular class
may be followed by more than one other class. As we discussed in the previous chapter,
it is very difficult indeed to devise an algorithm which can recover symbol classes of this

sort from data.

= (HER)GIML)B)(2)
1 > AAA|BBB|PPP

2 + PPP|QQQ

3+~ XXX|YYY|QQQ

Sample: AAAQQQYYYBBBYYYQQQBBBXXXPPPPPPQQQYYYAAAYYY ...

FIGURE 6.8: The phrase-structure grammar used to generate data for testing the acquisi-
tion of symbol sequences, ambiguous symbol classes and ‘phrases’.

The plot shown in figure 6.9 illustrates the performance of the UpWrite Predictor
on this data, and we notice that the plot initially exhibits the same staircase structure
of the previous example, with a slight degradation in performance occurring once the

performance has levelled off.

1.6 T T T T T

Average Information (bps)

0.6 1 1 1 1 1

0 5 10 15 20 25 30
Number of Iterations

FIGURE 6.9: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.8.

The first twenty-two symbols found by the UpWrite Predictor from this data are listed
in table 6.5 in the order in which they were discovered. We note that the algorithm begins

110 6.4. Finding Both Types of Structure

by discovering portions of the two symbol sequences which are ambiguous in the sense that
they belong to more than one symbol class. The fact that they were discovered first is no
doubt because they occur more frequently in the data. The remaining four unambiguous
symbol sequences are then discovered, and this corresponds to the ‘staircase’ region of
the plot. The UpWrite Predictor then proceeds to discover some rather curious symbol
sequences. Not only are the correct ambiguous symbol sequences PPP and QQQ discovered,
but their concatenations, PPPPPP and QQQQQQ, are also discovered. This is due to the
fact that the ambiguous nature of the correct symbol sequences causes them to frequently

occur in pairs in the data.

QQQQQQ)
YYY|XXX]

[
[BBB|AAA]
[PPPPPP|BBB|AAA]
[PPP|QQQ]
[QQQQQQ|YYY|XXX]
[PPPPPP|BBB|AAA|PPP|QQQ)

TABLE 6.5: A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.8, shown in the order of acquisition.

Once these symbol sequences have been discovered, classes are formed from the four
unambiguous symbol sequences AAA, BBB, XXX and YYY. The symbol class [PPP|QQQ] is also
formed, as are two symbol classes which are almost identical to the ambiguous classes of
the grammar used to generate the data. It is at this stage that the performance of the
algorithm begins to degrade. It is indeed encouraging that the ambiguous symbol classes
were recovered to an extent, and this seems to be due to the fact that two higher level
symbol sequences (1)(2)(3) and (1)(3)(2) exist in the data. These higher level symbol

sequences, unfortunately, were not discovered by the algorithm.

Chapter 6. Experiments with the UpWrite Predictor 111

6.5 Performance on a Random Source

We shall end our examination of the performance of the UpWrite Predictor with a look at
its performance on data generated by a random memoryless source. The simple phrase-
structure grammar of figure 6.10 was used to generate a training corpus 10000 bytes in
length, and a testing corpus 1000 bytes in length, with the generated data consisting of a

random sequence of symbols taken from an alphabet of six symbols.

= ABPIQX]Y
Sample: XQPAPYAPABBQBPBYXQAXQAQXBPQPYBPBYQXXQQQBBB . ..

FIGURE 6.10: The phrase-structure grammar used to generate a random sequence of
symbols.

The performance of the UpWrite Predictor on this data is plotted in figure 6.11, and
it is plain that structure found in the training corpus by the UpWrite Predictor serves
only to degrade its performance on the testing corpus. This is the exact behaviour we
expect to see in the UpWrite Predictor when it is inferred from such data—any structure
discovered in the training corpus is due only to statistical irregularities caused by the fact
that only a finite amount of data is available for inference, and the statistical irregularities

which exist in the training corpus do not generalise across to the testing corpus.

2.67 T T T T T T T T

2.66

2.65

2.64

2.63

2.62

Average Information (bps)

2.61

2.6

2.59 |

258 I I I I I I I I
0 2 4 6 8 10 12 14 16 18

Number of Iterations

FIGURE 6.11: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.10.

112 6.6. Evaluation on Quasi-English Data

We decline to give a list of the symbols discovered by the UpWrite Predictor in the
random data, as doing so would not be enlightening.

We have evaluated the performance of the UpWrite Predictor using data generated by
various simple phrase-structure grammars, with the results that the UpWrite Predictor
performs about as well as we could hope it to, given that it is based on a 1% —order Markov
model, and is unable to find contextually constrained symbol classes. We would now like

to proceed to performing experiments on slightly more complicated data.

6.6 Evaluation on Quasi-English Data

Gerry Wolff devised seven artificial texts of a quasi-English sort in order to evaluate the
performance of his algorithm, SNPR, which is capable of discovering symbol sequences
and symbol classes in data [4]. We shall discuss Wolff’s SNPR algorithm briefly in the
next chapter, where we present Wolff’s thesis that language acquisition, and learning in
general, may be viewed as a process of data compression. Wolff devised SNPR in an
attempt to explain the language acquisition process in human beings, and considers the
seven artificial texts which we shall be performing experiments with in this section to be
“analogues of the linguistic data available to children”.

Due to the number of iterations performed in the experiments which follow, it is not
practical for us to list all of the structure uncovered by the UpWrite Predictor. Instead,
we choose to show only the structure which exists in the UpWritten version of the training
corpus when the algorithm is stopped, together with the occasionally symbol sequence or
symbol class in order to illustrate the order in which certain other symbols were discov-
ered. All remaining structure found by the UpWrite Predictor served as scaffolding during
inference, but, having done its job of enabling the discovery of higher level structure, no

longer appears in the UpWritten form of the data.

6.6.1 Text 1

In figure 6.12 we reproduce the phrase-structure grammar used by Wolff [4] to generate
Text 1. This grammar was used to generate a training corpus 109954 bytes in length and
a testing corpus 11002 bytes in length. Wolff devised this corpus in order to generate data

which contained a discontinuous dependency between the symbol sequences PUT and ON.

' (1)PUT(2)ON|(1)MADE(2)
1 +— JOAN|LIZ|YOUJHE
2+ SOME|THEM|FOUR|IT
Sample: YOUPUTITONHEPUTTHEMONHEMADEITLIZMADESOME . . .

FIGURE 6.12: The phrase-structure grammar used to generate Text 1.
The plot shown in figure 6.13 shows that the performance of the UpWrite Predictor

improves steadily during the first twenty-five iterations of the algorithm, after which it

begins to degrade slightly.

Chapter 6. Experiments with the UpWrite Predictor 113

Average Information (bps)

0.4 I I I I I
0 5 10 15 20 25 30

Number of Iterations

FIGURE 6.13: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.12.

In table 6.6 we list some of the structure found in the data by the UpWrite Predictor—
for clarity we include the iteration at which the structure was discovered by the algorithm
and used to UpWrite the data. The structure not shown tended to consist mostly of parts
of the symbol sequences shown in the list, and functioned as scaffolding so that the longer
symbol sequences which correspond to words in Wolff’s grammar could be found.

The UpWrite Predictor finds all eleven words which exist according to the grammar
which was used to generate the data. It then forms the symbol sequence THEMON, and
this behaviour may be explained by the fact that the symbol sequence THEM is ambiguous
in the generated data, as it also occurs in generations such as YOUMADEITHEMADESOME.
The inclusion of the sequence THEMON therefore serves to improve the performance of the
UpWrite Predictor, as it disambiguates the context. The UpWrite Predictor forms the two
symbol classes implicit in the data, but neglects to add the ambiguous** symbol sequences
HE, THEM and IT to these classes. The symbol class [THEM|ON|THEMON] serves to correct the
error made by the UpWrite Predictor when it formed the symbol sequence THEMON prior
to assigning THEM to a symbol class. The symbol sequences PUT and MADE are assigned to
a class because they each occur between the classes (1) and (2), and this appears to be a
sensible classification. The consequence of this classification is that the UpWrite Predictor
fails to capture the discontinuous dependency implicit in the data.

The UpWrite Predictor then proceeds to form symbol sequences which correspond to

the high level generations in the grammar, with the exception that these symbol sequences

114 6.6. Evaluation on Quasi-English Data
4 (PUT)
7 (JOAN)
10 (SOME)
11 (HE)
13 (MADE)
16 (FOUR)
18 (IT)
19 (THEM)
20 (LIZ)
22 (oN)
23 (YOU)
24 (THEMON)
26 [JOAN|LIZ|YOU]
28 [SOME|FOUR]
29 [THEM|ON|THEMON]
30 [PUT|MADE]
35 ([JOAN|LIZ|YOU][PUT|MADE][SOME|FOUR)
36 ([JOAN|LIZ|YOU][PUT|MADE]IT)
37 ([JOAN|LIZ|YOU][PUT|MADE][THEM|ON| THEMON][JOAN|LIZ|YOU][PUT|MADE][SOME|FOUR])

TABLE 6.6: A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.12, shown in the order of acquisition.

are affected by the errors made early on in the inference process. The symbol sequences

constructed at iterations 35, 36 and 37 cover many of the generations of the original

grammar, the notable exception being generations which begin with the symbol sequence

HE, and they are capable of generalising to new generations, such as YOUPUTSOME and
JOANMADETHEMON.

6.6.2 Text 2

In the phrase-structure grammar shown in figure 6.14, reproduced from [4], the symbol

sequence IT belongs to two symbol classes. This grammar was used to generate a training

corpus of 121338 bytes and a testing corpus of 12205 bytes.

= (D(2)ES(3)[(4)(2)(3)

> IT|TOM|JANE|JOAN

> MISS|WATCH

> BIRDS|LIZ|THEM|IT

> YOU|MEN|WE|THEY

Sample: TOMMISSESTHEMYOUWATCHBIRDSTHEYMISSLIZ ...

%ww»—tzﬁ:

FIGURE 6.14: The phrase-structure grammar used to generate Text 2.

The plot of figure 6.15 indicates that although the performance of the UpWrite Pre-

dictor slightly degrades after the first iteration of the algorithm, performance improves

rapidly after that, and we start to see it begin to level off at the twentieth iteration, and
degrade at the forty-first.

Chapter 6. Experiments with the UpWrite Predictor 115

18 T T T T T T T T T

Average Information (bps)

0.4 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Number of Iterations

FIGURE 6.15: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.14.

Some of the structure discovered in this data by the UpWrite Predictor is listed in
table 6.7, along with the iteration in which it was found. We see that the UpWrite
Predictor forms most of the symbol sequences in the grammar to begin with, including
the symbol sequence ES which it joins to the the symbol sequence MISS on the twenty-
eighth iteration, and to the symbol sequence WATCH on the thirty-second.

The performance of the UpWrite Predictor at finding symbol classes in this data is
relatively poor. This is partially due to the fact that the symbol class [WE|MEN] is used
to form phrases in iterations 30 and 31, which means that the symbol sequences YOU and
THEY are omitted from that symbol class permanently. In fact, a second symbol class is
created from these two symbol sequences in iteration 40.

The presence of the ambiguous symbol sequence IT seems to hinder the acquisition of
symbol classes, and this symbol sequence is not included in a symbol class until iteration
52, which is the only time a correct symbol class was formed by the algorithm. It should
also be noted that the formation of the incorrect symbol class [YOU|THEY|JANE|TOM] is
reasonable, as it represents a combination of some of the members of symbol class (1) and
symbol class (4) in the grammar, both of which begin generations, and both of which are
followed by symbol class (2).

Finally, note that the algorithm formed the incorrect symbol class [L|B] at the first
iteration, and this resulted in the incorrect symbol sequences ([L|B]IZ) and ([L|B|IRDS)
being formed at a later stage. This behaviour may be explained by the fact that the

116 6.6. Evaluation on Quasi-English Data

1 [L[B]

9 (WATCH)

11 (WE)

15 (vou)

18 (MISS)

19 (IT)

20 (ES)

22 (JANE)

26 (MEN)

27 (JOAN)

28 (MISSES)

29 [WE|MEN]

30 ([WE|MEN]WATCH)
31 ([WE|MEN]MISS)
32 (WATCHES)

33 ([LB]IYZ)

34 ([L|B|IRDS)
35 (JOANMISSES)
36 (JOANWATCHES)
37 (THEM)

38 (TOM)

39 (THEY)

40 [YOU|THEY]

48 [JANE|TOM|

51 [YOU|THEY|JANE|TOM]
52 [IT|[L|B]1Z|([L|B]IRDS)|THEM|

TABLE 6.7: A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.14, shown in the order of acquisition.

Chapter 6. Experiments with the UpWrite Predictor 117

two symbols L and B are only ever followed by the frequently occurring symbol I in the
data, and therefore the two symbols are greedily classified by the agglomeration process.
The presence of this incorrect symbol class causes the UpWrite Predictor to generalise to
productions such as THEYMENMISSBIZ and THEYWATCHESLIRDS.

6.6.3 Text 3

The phrase-structure grammar of figure 6.16, reproduced from [4], exhibits a hierarchical
organisation in that the symbol class (1) may be decomposed either to the sequence of
symbol classes (2)(3) or the symbol sequence JOHN. This grammar was used to generate a

training corpus 121035 bytes in length, and a testing corpus 12179 bytes in length.

(L)(4)(5)](6)(7)(8)
(2)(3)|J0HN

A|THE

BOY|GIRL
LIKES|ATE
FISH|MEAT
WE|THEY

WALK|RUN
FAST|SLOWLY

ample: AGIRLATEFISHTHEYWALKFASTJOHNATEMEAT ...

1111111117

1
2
3
4
bt
6
7
8
S

FIGURE 6.16: The phrase-structure grammar used to generate Text 3.

The plot of the performance of the UpWrite Predictor on this data, shown in figure 6.17,
shows that a steady performance improvement occurs over the first sixty iterations of the

algorithm, with a gradual performance degradation occurring after that.

Table 6.8 lists some of the structure found in the data by the UpWrite Predictor,
together with the iteration during which the structure was found. We see that the UpWrite
Predictor forms phrases beginning with the symbol sequence JOHN fairly early on in the
peace, and this is due to the fact that the hierarchical symbol class (1) means that one-
half of the productions which begin with the symbol class (1) will begin with the symbol
sequence JOHN, while the other one-half begin with one of the four possible DownWritten
versions of the symbol sequence (2)(3). The frequency with which the symbol sequence

JOHN appears in the data is enough to warrant the formation of these phrases.

The UpWrite Predictor only finds a single correct symbol class, although the symbol
class [BOY|GIRL|THEGIRL|THEBOY| seems reasonable, and is a result of the fact that the
symbol sequences (THEGIRL) and (THEGIRL) were formed prior to any classification taking
place. The existence of this erroneous symbol class results in the UpWrite Predictor

generalising to productions such as GIRLATEMEAT.

118 6.6. Evaluation on Quasi-English Data

4 (JOHN)

7 (MEAT)

10 (RUN)

11 (GIRL)

16 (BOY)
25 (JOHNLIKES)
28 (JOHNATE)
35 (JOHNATEFISH)
36 (JOHNATEMEAT)
39 (FAST)
41 (SLOWLY)
42 (FISH)
44 (LIKES)
45 (RUNFAST)
46 (RUNSLOWLY)
47 (WE)
49 (WALK)

52 (THEY)

53 (WALKFAST)

54 (WALKSLOWLY)
55 (LIKESFISH)
56 (LIKESMEAT)
58 (THEGIRL)

59 (THEBOY)

60 [THEGIRL|THEBOY]
67 [WE|THEY]

73 [BOY|GIRL|THEGIRL|THEBOY]

TABLE 6.8: A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.16, shown in the order of acquisition.

Chapter 6. Experiments with the UpWrite Predictor 119

Average Information (bps)

0.2 I I I I I I
0 10 20 30 40 50 60 70

Number of Iterations

FIGURE 6.17: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.16.

6.6.4 Text 4

In the phrase-structure grammar shown in figure 6.18, reproduced from [4], the null symbol
¢ reflects the optional nature of the symbol sequence SOME in generations which incorporate
the symbol class (3). This grammar was used to generate a training corpus 125141 bytes

in length and a testing corpus 12452 bytes in length.
(1) (2)B)(4)[(5)(6)(7)

BOB|MARY

LIKES|ATE

$|SOME

FISH|MEAT

WE|THEY

WALK|RUN

FAST|SLOWLY

Sample: WEWALKSLOWLYMARYATEFISHMARYLIKESSOMEFISH ...

N O Ut W N
11111111

FIGURE 6.18: The phrase-structure grammar used to generate Text 4.

The performance of the UpWrite Predictor inferred from this data is plotted in fig-
ure 6.19, and it can be seen that performance steadily improves until the forty-first itera-
tion, at which point the performance of the UpWrite Predictor begins to degrade.

Some of the structure discovered by the UpWrite Predictor in this data is listed in

table 6.9, along with the iteration in which it was found. It can be seen that all thirteen

120 6.6. Evaluation on Quasi-English Data

Average Information (bps)

0.2 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Number of Iterations

FIGURE 6.19: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.18.

symbol sequences implicit in the data are found by iteration 38, and the two higher level
symbol sequences (THEYWALK) and (THEYRUN) are also formed by this point, only to be
grouped together in a symbol class.

The algorithm finds the three correct symbol classes [FISH|MEAT|, [MARY|BOB| and
[ATE|LIKES], and also forms a combined symbol class consisting of the symbol classes
(4) and (7) in the grammar, each of which end productions. A similar phenomenon occurs
in the formation of the symbol class [WE|MARY|BOB], which excludes the symbol sequence
THEY due to the fact that it was used to form the phrases (THEYWALK) and (THEYRUN) pre-
maturely. The absence of the symbol class [WALK|RUN] is also explained by the premature
formation of these phrases. The symbol sequence SOME is never classified, and this is the
behaviour which we would expect, given its optional nature.

The combination of the various symbol classes in the grammar results in the inferred
UpWrite Predictor generalising to productions such as WEATEFAST and MARYWALKSLOWLY.

6.6.5 Text 5

The phrase-structure grammar shown in figure 6.20 was used by Wolff to create Text 5
and Text 6, with the exception that some of the productions were banned from Text 6, in
order to test the ability of the SNPR algorithm to generalise to productions unseen during
training [4]. We generated a training corpus 125342 bytes in length and a testing corpus
12458 bytes in length from this grammar.

Chapter 6. Experiments with the UpWrite Predictor 121

5 (MARY)

6 (RUN)

9 (FISH)

17 (FAST)

21 (THEY)

23 (THEYWALK)
24 (THEYRUN)
26 (SOME)

27 (MEAT)

28 (ATE)

32 (BOB)

35 (LIKES)

36 (SLOWLY)

37 (WE)

38 (WALK)

39 [THEYWALK|THEYRUN]
40 [FISH|MEAT]|
41 [MARY|BOB]
45 [FAST|SLOWLY|FISH|MEAT]
48 [ATE|LIKES]
50 [WE|MARY|BOB]

TABLE 6.9: A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.18, shown in the order of acquisition.

(1)(2)(3)[(4)(5)(6)

DAVID|JOHN

LOVES|HATED

MARY|SUSAN

WE|YOU

WALK|RUN

FAST|SLOWLY

Sample: JOHNLOVESMARYDAVIDHATEDMARYYOURUNSLOWLY ...

S UL W N
1111111

FIGURE 6.20: The phrase-structure grammar used to generate Text 5 and Text 6.

122 6.6. Evaluation on Quasi-English Data

The performance of the UpWrite Predictor on this data is shown in the plot of fig-
ure 6.21, and it can be seen that a fairly steady performance improvement occurs up until

the thirty-fourth iteration of the algorithm, at which point it levels off.

Average Information (bps)

0 5 10 15 20 25 30 35 40 45 50
Number of Iterations

FIGURE 6.21: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.20.

Some of the structure found by the UpWrite Predictor is listed in table 6.10, together
with the iteration in which it was found. It can be seen that the UpWrite Predictor
found ten of the twelve symbol sequences implicit in the data by iteration 36, and found
four correct symbol classes: [HATED|LOVES], [JOHN|DAVID|, [RUN|WALK| and [YOU|WE]. The
remaining two symbol classes weren’t discovered due to the fact that phrases were formed
from the symbol sequences which are members of these classes in iterations 40, 41, 47 and
49. Overall, the performance of the UpWrite Predictor on this example is very good, with
the result that the inferred UpWrite Predictor is capable of generating identical data to

the original grammar.

6.6.6 Text 6

Wolff formed Text 6 by removing all occurrences of the symbol sequences JOHNLOVESMARY
and WEWALKFAST from Text 5 [3]. We performed this modification on the training corpus
of the previous example, resulting in a new training corpus 111296 bytes in length. The
testing corpus remained untouched, enabling us to evaluate the ability of the UpWrite

Predictor to generalise to data unseen during training.

Chapter 6. Experiments with the UpWrite Predictor 123

4 (JOHN)

8 (HATED)

13 (DAVID)

16 (FAST)

19 (MARY)

22 (RUN)

31 (You)

32 (SUSAN)

34 (LOVES)

36 (SLOWLY)

37 [HATED|LOVES]

38 [JOHN|DAVID]

40 ([JOHN|DAVID][HATED|LOVES]SUSAN)
41 ([JOHN|DAVID][HATED|LOVES]|MARY)
42 (WALK)

43 (WE)

44 [RUN|WALK]

45 [YOU|WE]

47 ([YOU|WE][RUN|WALK]FAST)

([
49 ([YOU|WE][RUN|WALK]SLOWLY)

TABLE 6.10: A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.20, shown in the order of acquisition.

Figure 6.21 plots the performance of the UpWrite Predictor on this data. It can be
seen that performance improves less rapidly than in the previous example, and levels off
at a higher level than in the previous example. This is almost certainly due to the fact
that the UpWrite Predictor is supplied with more information by the testing corpus, which
contains symbol sequences unseen during training.

Some of the structure found by the UpWrite Predictor in this experiment is listed in
table 6.11. It is interesting to note that the symbol class [DAVID|JOHN] is formed fairly soon
after the symbol sequences (DAVID) and (JOHN) have been discovered by the algorithm.
The formation of this class enables the UpWrite Predictor to generalise to the symbol
sequence JOHNLOVESMARY, which was unseen during training, and the symbol sequence
found in iteration 54 embodies this ability to generalise.

Unfortunately the UpWrite Predictor forms no other symbol classes. All possible
phrases apart from WEWALKFAST and WEWALKSLOWLY are formed, meaning that the UpWrite
Predictor failed to generalise to the second symbol sequence which was unseen during
training. In fact, the absence of these two symbol sequences from the training corpus

hindered the acquisition of symbol classes significantly.

6.6.7 Text 7

The final text specified by Wolff was generated by the phrase-structure grammar shown in

figure 6.23, reproduced from [4], and has the property that the symbol sequence VERY may

124 6.6. Evaluation on Quasi-English Data

Average Information (bps)

04 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Number of Iterations

FIGURE 6.22: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on modified data generated by the phrase-structure grammar of figure 6.20.

7 (HATED)

10 (DAVID)

13 (JOHN)

16 [DAVID|JOHN]

17 (FAST)

21 (RUN)

22 (MARY)

53 ([DAVID|JOHN]|LOVESSUSAN)
54 ([DAVID|JOHN|LOVESMARY)
55 (SUSAN)

56 (SLOWLY)

57 ([DAVID|JOHN]HATEDSUSAN)
58 ([DAVID|JOHN|HATEDMARY)
63 (YOUWALKFAST)

64 (YOUWALKSLOWLY)

65 (YOURUNSLOWLY)

67 (YOURUNFAST)

68 (WERUNFAST)

69 (WERUNSLOWLY)

TABLE 6.11: A list of the structure found by the UpWrite Predictor on modified data
generated by the phrase-structure grammar of figure 6.20, shown in the order of acquisition.

Chapter 6. Experiments with the UpWrite Predictor 125

be repeated any number of times whenever the symbol class (2) is used in a production.
We generated a training corpus 150485 bytes in length and a testing corpus 14809 bytes

in length from this grammar.

(1)(2)3)(4)[(5)(6)(7)

A|THE

VERY|VERY(2)

FAST|SLOW

CAR|SHIP

SOME|FEW

LARGE|SMALL

MEN|BOOKS

Sample: SOMESMALLMENAVERYVERYSLOWSHIPTHEVERYFASTCAR ...

N O UU R W N o
11111111

FIGURE 6.23: The phrase-structure grammar used to generate Text 7.

The plot of the performance of the UpWrite Predictor shown in figure 6.24 exhibits
a rapid improvement over the first twenty iterations of the algorithm, after which perfor-

mance begins to slow, beginning to level off after the fiftieth iteration.

1.8 T T T T T T T

Average Information (bps)

0 10 20 30 40 50 60 70 80
Number of Iterations

FIGURE 6.24: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on data generated by the phrase-structure grammar of figure 6.23.

Table 6.12 lists some of the structure found by the UpWrite Predictor in this data.
The symbol sequence VERY is found first, and this is due to the fact that it is the most
frequently occurring symbol sequence in the data. In fact, the symbol sequence VERYVERY
is formed before the majority of the remaining symbol sequences in the data are discovered

by the algorithm.

