Extended Application of Suffix Treesto Data Compression

N. Jesper Larsson'

Abstract

A practical scheme for maintaining an index for a sliding window in optimal time
and space, by use of a suffix tree, is presented. The index supports location of the
longest matching substring in time proportional to the length of the match. The to-
tal time for build and update operations is proportional to the size of the input. The
algorithm, which is simple and straightforward, is presented in detail.

Themost prominent | ossl essdatacompressi on scheme, when considering compres-
sion performance, is prediction by partial matching with unbounded context lengths
(PPM*). However, previously presented agorithms are hardly practical, considering
their extensive use of computational resources. We show that our scheme can be ap-
plied to PPM*-style compression, obtaining an algorithm that runsin linear time, and
in space bounded by an arbitrarily chosen window size.

Applicationto Ziv—Lempel ° 77 compression methodsis straightforward and the re-
sulting algorithm runsin linear time.

1 Introduction

String matching is a central task in data compression. In particular, in string substitution
methods—such as the original scheme of Ziv and Lempel [14]—the dominating part of
computation is string matching. Also, statistical data compression, such as the PPM meth-
ods [3,4, 7], includes the operation of finding contexts, which are defined by strings. In
effect, this is a string matching operation, which, particularly when contexts are long, oc-
cupies amajor part of computational resources.

Thesuffix tree[6, 11] isahighly efficient datastructurefor string matching. A suffix tree
indexes all substrings of a given string and can be constructed in linear time. Our primary
contribution isto present a scheme that enables practical use of suffix trees for PPM*-style
statistical modeling methods, together with its necessary theoretical justification. Also, ap-
plication to Ziv—Lempel compression is natural.

Some compression schemes [3, 9] require that each character, once read from the input,
resides in primary storage until all of the input has been processed. Thisis not feasiblein
practice. We need a scheme that allows maintaining only alimited part of the input preced-
ing the current position—a diding window. Fialaand Greene [5] claim to have modified
McCreight's suffix tree construction algorithm [6] for use with a diding window, by pre-
senting a method for making deletions at constant amortized cost. However, a careful in-
vestigation reveals that they do not consider the fact that McCreight’s algorithm treats the

T Dept. of Computer Science, Lund University, Box 118, S-22100 LUND, Sweden (jesper@dna.lu.se)

input right-to-left, and therefore does not