126 6.6. Evaluation on Quasi-English Data

3 (VERY)

8 (BOOKS)

11 (CAR)

18 (MEN)

20 (VERYVERY)

23 (FAST)

2 (THE)

28 (FEW)

30 (FEWSMALL)

33 (FEWLARGE)

36 (LARGE)

37 (VERYFAST)

39 (VERYSLOW)

41 (VERYFASTSHIP)
42 (VERYFASTCAR)

43 (AVERYVERY)

47 (THEVERYVERY)

48 (VERYSLOWCAR)

50 (VERYSLOWSHIP)
51 (FEWLARGEMEN)

52 (FEWLARGEBOOKS)
55 (FASTCAR)

57 (FASTSHIP)

60 (FEWSMALLBOOKS)
61 (FEWSMALLMEN)

65 (THEVERYFASTSHIP)
66 (THEVERYFASTCAR)
67 (THEVERYSLOWSHIP)
68 (THEVERYSLOWCAR)

TABLE 6.12: A list of the structure found by the UpWrite Predictor on data generated by
the phrase-structure grammar of figure 6.23, shown in the order of acquisition.

Chapter 6. Experiments with the UpWrite Predictor 127

The UpWrite Predictor finds no symbol classes whatsoever in the data of this example,
and forms many phrases instead. This is due to the fact that forming a phrase which
contains the symbol sequence VERY is advantageous, as it provides extra context to the
UpWrite Predictor, enabling it to better predict which symbols are coming next. The fact
that the UpWrite Predictor was designed to discover hierarchical structure in data, and
not recursive structure, explains its poor performance in this example. However, we should
note that recursive structure of a sort may be discovered by the UpWrite Predictor by
forming symbol classes out of symbol sequences of different lengths, each of which consists

of a repetition of the same lower level symbol.

6.6.8 Discussion

The UpWrite Predictor performs reasonably well on the seven texts used by Wolff to evalu-
ate the performance of his SNPR algorithm. Lower level symbol sequences, corresponding
to words, and higher level symbol sequences, corresponding to phrases, are found by the al-
gorithm is all cases, while symbol classes tend to be found more readily when the grammar
used to generate the data is not ambiguous, and when sufficient training data is available.
This is the performance we expect to see, based upon the nature of the agglomeration al-
gorithm which is used in the UpWrite Predictor to form symbol classes. The performance
of the UpWrite Predictor would be improved in these circumstances if contextually depen-
dent symbol classes were found by the algorithm, or if methods based upon the insights
into the classification problem given in the previous chapter were incorporated. We would
be interested in pursuing such work in the future.

The performance of the UpWrite Predictor was occasionally hindered by the fact that
structure formed early on in the process, such as the [L|B] symbol class shown in table 6.7
and the (JOHNLIKES) symbol sequence shown in table 6.8, prevented the acquisition of
more useful structure at a later stage. The performance of the UpWrite Predictor would
be improved in such situations by introducing a more sophisticated method of using the
feedback mechanism to detect and correct erroneous UpWrites.

We have deliberately avoided a direct comparison with the results of Wolff in this
section, as in the absence of an objective performance criterion such comparisons would
be futile.

6.7 Performance on Natural Language Text

Unfortunately we have not had the opportunity to infer an UpWrite Predictor from a large
corpus of natural language text—the inference process is far too expensive in terms of both
memory requirements and processing requirements to enable a thorough examination of
its performance on natural language. However, we have performed experiments with small
natural language corpora, and we present the results of applying the UpWrite technique

to natural language text in this section.

128 6.7. Performance on Natural Language Text

A testing corpus was created from the first 99983 bytes of the Sherlock corpus, and a
training corpus was created from the 1000034 bytes which followed. We plot the perfor-
mance of the UpWrite Predictor inferred from the training corpus and evaluated on the
testing corpus in figure 6.25, together with the performance of 2" and 3™ -order Markov

models inferred from and evaluated on the same data.

| | I I UpV\IIrite Predictor I
Order 2 Markov Model -------
34 Order 3 Markov Model -------- b
32 | |
w
o
=
c
8
IS 3F |
E
]
k=
Q
g
o 2.8 - N
<
26 |
2.4 ! 1 | . | |
0 200 400 600 800 1000 1200

Number of Iterations

FIGURE 6.25: The performance of the UpWrite Predictor at the end of each iteration as
evaluated on natural language text.

After 1205 iterations, the performance of the UpWrite Predictor was 27% better than
its performance prior to the first iteration, at which stage it was equivalent to a 1%/
order Markov model. At iteration 415 of the algorithm, the performance of the 1*'—order
UpWrite Predictor exceeded that of the 2" —order Markov model, and by iteration 1205,
the performance of the UpWrite Predictor was a mere 0.8% worse than the performance
of the 3" -order Markov model.

By this stage of the process, the UpWrite Predictor had discovered symbol sequences
such as (SherlockAHolmes), (Watson), (,"AsaidAHolmes.) and (andAthe), as well as
symbol sequences corresponding to frequently occurring English words. A small number
of symbol classes, such as [This|Then|But] were also discovered by the algorithm, but these
tended to be in the minority. We have generally found that symbol classes are only formed
once no common symbol sequences remain to be found, and the algorithm was not iterated
sufficiently to uncover all common symbol sequences in the data.

The fact that a 1**—order Markov model which makes predictions about an UpWritten

version of natural language text almost reaches the performance of a standard 3™-order

Chapter 6. Experiments with the UpWrite Predictor 129

Markov model suggests that the UpWrite is beneficial, and that the structure found by
the UpWrite Predictor is useful in practice.

6.8 UpWriting and DownWriting

The UpWrite Predictor constructs a hierarchical representation of the data which it is
inferred from, and this high level representation may be DownWritten to produce an ap-
proximation to the original data. This ability to DownWrite the data may be necessary
in some applications, such as that of data compression, and we also find that the Down-
Written form of the data provides a useful indication of the performance of the UpWrite
Predictor, as it enables us to examine the structure extracted from the original data by
eye.

A word-level 1%'~order UpWrite Predictor was inferred from the training corpus of the
previous example. Symbols were formed from words rather than characters to expedite
the formation of symbol classes. The UpWritten form of the testing corpus created by the
UpWrite Predictor was DownWritten, after 42 iterations of the algorithm, in five different
ways.*> Five different DownWritten versions of the first two sentences of the testing corpus
are shown in figures 6.26 to 6.30. The original versions of these two sentences may be seen
in figure 1.1, as they are identical to the first two sentences of the Test portion of the
Sherlock corpus.

Figure 6.26 shows the DownWritten version of the data which was assigned the highest
probability by the UpWrite Predictor. It bears a strong resemblance to the original data,
with the exception that the symbols she, is, him and under have been replaced with the
symbols he, was, me and on. This changes the meaning of the original data significantly,
and corresponds to the output which we would expect to see if a lossy data compressor
was implemented using the UpWrite Predictor.

Figure 6.27 shows the least probable DownWritten version of the original data, ac-
cording to the UpWrite Predictor. The resulting data is ungrammatical, although the
resemblance to the original data is still obvious, as many of the words have remained
unchanged. We also note that the data is considerably longer than the most probable
DownWrite, and this is due to the fact that symbols such as the have been replaced with
symbol sequences such as to from of the.

A similar DownWritten form of the original data is shown in figure 6.28, in which we
illustrate the longest DownWrite. This was produced by selecting, at each stage of the
DownWrite, the longest possible lower level symbol, and it results in data which is highly
ungrammatical due to the fact that the UpWritten versions of single words have been
DownWritten to long symbol sequences.

The opposite effect may be created by selecting, at each stage of the DownWrite, the
lower level symbols which are shorter than any other, and the results of doing this are

shown in figure 6.29. This DownWritten version of the original data is very similar to

130 6.8. UpWriting and DownWriting

To Sherlock Holmes he was always the woman. T have seldom heard me
mention her on any other name.

FIGURE 6.26: The most probable DownWritten form of the first two sentences of the
Sherlock corpus.

To Sherlock Holmes who it is always to from of the woman but I had
seldom heard myself mention her under any other name.

FIGURE 6.27: The least probable DownWritten form of the first two sentences of the
Sherlock corpus.

To Sherlock Holmes she it was always to with of the woman, and I have
seldom heard myself mention her through any other name.

FIGURE 6.28: The longest DownWritten form of the first two sentences of the Sherlock
corpus.

To Sherlock Holmes he is always a woman. I had seldom heard me
mention her on any other name.

FIGURE 6.29: The shortest DownWritten form of the first two sentences of the Sherlock
corpus.

To Sherlock Holmes she was always to from the woman, and I have
seldom heard us mention her by any other name.

FIGURE 6.30: A random DownWritten form of the first two sentences of the Sherlock
corpus.

Chapter 6. Experiments with the UpWrite Predictor 131

the most probable DownWrite, and is quite grammatical, even though the meaning of the
original data has been drastically altered in the process.

One of the many hundreds of possible DownWritten forms of the data are shown in
figure 6.30. The process used to form this data may be thought of, in a very imprecise way,
as one of abstracting the original data, and then using the UpWrite Predictor to generate
data at random after constraining this generation with the abstracted form of the original
data.

One property of all of the five DownWritten forms shown in this section is that they
all have the same higher level representation with respect to the UpWrite Predictor. This
property of the UpWrite Predictor may be of use in may different natural language appli-
cations, such as that of providing a natural language front-end to an online search engine,
as it enables us to abstract the exact form of the text entered by the user, and, ideally,
it would enable us to cluster these high level forms into groups of queries which represent

the same concept.

6.9 Generations

One way of getting an intuitive feel for the performance of a predictive model is to use it
generatively, and eye-ball the data which results. In figures 6.31 to 6.35 we give examples
of data generated by character-level Markov models of orders 0, 1, 2, 3 and 8. In all
cases, the Markov models were inferred from the entire Sherlock corpus. Note that the
resemblance to English text increases as the order of the model is increased, with many
common English words appearing in the generated data of figure 6.34, and many valid
English phrases appearing in the generated data of figure 6.35.

Other authors, including Claude Shannon in his classic paper “The Mathematical
Theory of Communication” [2], and Timothy Bell, John Cleary and Ian Witten in their
book on text compression [1], have generated data in similar ways in order to illustrate
the ability of finite context models to model English text.

In the next chapter we shall be showing how the predictions made by Markov models
of orders 0, 1, 2 and 3 may be smoothed together, and used in a data compression system.
The fact that such a system works may be attributed to the ability of the 3" —order Markov
model to capture some salient features of English text, and this much is obvious following
an examination of the generated data of figure 6.34.

The UpWrite Predictor is based on a 1*!-order Markov model, and the data generated
by the UpWrite Predictor prior to incorporating any higher level structure is similar to
that shown in figure 6.32. As the UpWrite Predictor is iterated, however, the data which it
generates will change in form, to reflect the higher level structure which has been found by
the algorithm and used to UpWrite the data from which the predictive model is inferred.
In figures 6.36 to 6.40 we give examples of data generated by an UpWrite Predictor inferred

from the entire Sherlock corpus.

132 6.9. Generations

itndnf nltinmkttncgta atb ttu riodqgiiensthef hece,t il ti ol-
Wdet.ynelbs.adstet rwnt su kn myyltitrtin t elTocienmahaa”liey
olee.h f tpdv eieetqaM e gevgl ih ee b”eotWod iehrhosgie tfleo r
rnstbuunTbt 1t” tsalw aoeed asbinhno d p ehm tkesuto shneoereqdhlelht
jietromsDfesekhslaeh?y tt” y.tdoon eh di ioa,etf,n sa utiets ee tvdiia etie
hrit loes i wmsd oheilau 1 i n enb. s e mtrdaw nttot bsctne ep dtauar P

FIGURE 6.31: A portion of data generated by a Markov model of order 0.

thitwarder asy hen Id aling mat Jomabal f thitheseng Yer. fek I ikitrevo a
Wis thadis t h 1 me impesougist moums taye hand’s micass y isingrnde
y. t int allw s inkeve w heathooriten athatir en deanours. mappstre.
blllllavinghan yof aid fr ts k cerrendico qun uratisa wa my th d t ng Pr
winemeearaneveng Thongexpr.” Golulinamanouimak s bow whevare nd
tuthen lie lerppachie tared Hea s way pir g nlitheneanorehiase Mr s bup

FIGURE 6.32: A portion of data generated by a Markov model of order 1.

sprow in my upontlight the moose go. ”hed pappen therfe, my yeat
shishis fromen wity ell wo aftersearledaylithes.” atte king the whis get
reary as lifin ey st res, a light-pece mooralwas St. Ther. I es, ack he a
wourrivis fored your wassures yound the my a the hich hinforrind yone
soureas opply rone,” henight thise kend then ally he dow ot you not
morknowlebblew ennotervers. ”He noccia wor wou?” ”So could lingreflo

FIGURE 6.33: A portion of data generated by a Markov model of order 2.

”What need-ever to descover here this hall ther Chard to Know,” safe,”
said his of the his? Mould he sunk the is on the way booke narrible
whichmenter ching,” head a get in that hiddless?” ”"Take as I had plas
no and him of the bar, there corone have you neast to seal said he ming
three he savague! Do you have asked my line one heap at end, hough.
And so is connel absolumblack expectorman paulty, throught the othese

FIGURE 6.34: A portion of data generated by a Markov model of order 3.

Most of the unused ticket has been married forward of that Colonel
Upwood in conclusions to the detectives from the bedroom. For myself, I
thought arranged for a movements. I had to take advantage of emaciated
figure was a wild suspicious death. She had sat down the papers in
my delight. ” You may remember, Monday last year?” ”Two thousand-
pound box of which I wish you simply impossible!” cried the impression

FIGURE 6.35: A portion of data generated by a Markov model of order 8.

Chapter 6. Experiments with the UpWrite Predictor 133

tesanck ay sl had beeere setles. There if I have dl omearame wousthe
ut we the fenl omed mitcovering te-sts nd s.” Sho vachar man. He
had hapeth!” searit, before he make teventittepanoof the pld may der,
the ft here.” That is tolly chancex.” ”Only for bloptererame, acesthe
houseseeching which pof the scl centhing which hapon where in his hale
th where had sounotia owashould sshareco forwhend man lake acts.

FIGURE 6.36: Data generated by the UpWrite Predictor after 200 iterations.

Lorse tane ngid was ces.” ”Mean her sargesatotid ever m, w gaked ltaled
had sped by ale weven a a my fait.” ”Insisawitapums doing ave it.”
”Yes; but nenden. Her Ke, you do tsut thesere nof aft olandevile sen
capaiangind bet, Midealo dark a interesthes my o art this sllaso the pt
scover ste gink by the fas. What o ure the nhaps mar, as you sthing sit
il ulteles could ns anthing mosan; form o that he id that toupe in the

FIGURE 6.37: Data generated by the UpWrite Predictor after 400 iterations.

so ple, and with his ainanger a sonild me have not heard the bore ctthing
which was the w paremore that had ts rn?” ””t, and he twraplas, and sor
Steverto lathing which one ok tight think that you of them it horing. I
pplar of Ked his cion, side, for lean and dow, alowo od sant teperhapply
22d whot ame. STul, behining befadeare seen you,” said the dily this
mored. It is thy pill. I bring mbefore your clike a dage ft was the sus.

FIGURE 6.38: Data generated by the UpWrite Predictor after 600 iterations.

He tat dear sed me for a bookince were am I had givant. ”It was sonsile”]
save am dur whoth, as I inted Roberghrough tris, to say than you.” "1
ach to pustill. The Hall you, ther in the with an inted they care to
prgnatime ffels cy of moment in the man, make yet you an - would
kinshe tlene soctioseconves reds my more than Sherlock Holmes casions
to wopetrousene of wn hour from Mrs. Hencentre and wondeferend

FIGURE 6.39: Data generated by the UpWrite Predictor after 800 iterations.

do not in the eletely at the first note in is nothing of For in your hair,
Watson! Godget of the tlances Mr. He’s ink-cl?” ”The ses muchying!
This about Grun to she would hardly be hoprightly visized glookso son
that up in the doingle in my find-gun to resh he could find that you but
unny our very kind. This could reater which led er in his beach was no
silebject the cowr.” Se, when the young Murn only one by this ushed

FIGURE 6.40: Data generated by the UpWrite Predictor after 1000 iterations.

134 6.10. Summary and Conclusion

In figure 6.36 we observe that the generated data contains many frequently occurring
English words, with the result that the generated data appears to be more similar to that
of a 2" —order Markov model than that of a 15*~order Markov model. Sequences such as
Sherlock Holmes appear in the generated data of figure 6.39, and this is indicative of the
fact that long symbol sequences have been discovered by the UpWrite Predictor. After
1000 iterations of the algorithm, the generated data, as shown in figure 6.40, appears to be
very similar to that generated by a 3" —order Markov model. This is to be expected, as we
have previously shown that the performance of a 1%~order UpWrite Predictor approaches

that of a 3" -order Markov model as the number of iterations of the algorithm is increased.

6.10 Summary and Conclusion

In this chapter we have performed various experiments with the UpWrite Predictor, both
on artificial data generated by simple phrase-structure grammars and on relatively small
natural language corpora. It has been demonstrated that the UpWrite Predictor is ca-
pable of acquiring symbol sequences and symbol classes which correspond very closely to
those inherent in the data generated by simple phrase-structure grammars, particularly in
situations where ambiguous symbol classes are not present in the grammar. Performance
on natural language text is also improved by the incorporation of higher level, and exam-
ination of the data generated by DownWriting and generating reveals that the structure

discovered by the UpWrite Predictor in natural language text seem to be quite reasonable.

Notes

42 The symbol sequence XX is only ever followed by the symbol X in the UpWritten data.

43 This is due to the fact that whatever follows the symbol X in the data will also follow
the symbol sequence XXX in the UpWritten data.

44 These symbol sequences are ambiguous because the symbol sequences IT and HE

appear in generations which contain the ambiguous symbol sequence THEM.

45 Recall that a stochastic symbol class is DownWritten by selecting one of its members

at random, according to the probability distribution over the class.

References

[1] Timothy C. Bell, John G. Cleary, and Ian H. Witten. Tezt Compression. Prentice
Hall, 1990.

References 135

[2] Claude E. Shannon and Warren Weaver. The Mathematical theory of Communication.
University of Illinois Press, 1949.

[3] J. G. Wolff. An algorithm for the segmentation of an artificial language analogue.
British Journal of Psychology, 66(1):79-90, 1975.

[4] J. Gerard Wolff. Language acquisition, data compression and generalization. Language
& Communication, 2(1):57-89, 1982.

Chapter 7

Data Compression

“Take the message also, Watson, that we may check each other.
A single flash—that is A, surely. Now, then. How many did you
make it? Twenty. So did I. That should mean T. AT—that’s

intelligible enough! Another T. Surely this is the beginning of a

second word.”

His Last Bow
SiR ARTHUR CONAN DOYLE

7.1 Introduction

46 is an algorithm for encoding data such that the encoded representa-

A data compressor
tion of the data occupies less space, and may therefore be transmitted more efficiently.*”
Of course, it is not possible to design a data compressor which is capable of compressing
arbitrary data; all data compressors are equally bad when results are averaged over all
possible data. Rather, it is desirable to develop data compressors which perform well on
a particular type of data, such as natural language text or image files.

The “modern paradigm” of data compression involves separating the compression pro-
cess into two components: modelling and coding. Adaptive predictive models are used to
make a prediction about the next symbol in the data being compressed, and arithmetic
coding is then applied to encode the symbol which actually occurs next with respect to
this prediction. Designing good data compressors therefore becomes a problem of design-
ing good predictive models. The fact that a data compressor must necessarily make few
assumptions about the data, and must perform well across all the data in some domain,

means that data compression is in fact an ideal test-bed for predictive modelling.

7.1.1 Overview

In this chapter we give a brief history of the field of data compression, during which we

describe the process of arithmetic coding. The data compression method of Prediction

138 7.2. A Compressed History

by Partial Matching, or PPM, is then presented, and we proceed to introduce various
novel modifications and additions to the ad hoc techniques typically used by PPM data
compressors to improve their compression performance. Finally, we describe how the

UpWrite Predictor may be applied to the data compression problem.

7.2 A Compressed History

It seems that no matter how inexpensive storage space becomes, people will always be
interested in using data compressors to make better use of that space. The growing pop-
ularity of the Internet has meant that data compression has become more important than
ever—modern modems which operate over a telephone connection have low bandwidth,
and downloading any reasonably sized file over such a channel takes a considerable amount
of time. Data compression is therefore an important area of research, and is as old as data

storage and transmission themselves.

7.2.1 Origins of Compression

The Zipfian relationship between word length and word frequency in natural languages
is evidently a result of a compression process during language evolution [33]. We have
a tendency to favour acronyms and clichés for similar reasons; doing so expedites the
transmission of ideas from our brain to someone else’s.

Text compression has been used whenever storage space is expensive, as was the case
in ancient Greece, where precious papyrus was made best use of by writing texts devoid
of punctuation and whitespace, with the result that the time taken to read the texts was
increased [26].

Louis Braille developed a system in the 1820’s which allowed blind people to read by
passing their fingers across a sheet of paper embossed with a sequence of cells, each of
which contained a pattern constructed from a small grid of six dots. Because each of these
cells required the same space as ten printed characters, and because a grid of six dots gives
64 possible cell patterns, the patterns which remained after the letters of the alphabet and
the digits had been encoded were used to represent common words and letter groups [5].

In 1835 Samuel Morse developed the Morse code, which makes use of dots and dashes
to represent letters, numerals and punctuation. He designed the code such that frequent
letters, such as ‘e’, were given less code space than infrequent letters, such as ‘x’. In Morse
code, an ‘e’ is encoded with a single dot, while an ‘x’ is encoded as a dash, followed by
two dots and another dash, meaning that it takes eight times longer to transmit an ’x’ as
it does an ’¢’, as the length of a dash is equivalent to the length of three dots [5].

Modern compression systems emerged with the development of the digital computer.
Perhaps the most well-known of these is the algorithm devised by Ziv and Lempel, variants
of which are used in computer programs such as zip and compress, and as part of the
GIF file format [34,35].

Chapter 7. Data Compression 139

7.2.2 Statistical Compression Versus Dictionary Compression

Approaches to text compression may be roughly divided into two classes: dictionary tech-

niques and statistical techniques.

Dictionary techniques work by substituting a small code for a longer sequence which
occurs frequently in the data being compressed. The Braille system is an example of a
dictionary technique; each letter is allotted the same code length, but frequently occurring
combinations of letters are allotted smaller codes. Dictionary compressors tend to be quite
fast.

Statistical techniques work slightly differently; each symbol is allotted a code length
such that the code length of any symbol multiplied by its frequency is roughly constant.
Morse code uses statistical compression by assigning a shorter code to the more frequent

letters.

Bell, Cleary and Witten have shown that dictionary methods cannot be more powerful
than statistical methods. They demonstrated this by specifying an algorithm which is able
to convert an arbitrary dictionary encoder to a statistical encoder which achieves exactly

the same compression [5].

7.2.3 Static, Semi-Adaptive and Adaptive Compression

Compression techniques are only of value if the decompressor is aware of the coding sys-
tem used. This necessitates transmission of the coding system, and this overhead may
outweigh the advantages of compressing the data to begin with. There are two ways of
surmounting this problem: either develop a coding system which is independent of the
data being transmitted, or make the coding system implicit in the encoded data itself. We
can therefore divide compression techniques into three classes: static, semi-adaptive and

adaptive.

Static techniques work by establishing a coding system and sticking to it, no matter
how inappropriate it is to the data being encoded. Both the Braille system and Morse

code are examples of static techniques.

Semi- Adaptive techniques adapt the coding system to the data being compressed, and
transmit the coding system prior to transmitting the data. In many cases the cost of

transmitting the coding system means that the semi-adaptive technique is not worthwhile.

Adaptive techniques work by encoding the data on the fly, even as it is being trans-
mitted. In these techniques, the transmitter and the receiver must agree on a system for

determining what the codes are from the data transmitted thus far.

It has been shown that adaptive modelling sacrifices little in the way of compression by

restricting itself to only the symbols transmitted thus far, rather than the entire data [5].

140 7.2. A Compressed History

7.2.4 Lossy or Lossless Compression

Data compression may be lossless, meaning that the original data is restored perfectly
by the decompressor, or lossy, in which case a reasonable approximation to the data is
produced. What constitutes a reasonable approximation is obviously determined by the
consumer of the data; it is difficult to imagine anyone being satisfied with a reasonable
approximation to a novel which they wish to read if this meant that the protagonist’s name
was varied at random,*® while a reasonable approximation to an image which contains a
lot of skin-tones and little else may be perfectly acceptable to some, especially if it halves

the download time.

7.2.5 Huffman Coding

Statistical data compressors work by estimating the probability of each symbol in the
data being compressed, and then encoding these symbols as efficiently as possible. In
1952, shortly after Shannon’s work on Information Theory, David Huffman devised a
method for constructing efficient codes [17], and the Huffman coding algorithm proceeds

as follows.

e Create a set of all possible messages,*? and associate a probability with each of the

messages in the set;

e Remove the two least probable messages from this set, choosing arbitrarily if there
are more than two such messages, and add the result of concatenating this pair to
the set as a new message, with a probability equal to the sum of the probabilities of

the two original messages;

e Continue this process until a single message remains in the set, and represent the

sequence of operations used to form this set as a binary tree;

e Assign codewords to each node of the binary tree such that the shortest codewords
are assigned to the most probable messages, and that the codewords satisfy the
property that no codeword is a prefix of any other. This later requirement ensures

that any given string of codewords is uniquely decodable.

The Huffman coding algorithm creates a prefix code for each message in the original set
by traversing the binary tree from the root to the node which corresponds to the message

being coded, emitting a 0 if a left branch is taken and a 1 if a right branch is taken.?°

Example 7.1. Consider the set of messages L = {4,B,C,D,E} with associated probabilities
0.25, 0.25, 0.2, 0.15 and 0.15. The binary tree formed by the Huffman coding algorithm is
tllustrated in figure 7.1, and the resulting codewords are shown in table 7.1. The average
code length is 2.30 bits per message, slightly more than the theoretical optimal length of
2.29 bits per message.

Chapter 7. Data Compression 141

A D E B C
0.25 0.15 0.15 0.25 0.2

<D, E>
0.3 <B, &
0.45
<A, <D, E>>

0.55

FIGURE 7.1: The binary tree formed from the messages of example 7.1 by the Huffman
coding algorithm.

Message ‘ Codeword ‘

A 00
B 10
C 11
D 010
E 011

TABLE 7.1: The codewords assigned to the messages of example 7.1 by the Huffman coding
algorithm.

142 7.2. A Compressed History

Encoding a message using Huffman coding would appear to require an enumeration
of all possible messages in order to determine the code for the particular message we
are interested in—a seemingly impossible task. Traditionally, therefore, Huffman coding
has been used to encode each symbol in the message individually, and the fact that each
symbol z; cannot be encoded in exactly —log, P(z;) bits, unless P(z;) is a power of 1,

means that the entire message is encoded sub-optimally.

This problem can be alleviated somewhat by expressing the message as a symbolic
time series of blocks b;, each of which is a substring of n symbols, such that b; =
(Tni—nt1s--- sTni) and P(b;) = H;im-fnﬂ P(zj), and encoding each block using the Huff-
man coding algorithm. This approach, known as block coding, is optimal, and equivalent
to performing Huffman coding on the entire message by enumerating all messages, as

n — 00.

7.2.6 Arithmetic Coding

Arithmetic coding emerged in the late 1970’s as a result of work by Mauro Guazzo, Frank
Rubin and Rissanen and Langdon [15, 21, 22], the origins of which, according to Bell,
Cleary and Witten [5], lie in work by Peter Elias in the 1960’s [5]. Arithmetic coding
solves the encoding problem; it is a technique which enables a message to be encoded
very nearly optimally, in a way which is theoretically similar to enumerative Huffman
coding, its main power being a method of sequentially constructing the codeword without
having to enumerate all possible messages first. Many authors have published efficient
computational implementations of the algorithm; Alistair Moffat, Radford Neal and Tan

Witten’s implementation being one of the most recent [20].

In theory, arithmetic coding operates by partitioning the unit interval [0,1), assigning
every possible message m; to a sub-interval such that the size of the sub-interval corre-
sponding to message m; is equal to P(m;). The message m; may then be encoded by
expressing the corresponding sub-interval in an unambiguous way, allowing the decoder
to locate it after partitioning the unit interval in an identical process. Compression is
achieved when the sub-interval is specified with the minimum necessary precision to dis-

ambiguate it from other sub-intervals.

Example 7.2. Consider the diagram of figure 7.2 which illustrates the partitioning of the
unit interval in accordance with the probabilities of the set of messages of the previous
example. Message C corresponds to the sub-interval [0.5,0.7), and may be encoded by

identifying this sub-interval by emitting any number which falls within it; 0.6 for example.

Chapter 7. Data Compression 143

FIGURE 7.2: The unit interval is partitioned into one sub-interval for each message, with
the size of a sub-interval determined by the probability of the message.

When encoding symbolic time series the unit interval is partitioned iteratively accord-

ing to the following steps.

1. Make the unit interval the currently selected interval.

2. Partition the currently selected interval into sub-intervals, each of which corresponds
to some symbol from A, such that the size of each sub-interval is proportional to the

probability of the symbol to which it corresponds.

3. Make the sub-interval which corresponds to the current symbol z; the currently

selected sub-interval.
4. Repeat from step 2 until all the symbols x; in the data have been used.

5. Emit a codeword which uniquely identifies the currently selected sub-interval.

Example 7.3. Figure 7.3 shows the progressive division of the unit interval via the arith-
metic coding algorithm according to the message CAB, with the symbol probabilities given in
example 7.1. The message itself may be encoded as any number in the range [0.5125,0.525),
and 0.52 would be a sensible choice, owing to the fact that arithmetic coding achieves com-
pression by specifying the sub-interval which corresponds to the message with the minimal
acceptable precision. In this case, the message may be encoded using two decimal digits
(the zero and the decimal point are redundant as each possible message will be encoded

with a number € [0,1)), resulting in compression.

We refrain from discussing the computational implementation of arithmetic coding,
suffice it to say that techniques do exist for progressively transmitting the sub-interval
which corresponds to the message being encoded using fixed-precision arithmetic. Also,
it is important for us to point out that we do not actually use arithmetic coding in the
experiments which follow, as it is apparent that the average information supplied to the
predictive model by the data being compressed, as defined in equation 2.6, sufficiently
approximates the compression performance which would be achieved by a system which

incorporated an arithmetic coder.

7.2.7 Ziv-Lempel Compression

Jacob Ziv and Abraham Lempel introduced what is now known as the Ziv-Lempel family of

data compressors in two landmark papers published in 1977 and 1978 [34,35]. Ziv-Lempel

144 7.2. A Compressed History

1 0.7] 055 | 0525 |
E E E E
D D D D
C C C C
B B B B
A A A A

0_1 05 1 05 _L 05125 [

FIGURE 7.3: The unit interval is progressively partitioned according to the symbol se-
quence C,A,B.

compression works by replacing repeated substrings in the data being compressed with a
pointer into an adaptive dictionary. Compression is achieved when the encoded versions
of these pointers occupy less space than the strings which they reference. Decompression

is trivial; each pointer is simply replaced with the string which it references.

Many variations of the original Ziv-Lempel algorithm exist, which is why we refer
to a family of data compressors, and these variants differ mainly in the way the adaptive
dictionary is specified, and the way the pointer into the dictionary is encoded. Well-known
members of the Ziv-Lempel family of compressors are LZ77, LZ78 and LZW; these and
many more are discussed in “Text Compression”, by Bell, Cleary and Witten [5]. We shall

present the LZ77 algorithm in this section.

LZ77 works by maintaining a sliding window over the data being encoded. This win-
dow, which contains N symbols, is divided into a look-ahead buffer of F' symbols which
are yet to be encoded, and a history buffer of N — F' symbols which have already been
encoded. A commonly used value of N is 8192 symbols. The adaptive dictionary consists
of all possible substrings in the sliding window which are no more than F symbols in
length, and which begin in the history buffer. An interesting property of the LZ77 com-
pressor is that these substrings may overlap the look-ahead buffer. At the beginning of
the compression process, the history buffer is initialised with some predetermined symbol

sequence.

Chapter 7. Data Compression 145

Example 7.4. Consider figure 7.4, which shows a sliding window of length N = 22, with
a look-ahead buffer of length N =T7.

M O
%?BW{THEACATASATAONA THEAMAT]

History Buffer L ook-ahead Buffer

Message In

FIGURE 7.4: A Ziv-Lempel data compressor replaces a repeated substring with a pointer
into a recent history buffer.

Encoding proceeds by finding the longest string in the adaptive dictionary which
matches the prefix string of the look-ahead buffer—this is equivalent to finding the longest
matching string in the sliding window which begins in the history buffer—and encoding
the prefix string as a triple (i,7,a), where i is an offset from the beginning of the look-
ahead buffer back into the history buffer to the beginning of the matched string, j is the
length of the matched string, and « is the first character in the history buffer which was
not matched. The inclusion of a non-matching character in this triple ensures that encod-
ing is possible in situations where no matching string was found. After the prefix string
has been encoded, the sliding window is advanced by the number of characters encoded,

and the process is repeated.

Example 7.5. In figure 7.4, the longest string in the history buffer which matches the
prefix string of the look-ahead buffer is THEN, and the prefix string of the look-ahead buffer
is therefore encoded as the triple (15,4, M).

Ziv-Lempel compressors work because [5]

e common words and morphemes occur with regularity in natural language text;

e specialist words, such as proper names in newspaper articles, tend to occur in sudden

bursts;
e less common words are often made up of fragments of more common words; and

e run-length encoding is handled implicitly due to the fact that the matching substring

may overlap the look-ahead buffer.

Ziv-Lempel compressors exhibit moderate compression performance, and their main
advantage is that they are very quick. Many popular data compression programs, such as

zip and compress, use variants of the Ziv-Lempel technique.

146 7.2. A Compressed History

7.2.8 Burrows-Wheeler Compression

The block-sorting data compression algorithm was discovered by David Wheeler in 1983,
and was introduced by Burrows and Wheeler in 1994 [9]. It achieves compression perfor-
mance comparable with the best statistical data compressors at speeds comparable with
the Ziv-Lempel family of data compressors.

Burrows-Wheeler compression works by applying a reversible transformation to the
data being compressed such that the transformed version of the data exhibits the property
that a particular symbol is likely to reappear if it has been observed recently, and is
unlikely to appear otherwise. This property makes the transformed data perfectly suited
to move-to-front encoding, and compression is achieved when the output of the move-to-
front encoder is encoded via Huffman coding or arithmetic coding.

The block-sorting transformation works by forming a z x z matrix of all possible cyclic
shifts of the data s,, sorted lexigraphically. The transformed version of s, is equal to the

sequence of suffix symbols in column z of this matrix.

Example 7.6. Consider figure 7.5, which shows the matrixz formed by the block-sorting
algorithm for the data s, =THENCATASATAONATHEAMAT. Row 20 of the matriz, indicated
with arrows in the figure, contains the original data s,. The transformed version of s,
corresponds to the sequence of symbols EETTNSCMAHHTTAONNAATAA in column z of this

matriz.

ACATASATAONATHEAMATTHE
AMATTHEACATASATAONATHE
AONATHEAMATTHEACATASAT
ASATAONATHEAMATTHEACAT
ATHEAMATTHEACATASATAON
ATAONATHEAMATTHEACATAS
ATASATAONATHEAMATTHEAC
ATTHEACATASATAONATHEAM
CATASATAONATHEAMATTHEA
EACATASATAONATHEAMATTH
EAMATTHEACATASATAONATH
HEACATASATAONATHEAMATT
HEAMATTHEACATASATAONAT
MATTHEACATASATAONATHEA
NATHEAMATTHEACATASATAO
ONATHEAMATTHEACATASATA
SATAONATHEAMATTHEACATA
TAONATHEAMATTHEACATASA
TASATAONATHEAMATTHEACA
— THEACATASATAONATHEAMAT <
THEAMATTHEACATASATAONA
TTHEACATASATAONATHEAMA

FI1GURE 7.5: The block-sorting transformation matrix.

Chapter 7. Data Compression 147

A fascinating property of the block-sorting transformation is that the reverse transfor-
mation can be performed as long as the row of the matrix in which s, appears is known.
The reverse transformation proceeds as follows. The symbols z1,...,z,, which appear
in the transformed version of s, received and decoded by the decompressor, are sorted
alphabetically. Since the transformed version of s, corresponds to column z of the matrix,
and the sorted version of the transformed version of s, corresponds to the first column of
the matrix, we have recovered the first and last columns of the matrix. The remaining
columns are recovered as follows. Consider a row in the matrix z1,... ,z,, where z; and
z, are known, but the symbols zs, ... ,z,_1 are unknown, and where this row is the i row
of the matrix which begins with the symbol 1. The identity of xo may be recovered by
finding the i** row of the matrix yi, ... ,y, which ends with the symbol y, = z;, and then
setting 2o = y;. This process may be generalised in order to reconstruct the entire matrix,
after which original data s, may be recovered, as it is known in which row of the matrix

it appears.

Example 7.7. Consider the transformed version of s, of the previous example. The
sorted version of this is ANANNNAAACEEHHMNOSTTTTT, and is apparent that this is equal
to the first column of the matrixz of figure 7.5. Row 20 of the matriz, marked with arrows
in the figure, begins with the T symbol, and is the third row of the matriz to do so. Row
12 of the matrixz is the third row which ends with o T, and it begins with an H. Therefore
the H symbol follows the T symbol of row 20.

We have shown that the block-sorting transformation is reversible. We shall now
consider how the transformed string may be encoded efficiently. The transformed string
has the property that recently occurring symbols tend to recur, and this property is ideally
suited to move-to-front encoding.

Move-to-front encoding maintains an adaptive list of symbols, which begins in some
predetermined state. A symbol is encoded efficiently by its position in the list, allocating
less code-space to symbols which are near the front of the list, and Huffman coding may
be used to achieve this. After a symbol has been encoded, it is moved to the front of
the list, so that it will be encoded efficiently should it recur. Peter Fenwick has pointed
out that the output of the move-to-front encoder is equivalent to the coding of sentences
given in Shannon’s 1951 paper [13,23]. That is, move-to-front encoding is equivalent to
the Shannon Game, in that the order of symbols in the adaptive list maintained by the
encoder may be considered to be an ordered list of predictions of what the next symbol
in the data is going to be.

Block-sorting data compression performs almost as well as less computationally effi-
cient statistical data compressors, and it has been shown that block-sorting is equivalent to
a PPM model with unbounded context lengths [10]. However, in the case of block-sorting
data compression, the contexts follow the symbol being compressed. The algorithm effec-
tively predicts which symbol is coming before the current context. The fact that perfor-

mance is very nearly equivalent to that of PPM compressors suggests that the Markovian

148 7.2. A Compressed History

assumption made by the Markov models used in PPM compressors is as arbitrary as was

suggested in chapter 3.

7.2.9 Statistical Compression

The so-called “modern paradigm” of data compression is based around a predictive model,
and avoids the overhead associated with transmitting this model explicitly by inferring
it adaptively from the data being compressed, ensuring that the decompressor is able to
construct an identical model as it decodes the data it receives [5].

Figure 7.6 is a block diagram of such a system. This diagram is conceptually similar

to that given by Shannon in his 1951 paper [23].

History) . History
— 1 Predictor Predictor [~

Data

uoioIpaid
UOIIPI

Data

Channdl

> Encoder Decoder
Symbol Symbol

FIGURE 7.6: A block diagram of a modern adaptive statistical data compressor.

The data to be compressed is fed into the system symbol-by-symbol, the predictor
making a prediction about the next symbol in the data in the form of a probability
distribution over the alphabet of symbols. This prediction is fed into an encoder, which
efficiently encodes the symbol which actually did occur next in the sequence with respect to
this probability distribution. Once a symbol has been encoded, it is fed into the predictive
model, which is then able to update its statistics.

Decompression is the inverse process. An identical predictive model makes an identical
prediction about the next symbol in the sequence, and this prediction is used by the
decoder to determine what the next symbol actually is, from the encoded representation
of the symbol it received. Once the symbol has been decoded, it is fed into the predictive
model, which updates its statistics accordingly.

This procedure guarantees that the predictive models at the receiver and the trans-
mitter evolve in lock-step, ensuring that they are identical at all stages of the process.
As long as the models begin in a well-defined state, and update their statistics from the
symbols encoded (or decoded) thus far, this follows naturally.

Adaptive statistical data compressors achieve the best known compression performance
on natural language text, often representing the text in two bits-per-character, correspond-

ing to a compressed representation which is 25% of the original file size.

Chapter 7. Data Compression 149

7.2.10 Learning as Compression

We would now like to acknowledge the work of Gerry Wolff, and point out the similarities
between Wolff’s work and our own [28-32]. We discussed Wolff’s segmentation algorithm
in section 5.3.2, and we used six artificial grammars of Wolff’s in the experiments of
chapter 6.

Wolff proposes that the notion of “cognitive economy” may be applied to the language
acquisition process by considering certain aspects of language acquisition to be mani-
festations of data compression principles which have the net effect of striking a balance
between the cost of a cognitive operation (in terms of computational complexity or storage

requirements) and the effectiveness of that operation. Wolff writes that [28]

... the systems being investigated, and indeed brain structures and functions
generally, are the products of evolutionary processes of natural selection and
they are, in consequence, likely to be governed in some sense by principles of

efficiency.

One way of achieving this balance is to reduce or eliminate any redundancies in the
data, and this is precisely the goal of data compression. Wolff cites as evidence in support
of his thesis the fact that biological nervous systems tend to respond to changes in the
environment, and he considers this behaviour to be a form of difference coding.

Wolff states that segmental, or syntagmatic, and disjunctive, or paradigmatic, group-
ings of linguistic elements describe two of the most fundamental types of structure which
are prominent, and which may in fact be universal, in natural languages. These two types
of structure are precisely equivalent to the sub-objects and quotient-objects which the
UpWrite Predictor is able to discover.

Wolff developed a computer program called SNPR which constructs a non-stochastic
phrase-structure grammar from data using processes similar to those presented in sec-
tion 5.3.2. The program searches for and adds to an evolving grammar both syntagmatic
and paradigmatic groupings of symbols in a process which aims to maximise the “compres-
sion value” of the grammar. The measure of “compression value” is simply a ratio between
the percentage reduction of the data when it is expressed in terms of the grammar, and
the size of the grammar as determined by the number of bits required to specify it [28].
Heuristic techniques are used to simplify the inferred grammar and ensure that it is able
to generalise to strings which were not observed during inference, and a necessary feature
of SNPR is its ability to correct any over-generalisations made when forming paradigmatic
groupings.

We refrain from giving a detailed description of Wolff’s SNPR algorithm. We merely
wish to draw parallels between SNPR, and the UpWrite Predictor. Both algorithms con-
struct language models by progressively augmenting simple models with structure dis-
covered from the data, and both algorithms are concerned with data compression. The

differences between the two approaches are as follows.

150 7.2. A Compressed History

e SNPR constructs a non-stochastic phrase-structure grammar while the UpWrite Pre-
dictor constructs a predictive model. The latter is arguably of more use in language

related applications such as data compression and speech recognition.

e SNPR makes many passes over a corpus of data in the process of inferring a grammar.
The UpWrite Predictor is not restricted to a multi-pass approach—it may be used
adaptively, in which case it makes a single pass over the data. This ability, of course,

depends on the exact implementation.

e The techniques used by SNPR to discover structure in data are heuristic, while the
UpWrite Predictor discovers structure by analysing the sequence of predictions made

by a simple predictive model—that is, structure is found with respect to the model.

e The UpWrite Predictor is based on a syntactic pattern recognition framework which
was inspired in part by cognitive processes in the human brain and visual system,

and which has a proven track record in the field of image recognition.

e SNPR needs to parse the data in terms of the grammar it has constructed. The
UpWrite Predictor avoids the parsing problem altogether, as the process of discover-
ing structure and UpWriting this structure to produce a representation of the data
at a higher level is equivalent to parsing, and unambiguous when both steps are
performed concurrently. This is apparent from figure 5.1, which clearly shows that

the data is UpWritten as structure is being discovered.

e Heuristic techniques are used by SNPR in order to ensure that the grammar which
it constructs is capable of generalising to unseen data. The UpWrite Predictor is
able to generalise immediately due to the requirement that the predictions it makes

must be smoothed.

e SNPR uses techniques to correct over-generalisations made during the inference pro-
cess, while the UpWrite Predictor tends to avoid such over-generalisations due to

the fact that symbol classes are added to the alphabet in a ‘skeptical’ manner.

e The “compression value” measure is used to evaluate the performance of a candidate
grammar inferred by SNPR, and this is roughly equivalent to treating SNPR as a
semi-adaptive data compressor. The UpWrite Predictor, when used in an adaptive
data compression system, may be evaluated in a similar way, but in this case the
storage requirements of the model and the representation of the data with respect to
the model are inseparable, and comparisons with other data compression algorithms

are more readily made.

Wolff’s SNPR algorithm and our UpWrite Predictor were developed for different rea-
sons, and approach the data compression problem from opposite directions. Wolff consid-

ers data compression to be central to the process of learning, while we discovered that data

Chapter 7. Data Compression 151

compression provides a good way of evaluating predictive models designed with other goals
in mind. It is therefore interesting that the two methods exhibit certain similarities. It is
our belief that Wolft’s algorithm may offer greater insights into the language acquisition
process in human beings (an area of study in which we are still very much wet behind the
ears), while our UpWrite Predictor has more application in language-related applications,
such as speech recognition, due to the fact that it is based around a standard predictive
model. We also believe that the process used in the UpWrite Predictor to discover struc-
ture is more general, and that the fact that it is based on the notion of using measures
from Information Theory to analyse the predictions made by a simple predictive model is

an important innovation.

7.3 Prediction by Partial Matching

The advent of arithmetic coding inspired John Cleary and Ian Witten to develop the Pre-
diction by Partial Matching data compressor, which is commonly referred to as PPM [11].
PPM incorporates a predictive model which makes a prediction about the next symbol
z; in the data being compressed by combining the predictions made by Markov models
of various orders, from 0 up to some maximum m, along with the prediction made by a

—17%1, which makes the uniform prediction, and which

special predictive model of “order
is present to ensure that each symbol is assigned a non-zero probability even when no
observations have been made. A PPM predictor of order 3, therefore, makes a prediction
which is based on the predictions made by 5 separate predictive models.

In figures 6.31 to 6.34 we gave examples of data generated by character-level Markov
models of orders 0, 1, 2 and 3. These examples give us an intuitive feel for the amount
of structure the predictive models have extracted from the data, and it is evident that
a 3" -order Markov model inferred from natural language text is capable of generating
random data which bears a passing resemblance to the text the model was inferred from.
The fact that the PPM compressor performs so well may be attributed to the ability of
the 3" -order Markov model to embody the statistics of natural language text sufficiently
well.5?

The predictions made by the various predictive models in the PPM data compressor
are usually combined using one of two possible processes—blending or escape—which are
roughly equivalent to the methods of smoothing and fallback which were discussed in

chapter 3.

7.3.1 The Escape Mechanism

Blending the predictions made by various predictive models together is computationally
expensive, and PPM typically abandons blending in favour of an escape mechanism. A
special escape symbol is introduced to the alphabet, and we choose to denote this escape

symbol by ¢, and each of the Markov models in the PPM compressor are required to

152 7.3. Prediction by Partial Matching

guarantee that this symbol is assigned a non-zero probability so that, no matter what
data is encountered, it will always be possible to encode the escape symbol.

A particular symbol z; is then encoded as a sequence of escape symbols followed by
the symbol itself, with the number of escape symbols in the sequence indicating the degree
of fallback required to reach a predictive model which assigns a non-zero probability to z;.
Markov models of various orders, from 0 to some maximum m, together with the model
of “order -17, make predictions about the symbol z; based upon the context in which it
occurs. The prediction made by the highest-order predictive model M,,, the predictive
model of order m, is used to encode z; if P(z;|My,,si—1) > 0, and is used to encode ¢
otherwise. If x; was encoded, the process is complete, and moves on to encode the next
symbol z;11 in the data. If, however, ¢ was encoded, the prediction made by My,_1
is consulted, and the encoding process iterates. In the worst case, M_; will be used to
encode z;.

Because PPM is an adaptive technique, M_; will be used frequently at the beginning
of the compression process, when many symbols are being observed for the first time. As
the PPM compressor begins to adapt to the data, the predictions made by higher order
Markov models will come in to play, and compression performance will improve.

Various techniques exist for estimating P(¢|M,,s;_1). The problem of estimating
this escape probability is usually framed as a problem of estimating the probability of
observing a novel symbol in a particular context. We shall discuss three techniques for
estimating this probability; these are referred to in the literature as Method A, Method B
and Method C, and the PPM data compressors which use these methods are referred to
as PPMA, PPMB and PPMC.

Method A

Method A was introduced by Cleary and Witten in their 1984 paper, and works by allocat-
ing a count of one to the escape symbol [11]. The probability of the escape symbol is then
calculated by dividing its count by the total count of all symbols seen in the context, as in
equation 7.1, where M,, denotes the predictive model of order n, s; 1 denotes the history
Z1,... ,%i—1, and C(s) is a counting function which returns the number of occurrences of

the string s in the observed data.

1
C(:L‘ifna s 71‘2‘71) +1

P(pl M, si1) =

C(xi—na cee axi)
C(xi—na s axi—l) +1

P(zi|Mp, si—1) = (7.2)
Because the escape symbol consumes part of the probability distribution, the proba-
bility estimate of the observed symbol z; € A is reduced somewhat, and this is shown in

equation 7.2.

Chapter 7. Data Compression 153

Method B

Method B was also introduced by Cleary and Witten [11]. It makes the assumption that
the first occurrence of a particular symbol in a particular context may be taken as evidence
of a novel symbol appearing in that context, and therefore does not contribute towards
the estimate of the probability of the symbol which occurred. Method B estimates the
probability of the escape symbol as in equation 7.3, where g denotes the number of different

symbols seen in the context so far.

q
P(()O|Mnasi—1) ~ C(l'f $.71) (73)

C(zin,...,zj)—1

P(:Ei|Mn,Si_1)% C(Jj - 1)

(7.4)

As was the case with Method A, the fact that the special escape symbol is assigned a
non-zero probability means that the probability estimates of the symbols in the alphabet
need to be scaled down accordingly. Method B achieves this by subtracting 1 from each
symbol count, as in equation 7.4, meaning that a symbol needs to be observed twice in

order to be assigned a non-zero probability by the predictive model.

Method C

Alistair Moffat introduced Method C in a paper which presented an efficient computational
implementation of the PPM data compressor [19]. Method C is similar to Method B, with
the distinction that the first observation of a particular symbol in a particular context
also contributes towards the probability estimate of the symbol itself. That is, the first
occurrence of a symbol is considered to give two observations; one of the escape symbol
and one of the symbol itself. Method C estimates the escape symbol probability as in

equation 7.5.

q
C($i7n7 s 7$i71) +q

Pl My, si1) = (7.5)

C(i e 1)

P((I,‘i|Mn,8i_1) =~ C(Jj - 1) +q
L—ny oy br—

(7.6)

As with the other methods, Method C scales down the probability estimate assigned
to the symbols, and this is reflected by equation 7.6.

154 7.3. Prediction by Partial Matching

Other Methods

Out of the three methods of estimating the escape probability we have presented, Method
C consistently gives the best results. Its performance remains close to the state of the
art, and it is typically used as a benchmark when evaluating new compression algorithms.
Other methods have been presented in the literature, and we acknowledge the work of
Jan Aberg, Yuri Shtarkov and B.J.M. Smeets [3], Suzanne Bunton [6-8], Ross Neal
Williams [26], Paul Glor Howard [16] and William. J. Teahan [24].

7.3.2 Exclusion

The escape mechanism encodes a particular symbol z; as a sequence of escape symbols
followed by the symbol itself, each of which has been assigned a non-zero probability by
some predictive model. We may therefore calculate P(z;) by taking the product of these
individual symbol probabilities, as in equation 7.7, where k denotes the highest order
predictive model which assigns a non-zero probability to z;, m denotes the highest order
predictive model in the family of predictive models which is able to make a prediction for

the specified context, and M represents the combined PPM predictive model.

P(zi|M, si 1) = P(zi| My, si1) [PlelMj,si1) (7.7)
j=k+1

We would expect 3, . 4 P(z;|M,s;—1) = 1, but this turns out not to be the case.
This is due to the fact that the highest order predictive model which assigns a non-zero
probability to xz; is used to encode it, and the probabilities assigned to this symbol by lower
order predictive models are effectively discarded, with the result that some proportion of
the probability mass is wasted.

A process known as exclusion was introduced by Moffat, and was found by him to
improve the performance of the PPMC data compressor, but Moffat did not make explicit
the fact that exclusion is required to ensure that the predictions made by the PPM pre-
dictive model are valid probability distributions when the escape technique is used [19].
The process of exclusion functions by temporarily setting C(z;—j,... ,z;) to zero, where
j # k, during the calculation of P(x;|M, s;_1).

7.3.3 Blending

The escape mechanism is used in PPM predictive models mainly due to the fact that it
is computationally efficient. A process of blending could equally be used to combine the
predictions made by the predictive models of various orders into a single prediction, as in
equation 7.8, where the blending weights A;(s;—1) > 0 are functions of the largest context,
and D77 Aj(si-1) = 1.

Chapter 7. Data Compression 155

Pl M, sim1) = Y Aj(sio1) Plai| My, sim1) (7.8)

i=1

If the blending mechanism is to be used in preference to the escape mechanism, the
question of estimating the values of the blending weights arises. It is evident that the
blending weights may be expressed as functions of the escape probabilities, as in equa-
tion 7.9.

m

M(sic1) = [1 = P(o| My, si-1)] T PlelM;,si-1) (7.9)
j=k+1

A PPM data compressor which uses blending, and which estimates the values of the
blending weights in this way, will exhibit an identical compression performance to that of
a PPM data compressor which uses the escape mechanism together with the process of
exclusion. However, if the PPM data compressor using the blending mechanism does not

make use of exclusion, its performance will differ, and in practice is often superior.

7.3.4 Update Exclusion

The technique of update ezclusion was introduced by Moffat [19]. This technique only
updates C(x;—j,... ,x;) where 7 > k—that is, it only updates the count assigned to the
symbol z; in the highest-order predictive model which assigned it a non-zero probability,
and in all of the predictive models at higher levels than that.

Update exclusion seems to be motivated by the fact that if exclusion is to be used,
the counts assigned to z; by predictive models of order 7 < k will be set to zero anyway.
Update exclusion allows for a more computationally efficient implementation of the PPM

data compressor, and is also found to improve its compression performance.

7.3.5 Recency Scaling

Moffat also introduced a method known as recency scaling [19]. This is a process which
serves to put an upper bound on the value which the frequency count C(x;_p,... ,z;—1)
can take, and which has the side-effect of causing the PPM predictive model to adapt
more rapidly to changes in the data being compressed.

Update exclusion works by monitoring the value of C(z;_p,... ,x;—1). Whenever it

exceeds some predetermined scaling threshold, the counts of all symbols which can occur in

the context (z;_p,... ,x;—1) are halved such that they are guaranteed to remain non-zero.
That is, C(zi—pn,-.. ,z;) = [%C(xi_n,... ,(L‘i)-l-%—| V z; € A. The count C(zj_p,-.. ,Ti—1)
is then normalised by setting C(z;—p,... ,zi—1) = ZwiEA C(Ziny---,25).

Computational implementations of the PPM data compressor store these counts using

156 7.4. Corpora for Evaluation of Compression Performance

integer variables, and therefore they are usually incremented by an amount greater than
1 in order to maintain precision when the recency scaling process halves their values, with
the result that infrequent events can be allotted a smaller portion of probability mass than
would otherwise be the case. Moffat found that incrementing counts by 8, and setting the

scaling threshold to 512, produced good results.

7.4 Corpora for Evaluation of Compression Performance

In order to evaluate the performance of a data compressor, and to enable comparison
between it and a wide range of other compression algorithms, it is necessary to establish
a standard suite of data files and make them widely available. Bell, Cleary and Witten
devised the Calgary corpus for this purpose. The Calgary corpus consists of a rather
esoteric cross-section of English text in different writing styles, computer program source

code, executable files, geophysical data and a binary image bitmap [5]. A brief overview

of the Calgary corpus is given in table 7.2.

‘ File ‘ Size ‘ Description
bib | 111261 bytes | A bibliography file in the Unix ‘refer’ format
bookl | 768771 bytes | Thomas Hardy’s “Far from the Madding Crowd”
book2 | 610856 bytes | lan Witten’s “Principles of Computer Speech”
geo | 102400 bytes | Geophysical data of seismic activity
news | 377109 bytes | A variety of postings various newsgroups on USENET
obj1l | 21504 bytes | A VAX executable of program ‘progp’
obj2 | 246814 bytes | A Macintosh executable of a “knowledge support system”
paperl | 53161 bytes | A technical paper on arithmetic coding
paper2 | 82199 bytes | A technical paper on computer security
paper3 | 46526 bytes | A technical paper on computational autonomy
paper4 | 13286 bytes | A technical paper on programming by example
paper5 | 11954 bytes | A technical paper on arithmetic in logic programming
paper6 | 38105 bytes | A technical paper on memory efficient hash tables
pic | 513216 bytes | A facsimile bitmap, CCITT test picture 5
progc | 39611 bytes | C source code to the Unix compress program
progl | 71646 bytes | LISP source code
progp | 49379 bytes | Pascal source code of a PPM evaluation program
trans | 93695 bytes | Transcript of an EMACS session

TABLE 7.2: An overview of the files in the Calgary corpus.

Ross Arnold and Timothy Bell later developed the Canterbury corpus in an attempt
to address their concern that many researchers were fine-tuning their algorithms to the
one corpus, and to introduce a few new file types appropriate to the current popularity
of the Internet [4].>* The Canterbury corpus consists of English prose, English poetry,
English plays, facsimile images, source code, spreadsheet files, executable files, technical

documents and HTML code. An overview of the Canterbury corpus is shown in table 7.3.

Chapter 7. Data Compression 157

Both the Calgary and Canterbury corpora are available on the World Wide Web,
and may be downloaded by following the appropriate links from the Web site of this

dissertation [1].

File ‘

Size

‘ Description

alice29.txt
asyoulik.txt
cp.html
fields.c
grammar.lsp
kennedy.xls
lcet10.txt
plrabni2.txt
pttbd

sum

xargs.1

152089 bytes
125179 bytes
24603 bytes
11150 bytes
3721 bytes
1029744 bytes
426754 bytes
481861 bytes
513216 bytes
38240 bytes
4227 bytes

Lewis Carroll’s “Alice in Wonderland”
William Shakespeare’s “As You Like It”

An HTML file of a web page on compression
C source code

LISP source code for a simple parser

Excel spreadsheet files

Proceedings of a workshop on electronic texts
John Milton’s “Paradise Lost”

A facsimile bitmap, CCITT test picture 5

A Sparc executable

The GNU manual page for the xargs command

TABLE 7.3: An overview of the files in the Canterbury corpus.

In this chapter we shall be giving results of experiments performed using various data
compression techniques over both the Calgary and Canterbury corpora. Results are ex-
pressed in average bits-per-symbol, which we shall abbreviate to bps, and which is calculated
either by dividing the length of the compressed version of the data by the length of the
uncompressed version and multiplying by eight to express this ratio in bits-per-symbol, or
by calculating the average information supplied to the predictive model by the data, as
in equation 2.6. In both cases it is implicit that a symbol and a byte are the same thing,
and we shall assume that an alphabet containing the 256 bytes is appropriate for all files

in both corpora unless otherwise stated.

7.5 Analysis of the Performance of Various PPM Models

7.5.1 The ‘Optimal’ Model

We would like to determine the maximum possible performance attainable by the PPM
data compressor, irrespective of the various techniques applied. In order to achieve this,
we introduce the notion of an ‘optimal’ PPM data compressor.

An ‘optimal’ PPM data compressor is one which calculates P(z;|M, s;_1) as in equa-
tion 7.10. This is equivalent to an escape mechanism which assigns P(¢|M;,s;—1) =
1V j >k, or a blending mechanism which assigns A;(s;—1) =1 and Aj(s;—1) =0V j # k,
where M, is the model which assigns the highest probability to x;.

P(z;lM,si—1) = arg r%m P(z;\M;, si-1) (7.10)
j

158 7.5. Analysis of the Performance of Various PPM Models

Clearly the ‘optimal’ PPM compressor cannot exist in practice, as it implies the exis-
tence of an oracle which is capable of determining the predictive model which assigns the
highest probability to z;, the symbol which occurs next in the data being compressed, and,
if such an oracle did exist, compression would be rendered moot. However, it is possible
to determine what the performance of the ‘optimal’ PPM compressor would be if such an
oracle existed, because the encoder can be made to look-ahead and see which symbol is
going to occur next, at the expense of making decompression impossible.

In table 7.4 we show the compression performance of ‘optimal’ PPM predictive models
of various orders. Results are given across across all of the files in the Calgary and
Canterbury corpora. From these results it is apparent that the file pic from the Calgary

corpus and the file ptt5 from the Canterbury corpus are identical.

‘ File | Order 0 ‘ Order 1 ‘ Order 2 | Order 3 | Order 4 ‘ Order 5 ‘

bib | 5.16bps 3.27bps 2.25bps 1.58bps 1.34bps 1.23bps
bookl | 4.46bps 3.40bps 2.61bps 2.06bps 1.74bps 1.58bps
book2 | 4.69bps 3.54bps 2.55bps 1.84bps 1.49bps 1.34bps
geo | 5.31bps 4.24bps 3.92bps 3.76bps 3.73bps 3.73bps
news | 5.09bps 3.87bps 2.79bps 2.02bps 1.68bps 1.56bps
obj1l | 5.51bps 3.74bps 3.04bps 2.84bps 2.79bps 2.78bps
obj2 | 5.96bps 3.71bps 2.57bps 2.12bps 1.82bps 1.71bps
paperl | 4.88bps 3.51bps 2.39bps 1.78bps 1.55bps 1.48bps
paper2 | 4.52bps 3.37bps 2.43bps 1.84bps 1.57bps 1.47bps
paper3 | 4.60bps 3.42bps 2.55bps 1.94bps 1.70bps 1.62bps
paperd | 4.62bps 3.44bps 2.51bps 2.02bps 1.89bps 1.85bps
paper5 | 4.86bps 3.54bps 2.53bps 2.09bps 1.97bps 1.93bps
paper6 | 4.91bps 3.51bps 2.39bps 1.80bps 1.60bps 1.53bps
pic | 1.11bps 0.74bps 0.66bps 0.62bps 0.60bps 0.58bps
progc | 5.12bps 3.51bps 2.30bps 1.77bps 1.58bps 1.52bps
progl | 4.67bps 3.07bps 1.99bps 1.39bps 1.17bps 1.07bps
progp | 4.81bps 3.05bps 1.83bps 1.31bps 1.17bps 1.10bps
trans | 5.48bps 3.26bps 1.97bps 1.29bps 1.04bps 0.95bps
Average | 4.76bps 3.34bps 2.41bps 1.89bps 1.69bps 1.61bps

alice29.txt | 4.51bps 3.26bps 2.37bps 1.80bps 1.55bps 1.43bps
asyoulik.txt | 4.76bps 3.28bps 2.41bps 1.94bps 1.70bps 1.59bps
cp-html | 5.16bps 3.37bps 2.08bps 1.66bps 1.56bps 1.53bps
fields.c | 4.94bps 3.00bps 1.82bps 1.46bps 1.34bps 1.29bps
grammar.lsp | 4.60bps 2.89bps 1.93bps 1.65bps 1.56bps 1.55bps
kennedy.x1ls | 3.19bps 2.33bps 1.53bps 1.42bps 1.41bps 1.34bps
lcet10.txt | 4.59bps 3.32bps 2.44bps 1.77bps 1.45bps 1.31bps
plrabnl2.txt | 4.48bps 3.21bps 2.53bps 2.02bps 1.74bps 1.59bps
ptt5 | 1.11bps 0.74bps 0.66bps 0.62bps 0.60bps 0.58bps

sum | 5.07bps 3.27bps 2.36bps 2.01bps 1.89bps 1.82bps

xargs.1l | 4.89bps 3.37bps 2.36bps 2.02bps 1.95bps 1.93bps
Average | 4.30bps 2.91bps 2.04bps 1.67bps 1.52bps 1.45bps

TABLE 7.4: Results of ‘optimal’ PPM compression using various maximum orders of
Markov model, over both the Calgary and Canterbury corpora

Chapter 7. Data Compression 159

A plot of the average compression performance versus the order of the ‘optimal’ PPM

compressor is shown in figure 7.7.

Average Compression Performance (bps)

0 I I I I I I
0 1 2 3 4 5

Maximum Order of Markov Model

FIGURE 7.7: A plot of the average compression performance over both the Calgary and
Canterbury corpora for ‘optimal’ PPM compressors of differing orders.

It is evident from this plot that the compression performance monotonically increases
with the order of the PPM compressor, but that the law of diminishing returns prevails.
This, combined with the fact that higher order models have increased memory require-
ments, and that the process of estimating escape probabilities or blending weights becomes
increasingly difficult as more predictive models are added to the mix, justifies the tradi-
tional choice of setting the order of the PPM compressor to 3. All of our subsequent
experiments shall assume this, unless otherwise stated.

In table 7.5 we show the compression performance of ‘optimal’ PPM compressors
which use various combinations of the ad hoc techniques of exclusion, update exclusion
and recency scaling, across all of the files in the Calgary and Canterbury corpora. We
have named the various PPMO compressors using E to indicate exclusion, U to indicate
update exclusion and R to indicate recency scaling. Recency scaling was performed using
a threshold of 512 and by updating counts with a value of 8 rather than 1.

It is interesting to note that the best performance is achieved when update exclusion
and recency scaling are used together, and that exclusion does not improve results what-
soever. It is also interesting to note that difference between the performance of the best

predictive model and the worst is a mere 5%, while the performance difference between

160 7.5. Analysis of the Performance of Various PPM Models

Model ‘ Calgary ‘ Canterbury ‘ Average ‘

PPMO | 1.89bps 1.67bps 1.81bps
PPMO-U | 1.86bps 1.63bps 1.77bps
PPMO-R | 1.85bps 1.62bps 1.76bps
PPMO-E | 1.93bps 1.70bps 1.84bps

PPMO-UR | 1.84bps 1.60bps 1.75bps
PPMO-UE | 1.87bps 1.65bps 1.79bps
PPMO-RE | 1.91bps 1.66bps 1.82bps
PPMO-URE | 1.97bps 1.63bps 1.84bps

TABLE 7.5: Results of ‘optimal’ compression using various combinations of ad hoc tech-
niques for improving the performance of PPM.

the worst performing ‘optimal’ PPM compressor and the standard PPMC compressor,
the results of which are given in the next section, is 23%. This suggests that great gains
are still to be had by improving the methods used to estimate escape probabilities and

blending weights.

7.5.2 The Standard Methods

We shall now present the performance of our implementations of the three standard PPM
compressors: PPMA, PPMB and PPMC.>* The results of all subsequent experiments in
this chapter will be contrasted with the performance of the PPMC compressor.

In table 7.6 we show the compression performance of the PPMA, PPMB and PPMC
compressors, using both the escape and blending mechanisms. We use B to denote the
compressors which used blending rather than escape. In all cases, exclusion, update ex-
clusion and recency scaling were also used. It is clear that PPMC-B performs the best
overall, but it is interesting to note that PPMB out-performs all other PPM compressors
on the files geo, pic, kennedy.x1s and ptt5.5° This suggests that the PPMB compressor
is able to generalise across a wider range of data, at the expense of decreased performance
on natural language text. Method B estimates the probability of a novel symbol in a
process whereby a symbol needs to be seen twice to seen believed, and it seems that this
produces better results on files which may be subject to random noise, as the four files

mentioned may very well be.

7.5.3 Other Data Compression Algorithms

In order to enable comparison between PPM data compressors and other data compressors,
we shall now present results of compressing the files in the Calgary and Canterbury corpora

using four popular data compression programs.

compress is based on a variation of the LZ78 algorithm, and is still used today in many
Unix systems. Version 4.2.4-9 was installed under Linux from the Debian package,

and was executed with the -b16 argument.

Chapter 7. Data Compression 161

File | PPMA | PPMB | PPMC | PPMA-B | PPMB-B | PPMC-B |
bib | 2.17bps | 2.20bps | 2.11bps 2.26bps 2.44bps 2.07bps
bookl | 2.51bps | 2.51bps | 2.50bps 2.56bps 2.64bps 2.48bps
book2 | 2.28bps | 2.29bps | 2.24bps 2.33bps 2.43bps 2.22bps
geo | 6.25bps | 4.70bps | 4.82bps 7.07bps 4.99bps 5.04bps
news | 2.79bps | 2.76bps | 2.66bps 2.89bps 3.02bps 2.63bps
objl | 4.47bps | 3.80bps | 3.66bps 4.70bps 4.15bps 3.73bps
obj2 | 2.85bps | 2.69bps | 2.56bps 2.95bps 2.95bps 2.53bps
paperl | 2.57bps | 2.64bps | 2.48bps 2.69bps 2.98bps 2.42bps
paper2 | 2.50bps | 2.53bps | 2.45bps 2.60bps 2.81bps 2.40bps
paper3 | 2.79bps | 2.82bps | 2.70bps 2.94bps 3.18bps 2.65bps
paper4 | 3.11bps | 3.14bps | 2.92bps 3.30bps 3.58bps 2.89bps
paper5 | 3.23bps | 3.26bps | 3.00bps 3.41bps 3.71bps 2.97bps
paper6 | 2.64bps | 2.70bps | 2.52bps 2.76bps 3.07bps 2.46bps
pic | 1.03bps | 0.91bps | 0.97bps 1.07bps 0.98bps 0.97bps
progc | 2.66bps | 2.68bps | 2.48bps 2.78bps 3.06bps 2.44bps
progl | 1.92bps | 1.99bps | 1.87bps 1.97bps 2.24bps 1.82bps
progp | 1.90bps | 1.98bps | 1.82bps 1.95bps 2.25bps 1.76bps
trans | 1.80bps | 1.93bps | 1.74bps 1.82bps 2.18bps 1.68bps
Average | 2.75bps | 2.64bps | 2.53bps 2.89bps 2.93bps 2.51bps

alice29.txt | 2.32bps | 2.35bps | 2.30bps 2.40bps 2.57bps 2.25bps
asyoulik.txt | 2.55bps | 2.57bps | 2.51bps 2.65bps 2.82bps 2.46bps
cp.html | 2.57bps | 2.54bps | 2.35bps 2.71bps 2.86bps 2.34bps
fields.c | 2.26bps | 2.41bps | 2.13bps 2.31bps 2.77bps 2.05bps
grammar.lsp | 2.62bps | 2.77bps | 2.40bps 2.72bps 3.19bps 2.34bps
kennedy.x1ls | 1.59bps | 1.10bps | 1.10bps 2.30bps 1.14bps 1.35bps
lcet10.txt | 2.19bps | 2.22bps | 2.18bps 2.24bps 2.36bps 2.15bps
plrabnl2.txt | 2.45bps | 2.47bps | 2.45bps 2.50bps 2.60bps 2.42bps
ptt5 | 1.03bps | 0.91bps | 0.97bps 1.07bps 0.98bps 0.97bps

sum | 3.09bps | 2.90bps | 2.69bps 3.33bps 3.28bps 2.71bps

xargs.1l | 3.23bps | 3.30bps | 2.98bps 3.38bps 3.78bps 2.94bps
Average | 2.36bps | 2.32bps | 2.19bps 2.51bps 2.58bps 2.18bps

TABLE 7.6: Results of PPM compression using the standard methods of estimating escape
probabilities, including performance for PPM predictive models which use blending rather
than escape.

162 7.6. Some Modifications of and Additions to Standard PPM

zip is a widely used on Windows-based computers to archive and compress collections
of files, and it is based on the LZ77 algorithm. Version 2.20-2 was installed under

Linux from the Debian package, and was executed with the -9 argument.

gzip is widely used on Linux-based computers to archive and compress collections of files,
and is also based on the LZ77 algorithm. Version 1.2.4-28 was installed under Linux

from the Debian package, and was executed with the -9 argument.

bzip2 is a relatively new data compression program which is based on Burrows-Wheeler
block-sorting compression with Huffman coding. Version 0.9.0c-2 was installed under
Linux from the Debian package, and was executed with the -9 --repetitive-best

arguments.

Results of compressing the Calgary and Canterbury corpora using each of these pro-
grams are summarised in table 7.7. We note that the three algorithms based on Ziv-
Lempel compression perform poorly, with zip and gzip recording similar results, as is
to be expected. The standard PPMC compressor performs 11% better than gzip, and
performs slightly worse than bzip2, which is consistent with our earlier statement that

the Burrows-Wheeler compressor achieves results competitive with statistical methods.

Algorithm | Calgary | Canterbury | Average

compress | 3.73bps 3.30bps 3.57bps
zip | 2.81bps 2.59bps 2.73bps

gzip | 2.79bps 2.55bps 2.70bps
bzip2 | 2.49bps 2.22bps 2.39bps

TABLE 7.7: Results of other well-known compression algorithms.

Jeff Gilchrist keeps up-to-date statistics about the performance of various compression
algorithms on the World Wide Web [14]. As of July 1999, according to Mr. Gilchrist’s
statistics, the algorithm which performed the best on the Calgary corpus was Ian Sutton’s
BOA compressor, which achieved an average compression performance of 1.91 bps, while
Igor Pavlov’s 777 compression algorithm achieved the best result on the Canterbury corpus
with an average compression performance of 1.26 bps. Both compression algorithms are
based on the PPM technique, and give results which are either equal to or greater than the
best possible theoretical performance of a PPM compressor of order 3. This is evidence
that they use higher order Markov models, or do not use Markov models at all, but the
fact that they are proprietary means that we are unfortunately unable to analyse these

programs in detail.

7.6 Some Modifications of and Additions to Standard PPM

We are now in a position to consider some modifications and additions to the standard

PPM compressor. Ultimately we wish to apply the UpWrite Predictor to the data com-

Chapter 7. Data Compression 163

pression problem, but we would like to explore a few ad hoc approaches of our own along
the way. We have developed seven possible extensions to PPM, and these are summarised

below.

e The escape mechanism used by PPM possesses some defects, including the fact
that the escape probability will be non-zero in situations where escape is impossible
(such as when all symbols in the alphabet have already been assigned a non-zero

probability). We shall explore some escape methods of our own.

e It has been shown that blending may result in superior performance. We would
therefore like to explore some methods for estimating the blending weights which

are independent of the estimated escape probabilities.

e One shortcoming of adaptive data compressors is the fact that the encoder and
decoder must start with an empty slate, meaning that compression performance is
poor at the beginning of the process. We shall explore the pre-transmission of some

statistics about the data.

e The methods of exclusion and update exclusion tend to improve compression per-
formance, but are not very well defined. We shall consider a more general exclusion
mechanism which discounts symbol counts from the current predictive model if they

have been used in higher order predictive models.

e PPM uses an escape mechanism to progressively fall back from high order predictive
models to the highest order predictive model which assigns a non-zero probability
to z;. The ordering of the predictions made by the predictive models is implicit; it
seems obvious that the predictions of a Markov model of order n should be consulted
before those of a Markov model of order n — 1. Even so, we would like to explore
mechanisms for reordering the precedence assigned to the predictive models on the
fly. This is of particular use in situations where the order of the predictive models

is not obvious.

e The PPM compressor is based around Markov models of various orders. We shall
explore the introduction of predictive models which use equivalence classifications

other than that dictated by the Markovian assumption.

e A major drawback with Markov models is that they only gather statistics about the
data within a small context window, and discard long-range information as a result.
We shall consider incorporating long-range statistics into the PPM data compressor

via a novel goal-oriented predictive model of our own design.

7.6.1 Alternative Escape Mechanisms

All else being equal, the performance of a PPM data compressor is dependent on the escape

mechanism used. In fact, we have shown that there is a significant amount of potential

164 7.6. Some Modifications of and Additions to Standard PPM

improvement to be gained in this area, as the ‘optimal’ PPM compressor significantly
out-performs PPMC.

Method F

An escape mechanism should assign a high probability to the escape symbol in predictive
models at a higher order than the one which assigns the highest probability to z;, and a

low probability to the escape symbol in this model and all lower order predictive models.

We introduce Method F which finds the predictive model which assigned the highest
probability to the symbol x; after it has been encoded, and updates its estimate of the
escape probability for the predictive models of higher orders as in equation 7.11, where
Cr(My, s;—1) counts the number of times that a lower order predictive model made a
better prediction than the model M,,. The probability of the symbol z; is calculated by
Method F as in equation 7.12.

CF(Mn, 81;1) +1

P) &
(oI Mn,si-1) C(Ti—ny...,2zi1) + Cpr(My, si—1) +1

(7.11)

Ol ...)
C(Ii,n, - ,Jti,l) + CF(Mn, 82;1) +1

P((I,‘i|,/\/ln,8i_1) ~ (712)

Method G

Current methods of estimating the escape probability fail when no observations have been
made, and when each symbol in the alphabet has been observed at least once. In the
former case, the estimates of P(¢) determined by Method B and Method C are undefined,
whereas P(¢) = 1 would be appropriate. In the latter case, all of the escape methods
assign a non-zero value to P(y); a waste considering that the escape symbol will never be

encoded.

We would therefore like to develop a method of calculating the escape probability which
satisfies these boundary constraints. We introduce Method G which satisfies both of these
constraints by calculating the escape probability as in equation 7.13, with the probability
of the symbol z; being calculated as in equation 7.14. In these equations 6 > 0 represents

a scaling constant which determines the weighting given to the escape probability.

(Al - 9)

P(p|My,si—1) = C(Ti—ny--- ,zi—1) +0(JA] — q)

(7.13)

Chapter 7. Data Compression 165

ClEiny-.. 1)
C(:L‘Z',n, . ,J?ifl) + 9(|.A| - q)

P($l|Mn, 82;1) ~ (7.14)

Method G is nothing more than an ad hoc escape method developed solely to satisfy
the boundary conditions, and we do not expect it to perform particularly well. It also
has the disadvantage of introducing yet another parameter which needs to be adjusted in

order to maximise compression performance.

Method H

Our estimate of the escape probability should also be related to the distribution of ob-
servations. Method C, for example, makes the same estimate for particular values of ¢
and C(x;_p,...,x;), whereas it seems sensible that, for a given value of ¢, the escape
probability estimate given when the non-zero counts C(z;_py,... ,z;) are fairly uniform
should be different from the escape probability estimate given when a particular count is
an order of magnitude greater than the other counts.

The entropy of the probability distribution is a good indication of how the counts are
distributed. It does not indicate, however, the magnitude of the counts themselves; if
only a single symbol has been observed, the entropy of the probability distribution will be
zero, regardless of the number of times it has been observed. We therefore propose that
the entropy be calculated from a modified probability distribution formed by applying
Laplace’s Law of Succession, as in equation 7.15, whereby each count is incremented by 1

so that unobserved symbols are assigned a non-zero probability.

Clxin,...,z;) +1
C(Zi—ny--- ,2i-1) + | A

PLaplace ($Z|MTL7 Sifl) ~ (715)

The ratio between the entropy of a probability distribution and the maximum possible
entropy can then be used as a measure of the likelihood of observing a novel symbol, as
shown in equation 7.16. We shall refer to this method of estimating the escape probability
as Method H. The calculation of P(z;|M,y,s;) is rather more complicated with Method

H, and is performed as in equation 7.17.

H M |si
Pl My 5i-1) 0 et) (716

C(xi—na e axi)

P(ZEi|MnaSz) ~ [1 - P(W|Mna5z)]c(x._ fIf'—l)

(7.17)

166 7.6. Some Modifications of and Additions to Standard PPM

Note that Method G and Method H both require knowledge of the value of |A|. If we
assume that the alphabet may only ever contain a maximum of 256 symbols, which is a
reasonable assumption when compression is being performed on the character level, then
transmission of the alphabet size results in an overhead of a single byte, so the inclusion

of | A] in these calculations is of little consequence.

Experimental Results

In table 7.8 we show a summary of the results obtained when using Method F, Method
G and Method H in a PPM data compression system. These results were generated by
replacing Method C in a standard PPMC compressor which incorporates the methods of
exclusion, update exclusion and recency scaling. In the case of Method F, the results

shown are for # = 0.1, which was found to give the best compression performance.

| Algorithm | Calgary | Canterbury | Average |

PPMF | 2.56bps 2.22bps 2.43bps
PPMG | 2.89bps 2.57bps 2.77bps
PPMH | 4.18bps 3.77bps 4.03bps

TABLE 7.8: Results of using Method F, Method G and Method H to estimate the proba-
bility of a novel event.

This experiment reveals that PPMF performs almost as well as PPMC, which is en-
couraging, while PPMG and PPMH perform considerably worse; PPMH is outperformed
even by the compress program! The performance of PPMG is 0.53bps worse than PPMC
on the file geo, and 0.14bps better on the file pic. This suggests that the escape mechanism

is used much more frequently on the former file than the latter.

7.6.2 Alternative Blending Mechanisms

Experimental results indicate that the compression performance of a PPM compressor is
usually superior if the blending mechanism is used instead of the escape mechanism. We
have shown that blending weights may be expressed as functions of the escape probabilities,
but would like to explore methods for estimating the blending weights which are not based

on the escape mechanism.

Method 1

Method I calculates the blending weights A, (s;) in a way which was inspired by Method
F—the predictive model which made the best prediction may be determined in an a
posteriori fashion, and the weight assigned to that predictive model may then be updated
accordingly.

Method T estimates the blending weights as in equation 7.18, where Cj(My, si—1)

counts the number of times M, assigned the greatest probability to x;, and m is the highest

Chapter 7. Data Compression 167

order predictive model used in the PPM predictor. Each blending weight is determined by
counting the number of times the corresponding predictive model made the best prediction,
adding 1 to this count to ensure that all blending weights are non-zero, then normalising
by dividing the result by the number of predictions made plus the m + 1 extra counts

added to ensure that all weights are non-zero.

C[(Mn,sifl) +1
C($i7ma s 7$i71) +m+1

An(si-1) = (7.18)

The weight A\, (s;—1) as calculated by Method I may be regarded as an estimate of the
probability that predictive model M,, will assign the highest probability to the symbol z;
which follows the history s;_;.

Method J

Another way of calculating the blending weights is to consider them to constitute a proba-
bility distribution over the family of predictive models used by the PPM compressor, and
to initialise this distribution using the maximum entropy prior.%® In this case, we choose
to use a single set of smoothing weights, rather than making the weights functions of the
context.

Baye’s rule may be applied in order to recalculate this estimated probability distribu-
tion over the predictive models as data is observed, as in equation 7.19, where A, is the
a priori estimate that predictive model M,, is the correct one. The modified Laplacian
probability estimate is used when calculating the probability of the symbol z; with respect

to the predictive model M,, to ensure that all blending weights remain non-zero.

VoA PLaplace ($Z|MTL7 5i71)>\n

' > %, (7.19)

Experience has shown that this method of re-calculating the blending weights at each
iteration sometimes causes one or more of the weights to tend to zero, and because the
computational implementation of the algorithm uses fixed precision variables to store the
weights, this has the effect of causing some weights to become zero; an event which has
disastrous consequences. We therefore introduce a normalisation process which guarantees
that no blending weight falls below 0.001.

Experimental Results

In table 7.9 we show the results of experiments performed using these two methods for
calculating the blending weights. The results given for PPMI were obtained simply by
using Method I in a standard PPMC compressor which incorporated update exclusion and

recency scaling, and applying blending in place of escape. Update exclusion and recency

168 7.6. Some Modifications of and Additions to Standard PPM

scaling were both found to adversely effect the performance of the PPMJ compressor,
however, and therefore the results shown for Method J were obtained for a compressor

which incorporated neither of these techniques.

‘ Algorithm ‘ Calgary ‘ Canterbury ‘ Average ‘

PPMI | 2.59bps 2.29bps 2.48bps
PPMJ | 2.63bps 2.33bps 2.52bps

TABLE 7.9: Results of using Method I and Method J to estimate the values of the blending
weights.

PPMI performs similarly, but slightly worse, than PPMF, and we find it curious that
the escape mechanism out-performs the blending mechanism in this particular instance,
given that PPMJ and PPMF are based on similar assumptions. The performance of PPMJ
is worse, and roughly equivalent to that of PPMB. As with PPMB, we note that PPMJ
performs significantly better than PPMC on files which do not contain natural language
text. Furthermore, the fact that PPMJ performed reasonably well given that the blending

weights were not functions of the context should be noted.

7.6.3 Pre-Transmission of Statistics

Adaptive data compression is successful due to the fact that it avoids the need to transmit
a complete predictive model prior to the data which is encoded with respect to this model
by constructing the predictive model on the fly from the data which has already been
encoded. This process requires that the predictive model begins in some well-defined
state, and the usual approach of beginning with a clean slate may be a case of throwing
the baby out with the bath water. We shall consider two techniques of pre-transmitting
some minimal amount of information about the data being compressed, the result being
a data compressor which lies somewhere between the two extremes of semi-adaptive and

adaptive.

Pre-Transmitting the Alphabet

The PPM data compressor makes the implicit assumption that the data consists of a
sequence of 8-bit symbols. In reality this is almost never the case; most data, particularly
natural language text, is represented in a smaller alphabet. One rather naivé way of giving
the decoder some information about the data prior to encoding it is to pre-transmit the
alphabet that the data will be represented in.

The overhead which this method introduces amounts to |.A| + 1 bytes, as the alphabet
may be transmitted as a byte indicating the number of symbols in the alphabet followed
by the symbols themselves. In the worst case scenario the compressed file will be 257 bytes
larger than it would have been otherwise, but we hope that the resulting improvement in

compression performance will outweigh this overhead.

Chapter 7. Data Compression 169

Knowledge of the alphabet that the data is represented in may be used to improve
compression performance by limiting M_; to making predictions about the symbols which
are known to occur in the data, and is essential if either Method G or Method H, which

both need to know |A| in order to calculate escape probabilities, are to be used.

Pre-Transmitting the Order—0 Model

An extension to pre-transmitting the alphabet is to pre-transmit the entire Markov model
of order 0. In this case a count needs to be transmitted along with each symbol. Assuming
that the counts are four bytes in length, and that no attempt is made to compress the
predictive model for transmission, this will result in an overhead of 5|.4| 4+ 1 bytes—the
worst case scenario being a compressed file which is 1281 bytes larger than it otherwise
would have been. This penalty is small enough to make exploration of this technique
worthwhile.

Knowledge of M means that M_; may be discarded entirely, since the PPM predictive
model will never escape from M. Predictive models of higher orders may be inferred
adaptively as usual, but the question arises as to whether My should be updated during
compression. It seems worthwhile to decrement the counts of M as symbols are observed,
effectively discarding statistics due to symbols which have already been encoded. This
updating process renders recency scaling unusable, but has the advantage that symbol
counts can be excluded from all higher order predictive models permanently whenever the

count of the symbol in M falls to zero.

Experimental Results

In table 7.10 we summarise the results of compressing the files in the standard testing
corpora using each of these algorithms, which we refer to as PPMC-A and PPMC-M,
where A stands for alphabet and M stands for model. PPMC-A made use of exclusion,
update exclusion and recency scaling as usual, while PPMC-M necessarily used exclusion

only.

‘ Algorithm ‘ Calgary ‘ Canterbury ‘ Average ‘

PPMC-A | 2.53bps 2.18bps 2.40bps
PPMC-M | 2.59bps 2.27bps 2.47bps

TABLE 7.10: Results of pre-transmitting the alphabet and pre-transmitting M.

Results indicate that PPMC-A performs slightly better than standard PPMC, but the
improvement is so small as to be insignificant. The performance of PPMC-M is almost
indistinguishable from that of a PPMC compressor which uses exclusion only, and we
conclude that pre-transmitting My doesn’t have any positive effects—the advantages in
the PPM compressor adapting to the data more quickly are almost exactly balanced by

the overhead of pre-transmitting M.

170 7.6. Some Modifications of and Additions to Standard PPM

7.6.4 Equivalence Exclusion

The methods of exclusion and update exclusion introduced by Moffat are found to improve
the performance of the PPM compressor, and exclusion is absolutely necessary when the
escape mechanism is being used in order to ensure that the predictions made by the PPM
compressors are valid probability distributions. We would like to introduce a third type
of exclusion, called equivalence exclusion, which can be used in place of update exclusion

when the blending mechanism is being used.

Equivalence exclusion is based upon the notion that each observation made should
have an equal contribution to the final probability distribution. This is not usually the
case, as a single observation may influence the probability estimates of several predictive
models. Equivalence exclusion works by progressively subtracting counts of observations
made by higher order predictive models from the counts of lower order predictive models,

as in equation 7.20.

Clxin,. . x:) =Cxipy.o. ,21) = C(@iny1,... ,53) (7.20)

The fact that equivalence exclusion temporarily modifies the counts of a particular
predictive model based upon the counts in the predictive models of higher order means
that recency scaling cannot be used, as it would not make sense to perform equivalence
exclusion if the counts of some of the predictive models had been scaled, and the counts
of others had not.

Experimental Results

In table 7.11 we show results for using equivalence exclusion in an ‘optimal’ PPM compres-
sor and in a PPMC compressor which used blending only. We refer to these two models
as PPMO-Q and PPMC-Q, where Q is used to denote equivalence.

‘ Algorithm ‘ Calgary ‘ Canterbury ‘ Average ‘

PPMO-Q | 1.86bps 1.63bps 1.77bps
PPMC-Q | 2.59bps 2.29bps 2.48bps

TABLE 7.11: Results of applying equivalence exclusion to a standard PPM model.

These results indicate that PPMO-Q performs better than PPMO-UE, which justifies
our intuition that equivalence exclusion is a more theoretically sound method of discount-
ing the probability estimates made by lower order predictive models. PPMC-Q performs
slightly better than standard PPMC which incorporates blending only, and out-performs
PPMA, PPMB and PPMC on the files book1, pic and plrabnl2.txt. It is significantly

worse on the file kennedy.x1s.

Chapter 7. Data Compression 171

7.6.5 Re-Determining Model Precedence

The escape mechanism used by the PPM data compressor makes the implicit assumption
that the family of predictive models are ordered in some way, so that the prediction process
has a well-defined state at which to begin, and can gradually escape to other predictive
models until the symbol which is to be encoded is assigned a non-zero probability. This
is not a problem when Markov models of various orders are used, as they have a natural
precedence, beginning at the highest order Markov model. If other predictive models are
to be added to the PPM data compressor, it may not be so obvious how they should be
ordered. A technique for determining the precedence of the predictive models based upon

the predictions they make would be useful in this instance.

Entropic Precedence

The entropy of the prediction made by each predictive model provides an indication of
the uncertainty that the predictive model has about the identity of the next symbol, and
it seems natural to order the predictive models by their levels of uncertainty. In order to
ensure that all models are assigned a non-zero uncertainty, which is necessary to avoid the
problem whereby a predictive model which has only made one observation is determined
to be completely certain, and to ensure that a predictive model is assigned maximum
uncertainty if it has made no observations, we use the Laplacian entropy Hrgpigce, Which
is calculated with respect to modified symbol probabilities as defined previously in equa-
tion 7.15.

Probabilistic Precedence

A second method of ordering the predictive models is to estimate the probability that a
particular predictive model will assign the highest probability to z;. Method I calculates
blending weights in a way which is equivalent to estimating this probability, and we may
therefore order the predictive models based upon the values of the blending weights as-
signed by Method I. Even though Method I is used to determine the precedence of the
predictive models, it is not used to blend the predictions made by the various predictive
models together, as re-determining the precedence of the predictive models is only useful

if an escape mechanism is used.

Experimental Results

In table 7.12 we summarise the results of applying these two re-ordering techniques to the
family of predictive models used in the standard PPMC data compressor. We refer to
the two algorithms as PPMC-H and PPMC-P, where H is used to denote entropy and P
stands for probability.

Both of these methods result in slightly impaired performance, and this is not sur-

prising given the fact that the Markov models used in the PPMC compressor already

172 7.6. Some Modifications of and Additions to Standard PPM

| Algorithm | Calgary | Canterbury | Average |

PPMC-H | 2.55bps 2.25bps 2.44bps
PPMC-P | 2.63bps 2.28bps 2.50bps

TABLE 7.12: Results of re-ordering the precedence of the predictive models by the methods
of entropic precedence and probabilistic precedence.

have a natural precedence. The technique of re-determining model precedence may be of
use if predictive models other than standard Markov models are introduced to the PPM

COmpressor.

7.6.6 Alternative Equivalence Classifications

The PPM data compressor implicitly uses the Markovian equivalence classification. It is
possible that alternative equivalence classifications will provide more accurate statistics
about the data, and we are interested in exploring this.

Consider the context (x;_9,z; 1) which is used to make a prediction about z;, the
next symbol in the sequence s,. If the symbol z; has never been in this context observed
before, the PPM compressor will escape, and the context (x,z; 1) will be used, where x
denotes a special wildcard symbol which matches every possible symbol which has ever im-
mediately preceded x; 1. If z; has never been in this context either, the PPM compressor
escapes once more and uses the context (x,x) to make a prediction. These three contexts
correspond exactly to the equivalence classifications used by Markov models of orders 2,
1 and 0 respectively.

We note that the context (z;_2,) is never used, even though it seems quite reasonable
to do so. This context occurs within the same finite window of symbols as the other
contexts, and would be particularly useful in situations where x;_5 had been observed
much more frequently than z; ;. We introduce wildcard equivalence classification in an
attempt to incorporate predictive models which use these wildcard contexts into the PPM
data compressor.

The question arises as to how these new equivalence classes should be used, and we

consider three possibilities.

e Add a new predictive model corresponding to each of the new equivalence classi-
fications. Both the blending and escape mechanisms become more complicated in
this instance, as there are many more predictive models to choose from (a PPM
data compressor of order 3 uses a family of 5 predictive models, but a wildcard
PPM data compressor of the same order would use a family of 9 predictive models).
The precedence of the wildcard predictive models is not very well defined, meaning
that we would need to re-determine the precedence of these predictive models, via
methods previously discussed, prior to using them to make a prediction if the escape

mechanism was to be used.

Chapter 7. Data Compression 173

e Combine the statistics of all predictive models whose contexts contain an equal num-
ber of wildcard symbols. This is equivalent to defining another level of equivalence
classification, and may be achieved easily by performing equivalence exclusion on
the models individually, and then summing the counts of the predictive models in

each meta-equivalence class.

e Whenever the escape mechanism requires a predictive model of order k, select a
predictive model with m — k wildcard symbols in its context from all such predictive

models using some sort of selection criterion.

Of these, the second method seems to be the most practical, and will be the one
for which we present experimental results in this section. This method is equivalent to
estimating a probability distribution for the symbols which can follow the context (x,y)
by counting the symbols which can follow the context (z,7V T, y), where T indicates every
possible symbol apart from z. as calculated by performing equivalence exclusion on the
context (x,y), ¥ indicates every possible symbol apart from y, as calculated by performing
equivalence exclusion on the context (x,*), and V is the logical OR. operator, denoting a

sum of the two contexts.

Experimental Results

In table 7.13 we summarise experimental results for the wildcard PPM predictive model,
for both the ‘optimal’ PPM compressor and the standard PPMC compressor, which we
refer to as PPMO-W and PPMC-W respectively, where W stands for wildcard.

| Algorithm | Calgary | Canterbury | Average |

PPMO-W | 1.94bps 1.75bps 1.87bps
PPMC-W | 2.57bps 2.31bps 2.48bps

TABLE 7.13: Results of using wildcard equivalence models and class-based models in the
PPM data compression system.

It is indeed disheartening to discover that PPMO-W performs no better than the other
‘optimal’ PPM compressors which were presented in table 7.5. We put this down to the
fact that the wildcard model is of most use in situations where particular contexts have not
been observed very often, or have not been observed at all, and that low order character-
level Markov models tend not to suffer significantly from such problems. It is likely that
the wildcard model may be of use in other situations; a word-level language model may

benefit from its application, for instance.

Given the performance of PPMO-W, it is hardly surprising that PPMC-W performs
slightly worse than the equivalent PPMC compressor.

174 7.6. Some Modifications of and Additions to Standard PPM

7.6.7 Incorporating Long-Range Statistics

One drawback of using Markov models in the PPM data compressor is the fact that Markov
models only take into account a short local context when estimating the probability of the
next symbol in the sequence. The incorporation of long-range statistics has the potential to
improve results in situations where the value of the next symbol is constrained by a symbol
in the distant past. John Cleary, William Teahan and Ian Witten applied a variable-length
context model to their PPM compressor, reporting an average compression performance
of 2.34bps over the Calgary corpus [10]. However, Suzanne Bunton has since pointed out
that Moffat had reported results superior to this when using a PPMC compressor of order
5 [6,19].

We shall take a different approach when incorporating long-range statistics into the
PPM compressor; an approach which transmits the data out-of-order in a way which
allows standard Markov models to constrain their predictions based upon events which
are known to occur in the future. We call this method goal-oriented modelling.

Our work on goal-oriented modelling originated in the rather trivial pastime of gener-
ating random sentences for use in a conversation simulator which we were developing for
entry into the annual Loebner Contest in Artificial Intelligence [18], which is an instanti-
ation of the Turing Test [25]. We required a technique of generating a sentence using a
Markov model (which we thought desirable, because generations made by Markov models
tend to be original, in that they do not occur in the training corpus, are occasionally
amusing, and are grounded in real-world data) while constraining the generation using
one or more key-words, in order to make the generated sentence seem more appropriate

to the sentences the human judge had previously typed to the conversation simulator.

The ‘Fractal’ Language Model

Our first solution to this problem was to develop a ‘fractal’ language model which col-
lects statistics about the words which occur anywhere between two specified words which
are separated by an arbitrary distance within the same sentence. Generation of a novel
sentence begins with a template which contains a number of target words, and is a mat-
ter of “filling in the gaps” between these words by using the ‘fractal’ language model to
generate words which may appear between them. This generation procedure was imple-
mented recursively, in a process vaguely reminiscent of the algorithm used to generate
two-dimensional fractal ‘landscapes’.

The ‘fractal’ language model estimates the probability of a word x; occurring between
a pair of words x;, z;, which are separated by an arbitrary number of intervening words

within the same sentence, as in equation 7.21.

C(:El, y gy ,(I:k)
C((IIZ, ,:Ek)

P(xj|Mfmctalaxiaxk) ~ (7.21)

Chapter 7. Data Compression 175

A major problem with this algorithm is that the stopping-criterion used during gen-
eration is not very well-defined, with the result that many generations tend to be quite
lengthy.>” Even so, the generated sentences did exhibit long-distance dependencies, a prop-
erty which is desirable in sentence generation, but unattainable using standard Markov

models.

We cannot resist giving some example generations made by the ‘fractal’ language
model, in order to illustrate its ability to capture long-distance dependencies. Prior to
doing this, we show some generations made by a 1% -order Markov model, to enable
a comparison to be made. Figure 7.8 shows four sentences generated by a 1%-—order
Markov model which was inferred from 174 sentences taken from the Probert E-Text
Encyclopaedia, Edition 10.0 [2]. This corpus is available from the World Wide Web site
of this dissertation [1].

The hard skeletal part of attraction between the end of smell.

An alcoholic drink of modified skin glands of chalk and living
substance of vision.

Ecology is the organ of the fruit of the tendon is another name
for the arm.

The carcass of the Kiwi is another country or by the bladder is a
missile is a small portable musical instrument with a baker is a German
composer.

FIGURE 7.8: Four sentences generated by a 1%‘—order Markov model.

In figure 7.9 we show three sentences generated by a ‘fractal’ language model inferred
from the same corpus. These sentences were generated by forming a template which
contained a pair of target words which had been previously observed together in at least
one of the training sentences, and “filling in the gaps” between these target words. Note
that these sentences do exhibit long-distance dependencies. For example, in the second
sentence the words Dance and movement are clearly related, even though they are widely
separated, and these two words were, in fact, the target words used when generating this

sentence.

The 1%~order Markov model is capable of generating the same sentences as the ‘fractal’
language model, but in practice it is considerably more difficult to constrain the generations
of a Markov model in this way. Furthermore, the probability assigned to generations such
as these by the Markov model will be less than the probability assigned to them by the

‘fractal’ language model, due to the fact that the Markov model is less constrained.

176 7.6. Some Modifications of and Additions to Standard PPM

A sword is an offensive weapon designed chiefly for the sale and
consumption of deep unconsciousness.

Dance is a person who suffers from the carcass of movement.

Cement is information, especially that stored in a small, usually
tree dwelling primate.

FIGURE 7.9: Three sentences generated by the ‘fractal’ language model.

The Goal-Oriented Language Model

We were concerned with the fact that the ‘fractal’ language model suffered a major problem
when generating sentences, due to a rather lax stopping criterion for generation, and we
therefore concentrated on constraining this language model further. This was ultimately
achieved by updating the probability estimate made by the model as in equation 7.22—
that is, the model collects statistics about symbols x; which occur not anywhere between
the contextual symbol pair z;, z; as before, but immediately after the symbol z;. It soon
became clear that this model was equivalent to a family of 1*’~order Markov models, each

of which is constrained by a different symbol xz; which occurs somewhere in the future.

C(xi,xj,..., L)
C(xia s axk)

P(xj|Mgoa, Tir i) = (7.22)

This insight prompted the development of a general goal-oriented language model
which consists of a family of Markov models of various orders, each of which is constrained
by a different symbol. We refer to such models as M7k, where n indicates the order of
the model, and zj indicates the constraining symbol, which may be thought of as the goal
which the model will head towards when used generatively.”® We also introduce the model
denoted M7, which is unconstrained, and is therefore equivalent to a standard nt'—order
Markov model.

The goal-oriented language model will obviously require considerably more storage
space than a standard Markov model of the same order. In fact, because the constraining
future symbol may occur anywhere between the next symbol and the end of the sentence,

it will require more storage space than a traditional Markov model of order n + 1.

Definition 7.1. We define a string si to be a prefix string of a string s, if the first k

words in each of the two strings match, and n > k.

Inference of an n'*—order goal-oriented language model is a simple process. For each
prefix string s, of the training data s,, we update the statistics of model Mk by per-

forming inference on the string s,_; using regular Maximum Likelihood techniques. The

Chapter 7. Data Compression 177

goal-oriented model may be used as a predictor by selecting a goal symbol zj, and combin-
ing the predictions made by the goal-oriented models M¥* for various n via the standard
PPM approach.

In figure 7.10 we show five amusing generations made by a 1% -order goal-oriented
model which was inferred from the same training corpus as before, and where the gener-
ations were seeded with target words in the same manner. These generations exhibit the
same long-distance dependencies as those produced by the ‘fractal’ language model with
the advantage that all generations are of a reasonable length (i.e. the average length of a
generated sentence is approximately the same as the average length of a sentence in the

training data).

An acronym is a curved wooden weapon of other words.

A symbol is a suspended brass disk which represents something
else.

Bone is a hollow shell filled with the external coating of an ani-
mal.

Leonardo da Vinci was an Italian artist and expert in Kung Fu
who popularised the martial arts in unpublished note books.

The nose is an English naturalist. ~He published his theory of
smell.

FIGURE 7.10: Five sentences generated by the goal-oriented model.

Data Compression with the Goal-Oriented Language Model

We are now in a position to consider the application of the goal-oriented model to the
data compression problem. The goal-oriented model can be used to predict the value of x;
as described previously, but this requires knowledge of a target symbol zj, where k& > i.
Data compression may be achieved by identifying the target symbol zj, first, encoding x
with respect to Mg, escaping to the model of order -1 if necessary, so that the decoder is
aware of the value of zj, and then encoding the string z;,... ,zr_1 by applying standard
PPM techniques to the family of models MZk for various n. Once the target symbol is
reached, a new target can be selected, and this process iterated until the entire sequence
has been compressed.

We have considered two ways of determining the identity of the target symbol.

e Require that the encoder and decoder decide on the target symbols a priori. For
example, it may be decided that every tenth symbol in the data being compressed

is a target symbol.

178 7.6. Some Modifications of and Additions to Standard PPM

e Get the encoder to look-ahead in order to find a target symbol which will constrain
the goal-oriented model the most, resulting in the best compression of the intervening
symbols. This method requires that additional information be transmitted to the
decoder—we may need to transmit the target symbol twice, for instance, or the
number of intervening symbols, so that the decoder is able to determine when the

target symbol has been reached.

Experimental Results

For the purposes of this experiment, we chose to implement the first of the two methods
of determining the target symbol, introducing a new parameter to the PPM model which
determines the number of intervening symbols which occur between the target symbols.
When this parameter is set to zero, compression performance is equivalent to that of
standard PPM. The best performing non-zero value of this parameter was found to be 10.
Table 7.14 summarises the performance of an optimal goal-oriented model over both the

Calgary and Canterbury corpora.

‘ Algorithm ‘ Calgary ‘ Canterbury ‘ Average ‘
| PPMO-G | 2.90bps | 2.7lbps | 2.83bps |

TABLE 7.14: Results of applying the goal-oriented model to a PPM compressor.

The performance of the goal-oriented model, when used as part of an ‘optimal’ PPM
data compressor, is incredibly poor. This is due to the fact that goal-oriented modelling is
most effective when a large amount of training data is available; the constraints placed on
the model effectively extends, by several orders of magnitude, the time it takes to adapt to
the data being compressed. However, when a goal-oriented model is used in the standard
PPMC compressor, we find that performance of the file geo is improved by 20%, and
performance on the file pic is improved by 28%. This suggests that these two files contain
constraints which are not captured by the traditional low order Markov models, and that
the alphabet of symbols is sufficiently small to enable the goal-oriented model to adapt to
the data rapidly.

We speculate that the goal-oriented language model may be of use in other natural
language applications, due to its ability to capture long distance dependencies, and due
to the fact that it may be easily used to generate random sentences which are constrained

by a number of target words.

7.6.8 Discussion

In this section we have presented various novel additions and modifications to the tech-
niques used by the standard PPM data compressor, and these were divided into seven
categories. None of the techniques we introduced significantly improved the performance

of the PPM data compressor, and some of them adversely affected its performance. It is

Chapter 7. Data Compression 179

our belief, however, that all of the techniques introduced were worth investigating, and
that some of them, notably equivalence exclusion, the wildcard predictive model and the

goal-oriented language model, may prove to be useful in other domains.

7.7 The UpWrite Compressor

We would like to conclude this chapter with a look at how the UpWrite Predictor may be
applied to the data compression problem.

Such a task is fraught with difficulties; not the least of which is due to the fact that the
UpWrite Predictor must be made adaptive in order to be useful in this domain. However,
it is our strong belief that adaptive data compression provides a suitable way of testing
the performance of a predictive model, because it encodes the model implicitly in the
compressed representation of the data, and therefore embodies the principle of Occam’s
razor which dictates that, all else being equal, simpler models are preferable over complex
ones.

Our solution to this dilemma is as follows. Compression begins with a preprocessing
stage, during which the UpWrite Predictor constructs a hierarchical representation of the
data being compressed, with respect to the sub-objects and quotient-objects it discovers
in the data. The higher level alphabet of symbol sequences and symbol classes is then
encoded for transmission, followed by the UpWritten data itself, which is compressed using
the standard PPMC compressor.

The stopping criterion used during the UpWrite phase of this process is to calculate, at
the end of each iteration, the size of the encoded representation of the higher level alphabet,
and to halt the UpWrite process as soon as this size exceeds some predetermined threshold
value.

The motivations behind approaching the problem in this manner are twofold.

e The UpWritten version of the data should be abstracted in such as way that the
standard PPMC compressor can extract more redundancy from it, and that the
benefits of this will outweigh the overheads of transmitting the higher level alphabet

of symbol classes and symbol sequences;

e Although this approach is computationally expensive, it is much more efficient than

implementing a truly adaptive version of the UpWrite Predictor.

Experimental Results

Table 7.15 summarises the results of using the UpWrite Predictor to preprocess the data
which is subsequently compressed by the standard PPMC compressor. Results are shown
for three different sizes of the higher level alphabet which contains the symbol classes and
symbol classes discovered by the UpWrite Predictor: 256 bytes, 1024 bytes and 2048 bytes.

180 7.7. The UpWrite Compressor

File | PPMC | PPMU-256 | PPMU-1024 | PPMU-2048 |

bib | 2.11bps 2.06bps 2.01bps 1.99bps

bookl | 2.50bps 2.48bps 2.44bps 2.44bps

book2 | 2.24bps 2.20bps 2.17bps 2.11bps

geo | 4.82bps 5.02bps 4.98bps 4.94bps

news | 2.66bps 2.61bps 2.59bps 2.56bps

objl | 3.66bps 3.70bps 3.73bps 3.75bps

obj2 | 2.56bps 2.42bps 2.32bps 2.31bps

paperl | 2.48bps 2.42bps 2.44bps 2.47bps
paper2 | 2.45bps 2.42bps 2.44bps 2.47bps
paper3 | 2.70bps 2.69bps 2.75bps 2.81bps
paper4 | 2.92bps 3.00bps 3.14bps 3.23bps
paper5 | 3.00bps 3.09bps 3.17bps 3.26bps
paper6 | 2.52bps 2.49bps 2.50bps 2.54bps

pic | 0.97bps 0.78bps 0.77bps 0.77bps

progc | 2.48bps 2.43bps 2.43bps 2.45bps

progl | 1.87bps 1.80bps 1.71bps 1.66bps

progp | 1.82bps 1.69bps 1.62bps 1.61bps

trans | 1.74bps 1.62bps 1.54bps 1.46bps
Average | 2.53bps 2.49bps 2.49bps 2.49bps
alice29.txt | 2.30bps 2.27bps 2.30bps 2.33bps
asyoulik.txt | 2.51bps 2.53bps 2.58bps 2.63bps
cp.html | 2.35bps 2.34bps 2.40bps 2.44bps
fields.c | 2.13bps 2.00bps 2.01bps 2.08bps
grammar.lsp | 2.40bps 2.38bps 2.56bps 2.74bps
kennedy.x1s | 1.10bps 1.37bps 1.22bps 1.11bps
lcet10.txt | 2.18bps 2.15bps 2.13bps 2.05bps
plrabnl2.txt | 2.45bps 2.43bps 2.45bps 2.47bps
ptt5 | 0.98bps 0.78bps 0.77bps 0.77bps

sum | 2.70bps 2.52bps 2.47bps 2.47bps

xargs.1l | 2.98bps 3.06bps 3.23bps 3.40bps
Average | 2.19bps 2.16bps 2.19bps 2.23bps

TABLE 7.15: Results of compressing an UpWritten version of the data, with the specified
maximum size of the alphabet of sub-objects and quotient-objects, together with the
results of standard PPMC for comparison.

Chapter 7. Data Compression 181

From these results, it is evident that compressing an UpWritten version of the data
results in better performance, even when the overheads associated with transmitting the
higher level alphabet are taken into account. The best performing UpWrite compressor
overall is the one which limited the size of the higher level alphabet to 256 bytes, but the
performance of the UpWrite compressor on individual files tends to vary both with the

file size and the type of data which it contains.

We see that the performance of the UpWrite compressor on reasonably large natural
language files, such as bookl and book2, tends to improve as the maximum size of the
higher level alphabet is increased. This suggests that the structure found by the UpWrite
Predictor improves compression, and that the overheads associated with transmitting the
UpWritten alphabet are outweighed by the advantages of UpWriting the data prior to

compressing it.

Files which contain quasi-natural language data, but which are more constrained, such
as bib, progl and progp, tend to be compressed rather well by the UpWrite compres-
sor, even for large sizes of the UpWritten alphabet. This seems to be due to the extra
constraints inherent in such data. The fact that the two files which contain C source
code do not compress as well as the files which contain source code in other programming
languages suggests that the syntax of the C language is less constrained, and that the C

source files contain more natural language comments. This is indeed the case.

Smaller natural language files, such as the six files paper1 to paper6, do not compress
as well. This is due to the fact that the advantages gained by UpWriting the data are
quickly outweighed by the overhead of transmitting the higher level alphabet, as the size

of this alphabet is a significant proportion of the size of the file being compressed.

Files which contain little, if any, language like structure, such as geo, objl and
kennedy.xls, tend to exhibit a worse compression performance under the UpWrite com-
pressor than the standard PPMC compressor. This is indicative of the fact that the
UpWrite Predictor incorporates language-like structure into the hierarchical representa-
tion of the data which it constructs, and files which do not contain this structure suffer
due to the overheads of transmitting the higher level alphabet. The file pic is compressed
particularly well because long sequences which correspond to empty space in the image

are discovered by the UpWrite Predictor.

Overall the UpWrite Predictor results in an improvement in the performance of the
PPMC compressor. This is sufficient to illustrate that the structure found by the UpWrite
Predictor is useful, in that it enables us to better compress the data with respect to the
model. However, the UpWrite compressor is computationally inefficient, and its perfor-
mance varies too greatly on individual files for it to be used as part of a genuine data

COmpressor.

182 7.8. Summary and Conclusion

7.8 Summary and Conclusion

In this chapter we have presented an overview of the field of data compression, concentrat-
ing on adaptive statistical data compression which provides state-of-the-art performance.
Results of experiments performed on the application of many novel improvements and
additions to the standard PPM data compressor were presented, and it was concluded
that although the suggested modifications to PPM did not significantly improve the per-
formance of the compressor, the individual techniques may be worth pursuing in other
problem domains. The UpWrite Predictor was then successfully applied to the data com-
pression problem, and this served to give an example of the fact that the UpWrite Predictor

may be of use in applications which require a predictive model.

Notes

46 Data compression is more properly known as source coding. We have deliberately

chosen to use the term data compression throughout this dissertation.

47 Although we talk about transmission of the encoded representation of the data, data
compression may also be used to reduce the storage space required. We consider trans-
mission and storage to be the same operation, and tend to prefer the term transmission

due to its origins in Information Theory.

48 Other researchers have experimented with the notion of lossy text compression in the
past [27], and stenography is an example of real-life lossy text compression, as it requires

human intervention to produce an approximation to the original text [12].
49 Messages and data are synonymous.
%0 Or vice-versa—the order does not matter as long as it is consistent.
51 This unfortunate terminology is pervasive throughout the data compression literature.

52 Applications other than data compression may regard the generated data shown in

figure 6.34 to be far from sufficient!

53 The introduction of the Canterbury corpus evidently means that researchers are now

fine-tuning their algorithms to two corporal

54 Tt should be noted the the performance of our implementations of these data com-
pressors diverges slightly from the performance reported in the literature, and this seems

to be due to implementation-specific factors which we have not been successful in locating.

55 Recall that the files pic and ptt5 are identical.

References 183

5 This simply means that the probability distribution is initially uniform.

57 The stopping criterion used is to continue generation until all adjacent word-pairs
in the generated sentence have been observed at least once in the training corpus. The
problem is that word pairs such as the-the are never adjacent, and that the word the
occurs between this pair with a high probability, and is therefore likely to be generated
by the model.

%8 Traditional Markov models generate sentences in a random-walk fashion, stumbling
upon the end of the sentence by chance. Goal-oriented models, however, generate sentences
via a constrained random walk; they are aware of certain target words through which they

must pass on their way to the end of the sentence.

References

[1] Jason Hutchens’ PhD web site. Available at:
http://ciips.ee.uwa.edu.au/ "hutch/phd/

[2] The Probert e-text encyclopaedia. Available at:
http://www.pins.co.uk/upages/probertm/

[3] J. Aberg, Yu. M. Shtarkov, and B. J. M. Smeets. Towards understanding and im-
proving escape probabilities in PPM. In James A. Storer and Martin Cohn, editors,
Data Compression Conference (DCC ’97), pages 22-31, 1997.

[4] Ross Arnold and Tim Bell. A corpus for the evaluation of lossless compression algo-
rithms. In James A. Storer and Martin Cohn, editors, Data Compression Conference
(DCC ’97), pages 201-210, 1997.

[5] Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text Compression. Prentice
Hall, 1990.

[6] Suzanne Bunton. On-Line Stochastic Processes in Data Compression. PhD thesis,
University of Washington, 1996.

[7] Suzanne Bunton. An executable taxonomy of on-line modeling algorithms. In
James A. Storer and Martin Cohn, editors, Data Compression Conference (DCC
'97), pages 42-51, 1997.

[8] Suzanne Bunton. A generalization and improvement to PPM’s “blending”. Technical
report, The University of Washington, 1997. Technical Report UW-CSE-97-01-10.

[9] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Systems Research Center, 130 Lytton Ave., Palo Alto,
California 94301, May 1994.

184 References

[10] John G. Cleary, W.J. Teahan, and Ian H. Witten. Unbounded context lengths for
PPM. In Data Compression Conference (DCC ’95), pages 52-61, 1995.

[11] John G. Cleary and Ian H. Witten. Data compression using adaptive coding and
partial string matching. IEEE Transactions on Communications, COM-32(4):396—
402, April 1984.

[12] David Crystal. The Cambridge Encyclopedia of Language. Cambridge University
Press, 1987.

[13] Peter Fenwick. Block sorting text compression. In 19th Australasian Computer Sci-

ence Conference, January 1996.

[14] Jeff Gilchrist. The archive compression test. Available on the World Wide Web at
http://act.by.net/

[15] Mauro Guazzo. A general minimum-redundancy source-coding algorithm. IEEE
Transactions on Information Theory, 26(1):15-25, January 1980.

[16] Paul Glor Howard. The Design and Analysis of Efficient Lossless Data Compression
Systems. PhD thesis, Brown University, 1993.

[17] David A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the I.R.E. (now known as Proceedings of the IEEE), 40:1098-1101,
September 1952.

[18] Jason L. Hutchens. Introducing MegaHAL. In David M. W. Powers, editor, NeMLaP3
/ CoNLL98 Workshop on Human-Computer Conversation, ACL, pages 271-274, Jan-
uary 1998.

[19] Alistair Moffat. Implementing the PPM data compression scheme. IEEE Transactions
on Communications, 38(11):1917-1921, November 1990.

[20] Alistair Moffat, Radford Neal, and Ian H. Witten. Arithmetic coding revisited. ACM
Transactions on Information Systems, 16(3):256-294, July 1998.

[21] J. Rissanen and G. G. Langdon. Arithmetic coding. IBM Journal of Research and
Development, 23(2):149-162, March 1979.

[22] Frank Rubin. Arithmetic stream coding using fixed precision registers. IEEE Trans-
actions on Information Theory, 25(6):672—675, November 1979.

[23] C.E. Shannon. Prediction and entropy of printed English. The Bell System Technical
Journal, XXX (1):50-64, January 1951.

[24] W.J. Teahan and John G. Cleary. Models of English text. In Data Compression
Conference (DCC ’97), pages 12-21, 1997.

References 185

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

A .M. Turing. Computing machinery and intelligence. In D.C. Ince, editor, Collected
works of A.M. Turing: Mechanical Intelligence, chapter 5, pages 133-160. Elsevier
Science Publishers, 1992.

Ross Neil Williams. Adaptive Data Compression. PhD thesis, University of Adelaide,
1989.

Tan H. Witten, Timothy C. Bell, Alistair Moffat, Craig G. Nevill-Manning, Tony C.
Smith, and Harold Thimbleby. Semantic and generative models for lossy text com-
pression. The Computer Journal, 37(2):83-87, 1994.

J. Gerard Wolff. Language acquisition, data compression and generalization. Lan-
guage & Communication, 2(1):57-89, 1982.

J. Gerard Wolff. Learning syntax and meanings through optimization and distribu-
tional analysis. In Y. Levy, [.M. Schlesinger, and M.D.S Braine, editors, Categories
and Processes in Language Acquisition, chapter 7, pages 179-215. Lawrence Erlbaum,
1988.

J. Gerard Wolff. Computing as compression: An overview of the SP theory and
system. New Generation Computing, 13:187-214, 1995.

J. Gerard Wolff. Computing as compression: SP20. New Generation Computing,
13:215-241, 1995.

J. Gerard Wolff. Learning and reasoning as information compression by multiple as-
signment, unification and search. In A. Gammerman, editor, Computational Learning
and Probabilistic Reasoning, pages 67-85. Chichester: Wiley, 1996.

George Kingsley Zipf. Human Behavior and the Principle of Least Effort: An Intro-
duction to Human Ecology. Addison Wesley, 1949.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEFE
Transactions on Information Theory, 23(3):337-343, May 1977.

J. Ziv and A. Lempel. Compression of individual sequences via variable rate coding.
IEEE Transactions on Information Theory, 24(5):530-535, September 1978.

Chapter 8

Conclusion

“I don’t mean to deny that the evidence is in some ways very
strongly in favour of your theory,” said he. “I only wish to point
out that there are other theories possible. As you say, the future

will decide. Good-morning!”

The Return of Sherlock Holmes
SIR ARTHUR CONAN DOYLE

8.1 Introduction

In this dissertation we have developed and presented the UpWrite Predictor, a general
framework for the modelling of symbolic time series, with applications in natural language
processing and data compression. We have shown that two types of structure, sub-objects
and quotient-objects, may be found in data from the sequence of predictions made about
the data by a fairly simple predictive model, and that this structure may be used to
abstract the data, allowing the model to generalise to unseen data.

The first three chapters of this dissertation provided necessary background material
on Information Theory, the inference of predictive models, and the UpWrite. These three
domains were brought together in chapter 5, which saw the development of the UpWrite
Predictor. Various techniques for finding symbol sequences and symbol classes in symbolic
time series were explored, and the novel methods of agglutination and agglomeration
were developed and used in the version of the UpWrite Predictor which was subsequently
implemented. Experiments were performed on this version of the UpWrite Predictor
in chapter 6, and results of these experiments showed that the UpWrite Predictor is
successful in extracting both types of structure from data. We then introduced the data
compression problem, presenting several novel additions and modifications to the standard
data compression techniques before showing that the UpWrite Predictor may be used to
improve the performance of a traditional PPMC data compressor by UpWriting the data

prior to compression taking place.

188 8.2. Future Work

8.2 Future Work

Our work on the UpWrite Predictor marks the beginning of a new methodology for the

inference of predictive models. As such, a large amount of potential work remains.

e In this dissertation we developed a particular implementation of the UpWrite Pre-
dictor which found structure in data using the two techniques of agglutination and
agglomeration. Exploration of other techniques for finding structure in data may be

worthwhile.

e An insight into the problem of syntactic category acquisition was made in chapter 5,
and the ramifications of this insight need to be explored. This may result in new,
more successful algorithms for the automatic extraction of ambiguous symbol classes

from data.

e The UpWrite Predictor uses a greedy process to incorporate structure found from
the data into the predictive model, and this may result in the premature inclusion of
higher level structure to the detriment of overall performance. Examination of vari-
ous techniques for the detection and correction of errors made during the UpWrite

needs to be performed.

e Performance of the UpWrite Predictor needs to be evaluated on very large corpora of
natural language text. This has proved difficult due to the computationally expensive
nature of our implementation of the UpWrite Predictor, but alternative implemen-
tations may make a detailed exploration of performance on natural language text

feasible.

e The UpWrite Predictor is a general predictive model, and we would like to test its

performance on a wide variety of real-world applications which use predictive models.

e The performance of the wildcard language model introduced in this dissertation, to-
gether with the technique of equivalence exclusion necessary to blend the predictions

made by several wildcard contexts together, needs to be evaluated in other domains.

e Similarly, the goal-oriented language model introduced in this dissertation needs to

be more completely evaluated.

We give as references for this concluding chapter a list of the conference papers, tech-
nical reports, research reports et cetera which were produced during the course of our

research, and details of technical presentations which have been given.

References

[1] Jason Hutchens’ PhD web site. Available at:
http://ciips.ee.uwa.edu.au/ hutch/phd/

References 189

[2] Jason L. Hutchens. Adding a dynamic dictionary to PPM. Unpublished research
report. Available at:
http://ciips.ee.uwa.edu.au/ hutch/phd/report4.ps.gz

[3] Jason L. Hutchens. The chunk compressor. Unpublished research report. Available
at:

http://ciips.ee.uwa.edu.au/"hutch/phd/report6.ps.gz

[4] Jason L. Hutchens. Does chunking work? Unpublished research report. Available at:
http://ciips.ee.uwa.edu.au/"hutch/phd/report5.ps.gz

[5] Jason L. Hutchens. Extensions to the PPM data compression scheme. Unpublished

technical report. Email hutch@ciips.ee.uwa.edu.au for details.

[6] Jason L. Hutchens. Finding chunks in symbolic time series. Technical presentation
given as part of the CIIPS seminar series. Available at:

http://ciips.ee.uwa.edu.au/ hutch/phd/talk5.ps.gz

[7] Jason L. Hutchens. Finding chunks in symbolic time series. Unpublished technical
report. Available at:
http://ciips.ee.uwa.edu.au/ hutch/phd/researchl.ps.gz

[8] Jason L. Hutchens. Future directions. Unpublished research report. Available at:
http://ciips.ee.uwa.edu.au/ hutch/phd/report7.ps.gz

[9] Jason L. Hutchens. A goal-oriented language model. Unpublished technical report.
Available at:
http://ciips.ee.uwa.edu.au/ "hutch/phd/researchb.ps.gz

[10] Jason L. Hutchens. Grammatical inference - a magical mystery tour. Technical
presentation given as part of the CIIPS seminar series. Available at:

http://ciips.ee.uwa.edu.au/"hutch/phd/talkl.ps.gz

[11] Jason L. Hutchens. Grammatical inference and the UpWrite Predictor. Unpublished
research report. Available at:

http://ciips.ee.uwa.edu.au/ hutch/phd/reportl.ps.gz

[12] Jason L. Hutchens. Grammatical inference (pure and simple). Technical presentation
given as part of the CIIPS seminar series. Available at:

http://ciips.ee.uwa.edu.au/ "hutch/phd/talk4.ps.gz

[13] Jason L. Hutchens. Grammatical inference: What I think. Unpublished research
report. Available at:
http://ciips.ee.uwa.edu.au/ hutch/phd/report2.ps.gz

190 References

[14] Jason L. Hutchens. A hybrid PPM/LZ data compression scheme. Unpublished tech-
nical report. Available at:

http://ciips.ee.uwa.edu.au/ hutch/phd/research2.ps.gz

[15] Jason L. Hutchens. Insights into the problem of syntactic category acquisition. Un-

published technical report. Email hutch@ciips.ee.uwa.edu.au for details.

[16] Jason L. Hutchens. Nonl: A non-intelligent conversation simulator. Technical pre-
sentation given as part of the CIIPS seminar series. Available at:
http://ciips.ee.uwa.edu.au/ "hutch/phd/talké.ps.gz

[17] Jason L. Hutchens. The Nonl conversation simulator. Unpublished technical report.
Available at:
http://ciips.ee.uwa.edu.au/"hutch/phd/research9.ps.gz

[18] Jason L. Hutchens. Results of online language experiments. Unpublished technical

report. Email hutch@ciips.ee.uwa.edu.au for details.

[19] Jason L. Hutchens. Text compression and language modelling. Technical presentation
given as part of the CIIPS seminar series. Available at:
http://ciips.ee.uwa.edu.au/ hutch/phd/talk3.ps.gz

[20] Jason L. Hutchens. Why doesn’t my computer understand me? Technical presenta-
tion given as part of the CIIPS seminar series. Available at:
http://ciips.ee.uwa.edu.au/ hutch/phd/talk7.ps.gz

[21] Jason L. Hutchens. Natural language grammatical inference. Honours thesis, Depart-
ment of Electrical & Electronic Engineering, The University of Western Australia,
Australia 6907, 1994.

[22] Jason L. Hutchens. How to pass the Turing test by cheating. Technical Report
TR97-05, The Centre for Intelligent Information Processing Systems, Department of
Electrical & Electronic Engineering, The University of Western Australia, Australia
6907, 1997.

[23] Jason L. Hutchens. Language acquisition and data compression. In Sarah Boyd,
editor, 1997 Australasian Natural Language Processing Summer Workshop, pages
39-49, February 1997.

[24] Jason L. Hutchens. Finding structure via compression. In David M. W. Powers, editor,
NeMLaP3 / CoNLL98: New Methods in Language Processing and Computational
Language Learning, ACL, pages 79-82, January 1998.

[25] Jason L. Hutchens. Introducing MegaHAL. In David M. W. Powers, editor, NeMLaP3
/ CoNLL98 Workshop on Human-Computer Conversation, ACL, pages 271-274, Jan-
uary 1998.

Epilogue

“But do you mean to say,” I said, “that without leaving your room you can
unravel some knot which other men can make nothing of, although they have

seen every detail for themselves?”

“Quite so. I have a kind of intuition that way. Now and again a case turns
up which is a little more complex. Then I have to bustle about and see things
with my own eyes. You see I have a lot of special knowledge which I apply
to the problem, and which facilitates matters wonderfully. Those rules of
deduction laid down in that article which aroused your scorn are invaluable to
me in practical work. Observation with me is second nature. You appeared to
be surprised when I told you, on our first meeting, that you had come from

Afghanistan.”
“You were told, no doubt.”

“Nothing of the sort. I knew you came from Afghanistan. From long habit
the train of thoughts ran so swiftly through my mind that I arrived at the
conclusion without being conscious of intermediate steps. There were such
steps, however. The train of reasoning ran, ‘Here is a gentleman of a medical
type, but with the air of a military man. Clearly an army doctor, then. He has
just come from the tropics, for his face is dark, and that is not the natural tint
of his skin, for his wrists are fair. He has undergone hardship and sickness, as
his haggard face says clearly. His left arm has been injured. He holds it in a
stiff and unnatural manner. Where in the tropics could an English army doctor
have seen much hardship and got his arm wounded? Clearly in Afghanistan.’
The whole train of thought did not occupy a second. I then remarked that you

came from Afghanistan, and you were astonished.”

A Study in Scarlet
SIR ARTHUR CONAN DOYLE

Complete Bibliography

This is a complete bibliography of all of the papers, theses, books, technical reports and

so on which were read during the production of this dissertation.

J. Aberg, Yu. M. Shtarkov, and B. J. M. Smeets. Towards understanding and improv-
ing escape probabilities in PPM. In James A. Storer and Martin Cohn, editors, Data
Compression Conference (DCC ’97), pages 22-31, 1997.

Michael Alder, Christopher deSilva, and Yianni Attikiouzel. Automatic knowledge ac-
quisition. Technical Report TR90-14, The Centre for Intelligent Information Processing
Systems, Department of Electrical & Electronic Engineering, The University of Western
Australia, Australia 6907, 1990.

Michael Alder, Christopher deSilva, and Yianni Attikiouzel. On the automatic generation
of higher levels of description. Technical Report TR90-15, The Centre for Intelligent
Information Processing Systems, Department of Electrical & Electronic Engineering, The
University of Western Australia, Australia 6907, 1990.

Michael D. Alder. Inference of syntax for point sets. In E. S. Gelsema and L. N. Kanal,
editors, Pattern Recognition in Practice IV: Multiple Paradigms, Comparative Studies
and Hybrid Systems, number 16 in Machine Intelligence and Pattern Recognition, pages
45-58. Elsevier Science B.V., June 1994.

Michael D. Alder. Principles of pattern classification: Statistical, neural net and syntactic
methods of getting robots to see and hear. Unpublished book. Available at:
ftp://ciips.ee.uwa.edu.au/pub/syntactic/book, 1994.

Michael D. Alder and Christopher deSilva. Topological stochastic grammars. In IEEE

International Symposium on Information Theory, July 1994.

Michael D. Alder, Gek Lim, and Christopher J.S. deSilva. The syntax of images. Technical
Report TR95-01, The Centre for Intelligent Information Processing Systems, Department

of Electrical & Electronic Engineering, The University of Western Australia, Australia
6907, 1995.

Mike Alder. Stochastic grammatical inference. Master’s thesis, Department of Mathe-
matics, The University of Western Australia, Australia 6907, 1988.

194 Complete Bibliography

Ross Arnold and Tim Bell. A corpus for the evaluation of lossless compression algorithms.
In James A. Storer and Martin Cohn, editors, Data Compression Conference (DCC ’97),
pages 201-210, 1997.

Fred Attneave. Applications of Information Theory to psychology. Henry Holt, 1959.

A. Averbuch, L. Bahl, R. Bakis, P. Brown, A. Cole, G. Daggett, S. Das, K. Davies, S. De-
gennaro, P. de Souza, E. Epstein, D. Fraleigh, F. Jelinek, S. Katz, B. Lewis, R. Mercer,
A. Nadas, D. Nahamoo, M. Picheny, G. Schichman, and P. Spinelli. An IBM PC based
large-vocabulary isolated-utterance speech recognizer. Technical report, IBM T.J. Wat-

son Research Center, January 1986.

A. Averbuch, L. Bahl, R. Bakis, P. Brown, G. Daggett, S. Das, K. Davies, S. Degennaro,
P. de Souza, E. Epstein, D. Fraleigh, F. Jelinek, B. Lewis, R. Mercer, J. Moorhead,
A. Nadas, D. Nahamoo, M. Picheny, G. Schichman, P. Spinelli, D. Van Compernolle, and
H. Wilkens. Experiments with the Tangora 20,000 word speech recognizer. Technical
report, IBM T.J. Watson Research Center, 1986.

L. Bahl, R. Bakis, J. Bellegarda, P. Brown, D. Burshtein, S. Das, P. de Souza,
P. Gopalakrishnan, F. Jelinek, D. Kanevsky, R. Mercer, A. Nadas, D. Nahamoo, and
M. Picheny. Large vocabulary natural language continuous speech recognition. Technical
report, IBM T.J. Watson Research Center.

L. Bahl, R. Bakis, P. de Souza, and R. Mercer. Polling: A quick way to obtain a short list
of candidate words in speech recognition. Technical report, IBM T.J. Watson Research
Center, September 1987.

L. Bahl, P. Brown, P. de Souza, and R. Mercer. A tree-based statistical language model
for natural language speech recognition. Technical report, IBM T.J. Watson Research
Center, September 1987.

L. Bahl, P. Brown, P. de Souza, R. Mercer, and M. Picheny. A method for the construction
of acoustic Markov models for words. Technical report, IBM T.J. Watson Research
Center, September 1987.

L. Bahl, F. Jelinek, and R. Mercer. A maximum likelihood approach to continuous
speech recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-5(2), March 1983.

Yehoshua Bar-Hillel, editor. Language and Information: Selected Essays on their theory
and application. Addison Wesley, 1964.

Doug Beeferman, Adam Berger, and John Lafferty. Text segmentation using exponen-
tial models. In Proceedings of the Second Conference on Emperical Methods in Natural

Language Processing, 1997.

Complete Bibliography 195

Timothy C. Bell, John G. Cleary, and Ian H. Witten. Texzt Compression. Prentice Hall,
1990.

Timothy C. Bell, Ian H. Witten, and Alistair Moffat. Managing Gigabytes. Van Nostrand
Reinhold, 1994.

Frederic Bimbot, Roberto Pieraccini, Esther Levin, and Bishnu Atal. Variable-length
sequence modeling: Multigrams. IEEE Signal Processing Letters, 2(6):111-113, June
1995.

Thorsten Brants. Better language models with model merging. In Conference on Em-
pirical Methods in NLP, 1996.

Michael R. Brent. Advances in the computational study of language acquisition. Cogni-
tion, 61:1-38, 1996.

Ted Briscoe. Grammatical acquisition: Coevolution of language and of the language
acquisition device. Unpublished manuscript. Available at:

http://www.cl.cam.ac.uk/users/ejb/bioprogram.ps.gz, 1998.

P. Brown, J. Cocke, S. Della Pietra, V. Della Pietra, F. Jelinek, J. Lafferty, R. Mercer,
and P. Roossin. A statistical approach to machine translation. Technical report, IBM
T.J. Watson Research Center, October 1988.

P. Brown, J. Cocke, S. Della Pietra, V. Della Pietra, F. Jelinek, R. Mercer, and P. Roossin.
A statistical approach to French/English translation. Technical report, IBM T.J. Watson

Research Center.

P. Brown, F. Jelenik, and R.L. Mercer. Basic methods of probabilistic context free

grammars. Technical report, IBM T.J. Watson Research Center.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Frederick
Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. A statistical approach
to machine translation. Computational Linguistics, 16(2):79-85, 1990.

Peter F. Brown, Stephen A. Della Pietra, and Vincent J. Della Pietra Robert L. Mercer.
The mathematics of statistical machine translation: Parameter estimation. Computa-
tional Linguistics, 19(2):263-311, 1993.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Jennifer C. Lai, and
Robert L. Mercer. An estimate of an upper bound for the entropy of English. Computa-
tional Linguistics, 18(1):31-40, 1992.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jennifer C. Lai, and Robert L.
Mercer. Class-based n-gram models of natural language. Computational Linguistics,
18(4):467-479, 1992.

196 Complete Bibliography

Roger Brown. A First Language. George Allen & Unwin Ltd., 1973.

Suzanne Bunton. On-Line Stochastic Processes in Data Compression. PhD thesis, Uni-

versity of Washington, 1996.

Suzanne Bunton. An executable taxonomy of on-line modeling algorithms. In James A.
Storer and Martin Cohn, editors, Data Compression Conference (DCC ’97), pages 4251,
1997.

Suzanne Bunton. A generalization and improvement to PPM’s “blending”. Technical
report, The University of Washington, 1997. Technical Report UW-CSE-97-01-10.

Suzanne Bunton. A percolating state selector for suffix-tree context models. In James A.
Storer and Martin Cohn, editors, Data Compression Conference (DCC ’97), pages 32-41,
1997.

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Systems Research Center, 130 Lytton Ave., Palo Alto,
California 94301, May 1994.

Jeremy C Campbell. Grammatical Man: Information, Entropy, Language and Life.
Pelican Books, 1984.

Rafael C. Carrasco and Jose Oncina. Learning stochastic regular grammars by means of
a state merging method. In International Colloguium on Grammatical Inference, pages
139-152, 1994.

John B. Carroll, editor. Language, thought and Reality: Selected Writings of Benjamin
Lee Whorf. The MIT Press, 1956.

Timothy A. Cartwright and Michael R. Brent. Distributional regularity and phonotactic

constraints are useful for segmentation. Cognition, 61:93-125, 1996.

Timothy A. Cartwright and Michael R. Brent. Syntactic categorization in early language
acquisition: Formalizing the role of distributional analysis. Cognition, 62:121-170, 1997.

Timothy Andrew Cartwright and Michael R. Brent. Segmenting speech without a lexicon:
The roles of phonotactics and speech source. In Proceedings of the First Meeting of the
ACL Special Interest Group in Computational Phonology, pages 83-90, 1994.

Francisco Casacuberta. Statistical estimation of stochastic context-free grammars us-
ing the inside-outside algorithm and a transformation on grammars. In International

Colloquium on Grammatical Inference, pages 119-129, 1994.
Eugene Charniak. Statistical Language Learning. MIT Press, 1993.

Stanley F. Chen. Building Probabilistic Models for Natural Language. PhD thesis, Har-
vard University, 1996.

Complete Bibliography 197

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques
for language modeling. In Proceedings of the 34™ Annual Meeting of the Association of
Computational Linguistics, pages 310-318, 1996.

Tung-Hui Chiang, Yi-Chung Lin, and Keh-Yih Su. Robust learning, smoothing, and
parameter tying on syntactic ambiguity resolution. Computational Linguistics, 21(3):321—
359, 1995.

Noam Chomsky. Aspects of the theory of syntax. Special Technical Report of the
Research Laboratory of Electronics 11, The Massachusetts Institute of Technology, 1965.

Noam Chomsky. The Logical Structure of Linguistic Theory. Plenum Press, 1975.
Noam Chomsky. Syntactic Structures. Mouton, 1975.

John G. Cleary and W.J. Teahan. Experiments on the zero frequency problem. In
James A. Storer and Martin Cohn, editors, Data Compression Conference (DCC ’95),
pages 52-61, 1995.

John G. Cleary, W.J. Teahan, and Ian H. Witten. Unbounded context lengths for PPM.
In Data Compression Conference (DCC ’95), pages 52—61, 1995.

John G. Cleary and Tan H. Witten. Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications, COM-32(4):396-402, April
1984.

Daniel I. A. Cohen. Introduction to Computer Theory. John Wiley & Sons, Inc., 1991.

Jordan R. Cohen. Application of an auditory model to speech recognition. Journal of
the Acoustical Society of America, 85(6), June 1989.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley &
Sons, 1991.

Richard T. Cox. The Algebra of Probable Inference. Johns Hopkins Press, 1961.

David Crystal. The Cambridge Encyclopedia of Language. Cambridge University Press,
1987.

Richard Timon Daly. Applications of the Mathematical Theory of Linguistics. Mouton
& Co., 1974.

Frederick J. Damerau. Markov models and linguistic theory. Mouton, 1971.

Carl G. de Marcken. Unsupervised Language Acquisition. PhD thesis, Massachusetts
Institute of Technology, 1996.

198 Complete Bibliography

Sabine Deligne and Frederic Bimbot. Language modeling by variable length sequences:
Theoretical formulation and foundation of multigrams. In ICASSP 1995 International

Conference on Acoustics, Speech and Signal Processing, pages 169-172, 1995.

Evangelos Dermatas and George Kokkinakis. Automatic stochastic tagging of natural
language texts. Computational Linguistics, 21(2):137-163, 1995.

Steven J. DeRose. Grammatical category disambiguation by statistical optimization.
Computational Linguistics, 14(1):31-39, 1988.

Christopher deSilva, Michael Alder, and Yianni Attikiouzel. Complexity, gratuitious and
otherwise. Technical Report TR91-19, The Centre for Intelligent Information Processing
Systems, Department of Electrical & Electronic Engineering, The University of Western
Australia, Australia 6907, 1991.

C.J.S. deSilva, M.D. Alder, and Y. Attikiouzel. Automating knowledge engineering.
Technical Report TR90-03, The Centre for Intelligent Information Processing Systems,
Department of Electrical & Electronic Engineering, The University of Western Australia,
Australia 6907, 1990.

G. Dunn and B.S. Everitt. An Introduction to Mathematical Tazonomy. Cambridge
University Press, 1982.

Ted Dunning. Accurate methods for the statistics of surprise and coincidence. Compu-
tational Linguistics, 19(1):61-74, 1993.

Phillip Dunstan, Gek Lim, and Michael D. Alder. Real-time head detection. In Pro-
ceedings of the IEEE International Conference on Neural Networks, volume 5, pages
2217-2221, November 1995.

Umberto Eco. Semiotics and the Philosophy of Language. Macmillan Press, 1984.

Jeffrey L. Elman. Distributed representations, simple recurrent networks, and grammat-

ical structure. Machine Learning, 7, 1991.

Ute Essen and Volker Steinbiss. Cooccurrence smoothing for stochastic language model-
ing. In ICASSP 1990 International Conference on Acoustics, Speech and Signal Process-
ing, pages 161-164, 1990.

Martin Farach, Michiel Noordewier, Serap Savari, Larry Shepp, Abraham Wyner, and
Jacob Ziv. On the entropy of DNA: Algorithms and measurements based on memory and
rapid convergence. In Proceedings of the 6th Annual Symposium on Discrete Algorithms,
pages 48-57, 1995.

Peter Fenwick. Block sorting text compression. In 19th Australasian Computer Science

Conference, January 1996.

Complete Bibliography 199

Steve Finch, Nick Chater, and Martin Redington. Acquiring syntactic information from
distributional statistics. In J. Levy, D. Bairaktaris, J.A. Bullinaria, and P. Cairns, editors,

Connectionist Models of Memory and Language, pages 229-242. UCL Press.

Steven Paul Finch. Finding Structure In Language. PhD thesis, University of Edinburgh,
1993.

King Sun Fu. Syntactic methods in pattern recognition. Academic Press, 1974.
King Sun Fu, editor. Syntactic pattern recognition, applications. Springer-Verlag, 1977.

King-Sun Fu and Taylor L. Booth. Grammatical inference: Introduction and survey -
part I. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(3),
May 1986.

King-Sun Fu and Taylor L. Booth. Grammatical inference: Introduction and survey -
part II. TEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(3),
May 1986.

Charles M. Goldie and Richard G.E. Pinch. Communication Theory. Cambridge Uni-
versity Press, 1991.

1.J. Good. The Estimation of Probabilities. MIT Press, 1965.

Ralph Grishman. Computational linguistics: An introduction. Cambridge University
Press, 1986.

Mauro Guazzo. A general minimum-redundancy source-coding algorithm. IEEE Trans-
actions on Information Theory, 26(1):15-25, January 1980.

Zellig Harris. Language and Information. Columbia University Press, 1988.

Zellig Harris. A Theory of Language and Information: A Mathematical Approach. Oxford
University Press, 1991.

Zellig S. Harris. From phoneme to morpheme. Language, 31:190-222, 1955.

Zellig S. Harris. Distributional structure. In Henry Hiz, editor, Papers on Syntaz, pages
3-22. Kluwer Boston, 1981.

John A. Hartigan. Clustering Algorithms. John Wiley & Sons, 1975.

R.V.L. Hartley. Transmission of information. The Bell System Technical Journal,
VII(3):535-563, July 1928.

John R. Hayes, editor. Cognition and the Development of Language. John Wiley & Sons,
1970.

200 Complete Bibliography

John R. Hayes and Herbert H. Clark. Experiments on the segmentation of an artificial
speech analogue. In John R. Hayes, editor, Cognition and the Development of Language,
pages 221-234. John Wiley & Sons, Inc., 1970.

Peter A. Heeman and James F. Allen. Intonational boundaries, speech repairs and dis-
course markers: Modeling spoken dialog. In Proceedings of the 35" Annual Meeting of

the Association of Computational Linguistics, 1997.

Patrick Chisan Hew. Pizels to Strokes to Digits. PhD thesis, Department of Mathematics,
The University of Western Australia, Australia 6907, 1999.

Charles F. Hockett. The State of the Art. Mouton, 1968.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, languages,
and computation. Addison-Wesley Publishing Company, Inc., 1979.

Paul G. Howard and Jeffrey Scott Vitter. Design and analysis of fast text compression
based on quasi-arithmetic coding. In James A. Storer and Martin Cohn, editors, Data
Compression Conference (DCC ’93), pages 98-107, 1993.

Paul Glor Howard. The Design and Analysis of Efficient Lossless Data Compression
Systems. PhD thesis, Brown University, 1993.

David A. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the LR.E. (now known as Proceedings of the IEEE), 40:1098-1101, September
1952.

Jason L. Hutchens. Natural language grammatical inference. Honours thesis, Department
of Electrical & Electronic Engineering, The University of Western Australia, Australia
6907, 1994.

Jason L. Hutchens. Language acquisition and data compression. In Sarah Boyd, ed-
itor, 1997 Australasian Natural Language Processing Summer Workshop, pages 39-49,
February 1997.

Jason L. Hutchens. Finding structure via compression. In David M. W. Powers, edi-
tor, NeMLaP3 / CoNLL98: New Methods in Language Processing and Computational
Language Learning, ACL, pages 79-82, January 1998.

David J. Hutches. Data Structures and Algorithms for the Efficient Representation and
Retrieval of Incremental Lezical Information. PhD thesis, University of California, San
Diego, 1993.

Arie S. Issar. From Primeval Chaos to Infinite Intelligence: On Information as o Di-

mension and on Entropy as a Field of Force. Avebury, 1995.

Complete Bibliography 201

Ajay N. Jain and Alex H. Waibel. Robust connectionist parsing of spoken language.
In ICASSP 1990 International Conference on Acoustics, Speech and Signal Processing,
pages 593-596, 1990.

Nicholas Jardine and Robin Sibson. Mathematical Taxonomy. John Wiley & Sons, 1971.

Michele Jardino and Gilles Adda. Automatic determination of a stochastic bi-gram class
language model. In International Colloguium on Grammatical Inference, pages 57—65,
1994.

Frederick Jelinek. Principles of lexical language modeling for speech recognition. Tech-
nical report, IBM T.J. Watson Research Center.

Frederick Jelinek. Self-organized language modeling for speech recognition. Technical
report, IBM T.J. Watson Research Center.

Frederick Jelinek. Probabilistic Information Theory: Discrete and Memoryless Models.
McGraw-Hill, 1968.

Frederick Jelinek. The development of an experimental discrete dictation recognizer.
Proceedings of the IEEE, 73(11), November 1985.

Frederick Jelinek. Markov source modeling of text generation. Technical report, IBM
T.J. Watson Research Center, 1986.

Frederick Jelinek. Computation of the probability of initial substring generation by
stochastic context free grammars. Technical report, IBM T.J. Watson Research Center,
April 1990.

Frederick Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1997.

Frederick Jelinek and John D. Lafferty. Computation of the probability of initial substring
generation by stochastic context free grammars. Computational Linguistics, 17(3):315—
323, 1991.

Philip Johnson-Laird. The Computer and the Mind: An Introduction to Cognitive Sci-

ence. Harvard University Press, 1988.

G.J.F Jones, H. Lloyd-Thomas, and J.H. Wright. Adaptive statistical and grammar
models of language for application to speech recognition. In International Colloguium on

Grammatical Inference, pages 25/1-8, April 1993.

Karen Sparck Jones. How much has Information Technology contributed to linguistics?
Prepared for a British Academy Symposium on Information Technology and Scholarly
Disciplines. Available at:

http://xxx.lanl.gov/ps/cmp-1g/9702011

202 Complete Bibliography

Slava M. Katz. Estimation of probabilities from sparse data for the language model
component of a speech recognizer. IEEFE Transactions on Acoustics, Speech and Signal
Processing, ASSP-35(3), March 1987.

G.R. Kiss. Grammatical word classes: A learning process and its simulation. Psychology
of Learning and Motivation, 7:1-41, 1973.

Hideki Kozima. Text segmentation based on similarity between words. In Proceedings of
the 31%° Annual Meeting of the Association of Computational Linguistics, pages 286288,
1993.

Brigitte Krenn and Christer Samuelsson. The linguist’s guide to statistics. Unpublished
book. Available at:
http://www.coli.uni-sb.de/ “krenn/stat_nlp.ps

Julian Kupiec. Robust part-of-speech tagging using a hidden Markov model. Computer
Speech and Language, 6(3), July 1992.

Marta Kutas and Steven A. Hillyard. Reading senseless sentences: Brain potential reflects

semantic incongruity. Science, 207(11):203-205, January 1980.

Mark Lauer. Designing Statistical Language Learners; Experiments on Noun Compounds.
PhD thesis, Macquarie University, 1995.

W.J.M. Levelt. Hierarchical chunking in sentence processing. Perception & Psy-
chophysics, 8:99-103, 1970.

Hang Li and Naoki Abe. Word clustering and disambiguation based on co-occurrence
data. In Proceedings of the 36" Annual Meeting of the Association for Computational
Linguistics and the 17" International Conference on Computational Linguistics, vol-
ume 2, pages 749-755, 1998.

Gek Lim and Michael D. Alder. Calvin and Hobbes. Technical Report TR95-02, The Cen-
tre for Intelligent Information Processing Systems, Department of Electrical & Electronic
Engineering, The University of Western Australia, Australia 6907, 1995.

Sok Gek Lim. Visual Object Shape Recognition Using Hierarchical Syntax Extraction.
PhD thesis, Department of Electrical & Electronic Engineering, The University of West-
ern Australia, Australia 6907, 1997.

Dr. S.M. Lucas. Algebraic grammatical inference. In International Colloguium on Gram-

matical Inference, pages 1-10, 1993.

Simon Lucas. Structuring chromosomes for context-free grammar evolution. In Proc.
IEEE Int. Conf. on Evolutionary Computation, pages 130-135, 1994.

Complete Bibliography 203

S.M. Lucas. New directions in grammatical inference. In International Colloquium on

Grammatical Inference, pages 1/1-7, April 1993.

David J.C. MacKay. Optimisation of probabilities over probabilities—with applications

in language modelling. Draft copy obtained directly from author.

David J.C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California
Institute of Technology, 1992.

David J.C. MacKay. Bayesian neural networks and density networks. Nuclear Instruments
and Methods in Physics Research A, (354):73-80, 1995.

David J.C. MacKay. Density networks and their application to protein modelling. In
J. Skilling and S. Sibisi, editors, Mazimum Entropy and Bayesian Methods, pages 259—
268. Kluwer Academic Publishers, 1996.

David J.C. MacKay. Information Theory, inference and learning algorithms. Unpublished
book, version 2.0.0. Available at:

http://wol.ra.phy.cam.ac.uk/mackay/itprnn/book.ps.gz, 1999.

David J.C. MacKay and Linda C. Bauman Peto. A hierarchical Dirichlet language model.
Natural Language Engineering, 1(3):289-307, 1995.

David M. Magerman. A review of Charniak’s “Statistical language learning”. Computa-
tional Linguistics, 21(1):103-111, 1995.

David Marr. Vision. W.H. Freeman and Company, 1982.
James L. Massey. Applied digital Information Theory. Lecture notes, 1992.
Robert J. McEliece. The Theory of Information and Coding. Addison Wesley, 1977.

Robert A. McLaughlin. Intelligent algorithms for finding curves and surfaces in real world
data. PhD thesis, Department of Electrical & Electronic Engineering, The University of
Western Australia, Australia 6907, 1999.

Robert A. McLaughlin and Michael D. Alder. Syntactic pattern recognition of simple
shapes. In Proceedings of the Australian and New Zealand Conference on Intelligent

Information Systems, pages 5-9, 1993.

Robert A. McLaughlin and Michael D. Alder. Recognising aircraft: Automatic extraction
of structure by layers of quadratic neural nets. In Proceedings of the IEEE International

Conference on Neural Networks, volume 7, pages 4288-4293, June 1994.

Robert A. McLaughlin and Michael D. Alder. Recognising cubes in images. In
E. S. Gelsema and L. N. Kanal, editors, Pattern Recognition in Practice IV: Multiple
Paradigms, Comparative Studies and Hybrid Systems, number 16, pages 45-58. Elsevier
Science B.V., June 1994.

204 Complete Bibliography

Robert A. McLaughlin and Michael D. Alder. The Hough Transform and the UpWrite:
a comparison. In Proceedings of the IEEFE International Conference on Neural Networks,
volume 1, pages 146-151, 1995.

Robert A. McLaughlin and Michael D. Alder. Recognition of infra red images of aircraft
rotated in three dimensions. In Proceedings of the Australian and New Zealand Conference

on Intelligent Information Systems, pages 82-87, November 1995.

Robert A. McLaughlin and Michael D. Alder. The Hough Transform versus the UpWrite.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(4):396-400, April
1998.

Robert A. McLaughlin, Michael D. Alder, and Christopher J. S. deSilva. Inference of
structure: hands. Pattern Recognition Letters, 15(10):957-962, October 1994.

Bernard Merialdo. Tagging English text with a probabilistic model. Computational
Linguistics, 20(2):155-171, 1994.

Floyd Merrell. A Semiotic Theory of Texts. Mouton, 1985.

George A. Miller. The magical number seven, plus or minus two: Some limits on our

capacity for processing information. The Psychological Review, 63(2):81-97, March 1956.

Don C. Mitchell, Fernando Cuetos, Martin M.B. Corley, and Marc Brysbaert. Exposure-
based models of human parsing: Evidence for the use of coarse-grained (nonlexical)
statistical records. Journal of Psycholinguistic Research, 24(6):469-489, 1995.

Alistair Moffat. Implementing the PPM data compression scheme. IEEFE Transactions
on Communications, 38(11):1917-1921, November 1990.

Alistair Moffat, Radford Neal, and Ian H. Witten. Arithmetic coding revisited. ACM
Transactions on Information Systems, 16(3):256-294, July 1998.

Doede Nauta. The Meaning of Information. Mouton, 1972.

Mark Nelson and Jean-Loup Gailly. The Data Compression Book. M&T Books, second
edition, 1996.

Craig G. Nevill-Manning. Inferring Sequential Structure. PhD thesis, University of
Waikato, 1996.

Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical structure in se-
quences: A linear-time algorithm. Journal of Artificial Intelligence Research, 7:67-82,
1997.

Craig G. Nevill-Manning, lan H. Witten, and David L. Maulsby. Compression by in-
duction of hierarchical grammars. In James A. Storer and Martin Cohn, editors, Data
Compression Conference (DCC ’94), pages 244-253, 1994.

Complete Bibliography 205

Hermann Ney, Ute Essen, and Reinhard Kneser. On the estimation of ‘small’ probabilities
by leaving-one-out. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(12):1202-1212, December 1995.

M. Ostendorf and N. Veilleux. A hierarchical stochastic model for automatic prediction

of prosodic boundary location. Computational Linguistics, 20(1):27-54, 1994.

Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional clustering of English

words. In International Colloguium on Grammatical Inference, pages 5/1-3, April 1993.

Fernando C. Pereira and Yoram Singer. Beyond word n-grams. Revised version of a
paper in the Proceedings of the Third Workshop on Very Large Corpora. Available at:
http://xxx.lanl.gov/ps/cmp-1g/9607016

S. Della Pietra, V. Della Pietra, J. Gillett, J. Lafferty, H. Printz, and L. Ure§. Inference
and estimation of a long-range trigram model. In International Colloquium on Gram-

matical Inference, pages 57-65, 1994.
Steven Pinker. The Language Instinct. The Penguin Press, 1995.
A. Radford. Transformational Grammar, 2nd Ed. Cambridge University Press, 1988.

Allan Ramsay. Inference in language processing. In International Colloquium on Gram-

matical Inference, pages 5/1-3, April 1993.

Martin Redington and Nick Chater. The guessing game: A paradigm for artificial gram-
mar learning. In A. Ram and K. Eiselt, editors, Proceedings of the Sizteenth Annual
Conference of the Cognitive Science Society, pages 745-749, 1994.

Martin Redington and Nick Chater. Transfer in artificial grammar learning: A re-
evaluation. Journal of Experimental Psychology: General, 125:123-138, 1996.

Martin Redington, Nick Chater, and Steven Finch. Distributional information and the
acquisition of linguistic categories: A statistical approach. In Proceedings of the Fifteenth
Annual Conference of the Cognitive Science Society, pages 848-853, 1993.

Martin Redington, Nick Chater, and Steven Finch. Distributional information: A pow-

erful cue for acquiring syntactic categories. Cognitive Science, 22(4):425-469, 1998.

Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy approach to identifying
sentence boundaries. In Proceedings of the Fifth Conference on Applied Natural Language
Processing, March 1997.

G. Riccardi, E. Bocchieri, and R. Pieraccini. Non deterministic stochastic language
models for speech recognition. In ICASSP 1995 International Conference on Acoustics,
Speech and Signal Processing, pages 237-240, 1995.

206 Complete Bibliography

J. Rissanen and G. G. Langdon. Arithmetic coding. IBM Journal of Research and
Development, 23(2):149-162, March 1979.

Frank Rubin. Arithmetic stream coding using fixed precision registers. IEEE Transac-
tions on Information Theory, 25(6):672—675, November 1979.

Jenny R. Saffran, Elissa L. Newport, and Richard N. Aslin. Word segmentation: The
role of distributional cues. Journal of Memory and Language, 35:606-621, 1996.

Christer Samuelsson. Grammar specialization through entropy thresholds. In Proceedings
of the 32™ Annual Meeting of the Association for Computational Linguistics, pages 188—
195, 1994.

Christer Samuelsson. Relating Turing’s formula and Zipf’s law. In Proceedings of the

First International Workshop on Very Large Corpora, pages 70-78, 1996.

Juan Andrés Sénchez and José Miguel Benedi. Statistical inductive inference of regular
formal languages. In International Colloquium on Grammatical Inference, pages 130-138,
1994.

W.W. Schuhmacher. Cybernetic Aspects of Language. Mouton, 1972.

Hinrich Schiitze. Part-of-speech induction from scratch. In Proceedings of the 31%¢ Annual

Meeting of the Association for Computational Linguistics, pages 251-258, 1993.

Hinrich Schiitze and Yoram Singer. Part-of-speech tagging using a variable memory
Markov model. In Proceedings of the 32" Annual Meeting of the Association for Com-
putational Linguistics, pages 181-187, 1994.

C.E. Shannon. Prediction and entropy of printed English. The Bell System Technical
Journal, XXX (1):50-64, January 1951.

Claude E. Shannon and Warren Weaver. The Mathematical theory of Communication.

University of Illinois Press, 1949.
Raoul N. Smith. Probabalistic Performance Models of Language. Mouton & Co., 1973.

Peter H.A. Sneath and Robert R. Sokal. Numerical Tarxonomy. W.H. Freeman and
Company, 1973.

V. Steinbiss, A. Noll, A. Paeseler, H. Ney, H. Bergmann, C. Dugast, H. H. Hamer,
H. Piotrowski, H. Tomaschewski, and A. Zielinski. A 10,000 word continuous-speech
recognition system. In ICASSP 1990 International Conference on Acoustics, Speech and
Signal Processing, pages 57—60, 1990.

Andreas Stolcke. An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics, 21(2):165-201, 1995.

Complete Bibliography 207

Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars by Bayesian
model merging. In International Colloquium on Grammatical Inference, pages 106-118,
1994.

Walter Stolz. A probabilistic procedure for grouping words into phrases. Language and
Speech, 8:219-235, 1965.

W. J. Teahan. Modelling English Text. PhD thesis, The University of Waikato, 1998.

W.J. Teahan. Probability estimation for PPM. Paper submitted to NZCSRSC’95. Avail-
able at:
http://www.cs.waikato.ac.nz/"wjt/papers/NZCSRSC.ps.gz

W.J. Teahan and John G. Cleary. Models of English text. In Data Compression Confer-
ence (DCC ’97), pages 12-21, 1997.

A .M. Turing. Computing machinery and intelligence. In D.C. Ince, editor, Collected works
of A.M. Turing: Mechanical Intelligence, chapter 5, pages 133-160. Elsevier Science
Publishers, 1992.

A .M. Turing. Digital computers applied to games. In D.C. Ince, editor, Collected works
of A.M. Turing: Mechanical Intelligence, chapter 6, pages 161-185. Elsevier Science
Publishers, 1992.

A.M. Turing. Intelligent machinery. In D.C. Ince, editor, Collected works of A.M. Turing:
Mechanical Intelligence, chapter 3, pages 107-127. Elsevier Science Publishers, 1992.

A M. Turing. Solvable and unsolvable problems. In D.C. Ince, editor, Collected works
of A.M. Turing: Mechanical Intelligence, chapter 7, pages 187-203. Elsevier Science
Publishers, 1992.

J.P. Ueberla. Domain adaption with clustered language models. Unpublished paper.
Available at:
http://xxx.lanl.gov/ps/cmp-1g/9703001

J.P. Ueberla. Analysis of a simple bipos language model - attempt at a strategy to improve
language models for speech recognition. In International Colloquium on Grammatical
Inference, pages 10/1-8, April 1993.

Satosi Watanabe. Knowing and Guessing. John Wiley & Sons, Inc., 1969.

Ralph Weischedel, Marie Meteer, Richard Schwartz, Lance Ramshaw, and Jeff Palmucci.
Coping with ambiguity and unknown words through probabilistic models. Computational
Linguistics, 19(2):359-382, 1993.

Norbert Wiener. Cybernetics, or Control and Communication in the Animal and the
Machine. John Wiley & Sons, 1961.

208 Complete Bibliography

Paul S. Williams. The automatic hierarchical decomposition of images into sub-images
for use in image recognition and classification. PhD thesis, Department of Electrical &

Electronic Engineering, The University of Western Australia, Australia 6907, 1999.

Ross Neil Williams. Adaptive Data Compression. PhD thesis, University of Adelaide,
1989.

Terry Winograd. Understanding Natural Language. Academic Press, 1972.

Tan H. Witten and Timothy C. Bell. The zero-frequency problem: Estimating the proba-
bilities of novel events in adaptive text compression. IEEE Transactions on Information

Theory, 37(4):1085-1094, July 1991.

Tan H. Witten, Timothy C. Bell, Alistair Moffat, Craig G. Nevill-Manning, Tony C.
Smith, and Harold Thimbleby. Semantic and generative models for lossy text compres-
sion. The Computer Journal, 37(2):83-87, 1994.

J. G. Wolff. An algorithm for the segmentation of an artificial language analogue. British
Journal of Psychology, 66(1):79-90, 1975.

J. G. Wolff. The discovery of segments in natural language. British Journal of Psychology,
68:97-106, 1977.

J. Gerard Wolff. Language acquisition, data compression and generalization. Language
€ Communication, 2(1):57-89, 1982.

J. Gerard Wolff. Learning syntax and meanings through optimization and distributional
analysis. In Y. Levy, I.M. Schlesinger, and M.D.S Braine, editors, Categories and Pro-
cesses in Language Acquisition, chapter 7, pages 179-215. Lawrence Erlbaum, 1988.

J. Gerard Wolff. A scaleable technique for best-match retrieval of sequential information

using metrics-guided search. Journal of Information Science, 20(1):16-28, 1994.

J. Gerard Wolff. Computing as compression: An overview of the SP theory and system.
New Generation Computing, 13:187-214, 1995.

J. Gerard Wolff. Computing as compression: SP20. New Generation Computing, 13:215—
241, 1995.

J. Gerard Wolff. Learning and reasoning as information compression by multiple assign-
ment, unification and search. In A. Gammerman, editor, Computational Learning and
Probabilistic Reasoning, pages 67-85. Chichester: Wiley, 1996.

J.H. Wright, G.J.F. Jones, and H. Lloyd-Thomas. Training and application of integrated
grammar /bigram language models. In International Colloguium on Grammatical Infer-
ence, pages 246-259, 1994.

Complete Bibliography 209

Ave Wrigley. Parse tree n-grams for spoken language modeling. In International Collo-

quium on Grammatical Inference, pages 26/1-6, April 1993.

George Kingsley Zipf. Human Behavior and the Principle of Least Effort: An Introduction
to Human Ecology. Addison Wesley, 1949.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEFE
Transactions on Information Theory, 23(3):337-343, May 1977.

J. Ziv and A. Lempel. Compression of individual sequences via variable rate coding.
IEEE Transactions on Information Theory, 24(5):530-535, September 1978.

Index

777 compressor, 162

Abe, Naoki, 79
Aberg, Jan, 154

accuracy, 59

agglomeration, see discovering symbol classes,

agglomeration
agglutination, see discovering symbol se-
quences, agglutination
Alder, Michael, 40, 45, 50, 51
alphabet, 13
alternative blending mechanisms, 166168
method I, 166-167
method J, 167
alternative escape mechanisms, 163-166
method F, 164
method G, 164-165
method H, 165-166
ancient Greece, 138
anthropomorphisation, 8
arithmetic coding, 142-143
Arnold, Ross, 156
ASCII, 13
Aslin, Richard, 65
association network, 76
Attikiouzel, Yianni, 40
author identification, 2
average information, see information, av-

erage

back-off, 23, 28, 33-35
Baum-Welch optimization, 32-33
Baye’s rule, 14, 22, 24
Beeferman, Doug, 65

Bell Telephone Laboratories, 9

Bell, Timothy, 156

Berger, Adam, 65

biased coin, 14-15

bigram language model, 27

bit, 7, 10

bits-per-symbol, 157

Blakemore, C.B., 40

blending, see prediction by partial match-
ing, blending

block coding, 142

block-sorting, 146

BOA compressor, 162

bootstrapping, 77

bps, see bits-per-symbol

Braille, Louis, 138

Brent, Michael, 79

Bunton, Suzanne, 154

Burrows, Michael, 146

Burrows-Wheeler compression, 146-148

bzip2, 162

Calgary corpus, 156

Calvin and Hobbes, 50

Canberra metric, 76, 76-77

Canterbury corpus, 156

Cartwright, Timothy, 79

chain coding, see syntactic pattern recog-
nition, chain coding

channel, see communication system, chan-
nel

Charniak, Eugene, 23

Chater, Nick, 78

CHILDES corpus, 79

chunks, see discovering symbol sequences

212

Index

CIIPS, 51
Clark, Herbert, 62
classifying polygons, 45-49
classification, 49
finding lines and vertices, 48
finding triangles and squares, 49
local Gaussian modelling, 47
model selection, 46-47
Cleary, John, 151
clustering, see discovering symbol classes,
clustering
clusters, see discovering symbol classes
cognitive economy, 149
communication system, 10
channel, 10
destination, 10
information source, 10
noise source, 10
receiver, 10
transmitter, 10
complexity, 18
complexity barrier, 18
compress, 160
compression value, 149
computational language acquisition, see
grammatical inference
constraints, 17
context, 25
convex combination, 80-81
corpus, 13
Cover, Thomas, 13
coverage, 59

cybernetics, 17

data, 13, see symbolic time series
data compression, 2, 22, 27
adaptive, 139
dictionary, 139
history, 138-151
lossless, 140
lossy, 140

“modern paradigm”, 137, 148
origins of, 138
semi-adaptive, 139
static, 139
statistical, 139, 148
data compressor, 137
decision-theoretic approach, 39
description string, see syntactic pattern
recognition, description string
deSilva, Christopher, 40, 50
destination, see communication system,
destination
discovering symbol classes, 74-92, 104-
110
agglomeration, 75, 83-89
algorithms, 83-84
clustering, 75, 83, 89-92
Kiss’ technique, 7677
noise due to ambiguity, 79-83
other work, 79
previous work, 75-79
Redington, Chater and Finch’s tech-
nique, 78-79
Schitze’s technique, 77-78
discovering symbol sequences, 57-74, 102—
103, 107-110
agglutination, 58, 71-74
algorithms, 66
Harris’ technique, 59-62
identifying separator symbols, 66-67
other work, 65
performance measures, 5859
previous work, 5965
segmentation, 67-71
thresholded entropic chunking, 58
Wolff’s technique, 63-65
disjunctive groupings, 149
distribution vector, 75
DownWrite
quotient-object, 43

Index

213

sub-object, 42, 42
Doyle, Sir Arthur Conan, 3, 4
Dunstan, Philip, 50

Elias, Peter, 142

entropy, 7, 15

equivalence class, 24

equivalence exclusion, 170

escape, see prediction by partial match-
ing, escape

escape probability, 152

escape symbol, 151

Euclidean distance, 84

evolution, 1

of language, 1, 3

exclusion, see prediction by partial match-
ing, exclusion

expectation-maximisation algorithm, 32

eye-balling the data, 102, 131

Fenwick, Peter, 147

Finch, Steven, 65, 78

forward-backwards algorithm, see Baum-
Welch optimization

‘fractal’ language model, 174-175

Fu, King Sun, 39

future work, 188

Gatlin, Lila, 18

Gaussian model, 46

Gaussian modelling, see classifying poly-

gons, local Gaussian modelling

Gilchrist, Jeff, 162

goal-oriented language model, 176-177

Good-Turing estimate, 34

grammatical inference, 21, 23-24, 39
stochastic, 24-25

Grammatical Inference Engine, 2, 23

Guazzo, Mauro, 142

gzip, 162

Harris, Zellig, 59, 63, 66, 75

Hartley, R.V.L., 9-10
Hayes, John, 62

Hew, Patrick, 51
Hillyard, Steven, 62
history, 13

HMM, see Markov model, HMM
Howard, Paul Glor, 154
Hubel, David, 40
Huffman coding, 140-142
Huffman, David, 140
human brain, 1

human language acquisition, 2

IBM Speech Recognition Group, 17
incorporating long-range statistics, 174—
178
information, 7, 15
as a fifth dimension, 17
average, 16, 27
Hartley Information, 9
philosophy of, 17-18
properties of, 11
what is, 8
why important, 8-9
information source, see communication sys-
tem, information source
Information Theory, 7
measures, 15-17

instantaneous entropy, see entropy
Jelinek, Frederick, 24

Katz’s back-off procedure, 34-35
Kiss, George, 76

knowledge, 8

Kozima, Hideki, 65
Kullback-Leibler divergence, 75, 83
Kutas, Marta, 62

Lafferty, John, 65
Langdon, G.G., 142

language evolution, see evolution, of lan-

guage

214

Index

language understanding, 2
Laplace’s law of succession, 165
Lee, Lillian, 79

Lempel, Abraham, 143

levels of description, 40

levels of representation, 37-38
Li, Hang, 79

Lim, Sok Gek, 50, 51

linear interpolation, 31

local context problem, 31

logarithmic function, 9, 11

machine translation, 2
Markov model, 13, 25, 25-27
HMM, 32
problems with, 27-29
Markovian assumption, 25
Marr, David, 40
maximume-likelihood estimate, 27
McLaughlin, Robert, 45, 50, 51
MK10, 64, see Wolff, Gerry, MK10
MK10H, see Wolff, Gerry, MK10H
Moffat, Alistair, 142, 153
Morse, Samuel, 138
move-to-front encoding, 146-147
multiset, 58

n-gram, 27

n-gram language model, 22

Neal, Radford, 142

Nevill-Manning, Craig, 65

Newport, Elissa, 65

noise source, see communication system,
noise source

non-linear interpolation, 34

numerical taxonomy, 75

Occam’s razor, 81
original contributions, 5

Oxford Text Archive, 3

paradigmatic groupings, 149

parsing problem, 94-95
Pavlov, Igor, 162
Pereira, Fernando, 79
perplexity, 16
phrase-structure grammar, 101
PPM, 22, see prediction by partial match-
ing
pre-transmission of statistics, 168—169
the alphabet, 168-169
the order—0 model, 169
prediction by partial matching, 151-156
blending, 154-155
escape, 151-152
exclusion, 154
method A, 152
method B, 153
method C, 153
modifications of and additions to, 162—
179
other methods, 154
recency scaling, 155-156
the “optimal” model, 157-160
the standard methods, 160
update exclusion, 155
predictive model, 2, 7, 13
prefix code, 140
prefix string, 145, 176
probability distribution, 14
probability theory, 14-15
Probert E-Text Encyclopaedia, 175

quasi-English, 112

random source, 111-112
Ratnaparkhi, Adwait, 65
re-determining model precedence, 171-172
entropic precedence, 171
probabilistic precedence, 171
real-world examples, 49-51
classifying hands, 50
distinguishing Calvin from Hobbes,
50-51

Index

215

identifying aircraft, 50
intruder detection, 50
other work, 51
recall, 58
receiver, see communication system, re-
ceiver
recency scaling, see prediction by partial
matching, recency scaling
Redington, Martin, 78
redundancy, 18
Reynar, Jeffrey, 65
Rissanen, Jorma, 142
Rubin, Frank, 142

Saffran, Jenny, 65
scaffolding, 58, 78, 84, 96, 112, 113
Schiitze, Hinrich, 77
segmental groupings, 149
Shannon’s Guessing Game, 11-12, 147
Shannon, Claude, 7, 9, 10
SHERLOCK corpus, 4
Sherlock corpus, 3, 3—4

Sentence section, 4

Small section, 3

Test section, 3

Train section, 3
Shtarkov, Yuri, 154
similarity matrix, 84
simplex, 80
sliding window, 144
Smeets, B.J.M., 154
smoothing, 23, 28, 31-33
SNPR, see Wolff, Gerry, SNPR
source coding, see data compression
sparse data problem, 30
Spearman rank correlation, 78, 78-79
speech recognition, 2, 21-22, 27
stochastic grammar, 24
Stolz, Walter, 65
string, 13

structure of dissertation, 56

successor count, 59
surprise, see information
Sutton, Ian, 162
symbol, 13
symbol class
stochastic, 44
symbolic time series, 13, 41
syntactic category acquisition, see discov-
ering symbol classes
syntactic pattern recognition, 39
chain coding, 39
description string, 39
grammatical inference, see grammat-
ical inference

syntagmatic groupings, 149

Teahan, William, 154

text, 13

text generation, 2

Thomas, Joy, 13

thresholded entropic chunking, see dis-
covering symbol sequences, seg-
mentation

Tishby, Naftali, 79

transmitter, see communication system,
transmitter

trigram language model, 27, 32

uncertainty, see entropy
unigram language model, 27
uniquely decodable, 140
update exclusion, see prediction by par-
tial matching, update exclusion
UpWrite, 37
aim, 40
alphabet, 42
an example, see classifying polygons
basic goal, 37
data, 42
disadvantages of, 45
features, 40-41

216

Index

history of, 40-41
parsing problems, 42
process, 41
quotient-object, 43, 43—44
relationship to predictive models, 38
sub-object, 42, 41-43

UpWrite Compressor, 179-181

UpWrite Predictor, 2-3, 18, 56-57
aims of, 56
correcting mistakes, 95-96
discovering symbol classes, 94
discovering symbol sequences, 94
experiments with, 101-134
final structure, 92-93
generations, 131-134
performance on English text, 127-129
selecting the predictive model, 93
stopping criterion, 96
structure of, 56
UpWriting and DownWriting, 94-95,

129-131

versus SNPR, 149-150

von Neumann, John, 18

Watterson, Bill, 50
weather forecasting, 8
Wheeler, David, 146
Wiener, Norbert, 17
Wiesel, Torsten, 40
wildcard language model, 172-173
wildcard symbol, 172
Williams, Paul, 51
Williams, Ross Neal, 154
Witten, Tan, 65, 142, 151
Wolff, Gerry, 59, 63, 66, 102, 112, 149
learning as compression, 149-151
MK10, 63, 64
MK10H, 64
SNPR, 102, 112, 149-151
Textl, 112-114

Text2, 114-117
Text3, 117

Text4, 119-120
Textd, 120-122
Text6, 122-123
Text7, 123-127

xgobi, 98

zero-frequency problem, 29-30
due to novel context, 30
due to novel symbol, 30

zip, 160-162

Ziv, Jacob, 143

Ziv-Lempel compression, 143-145

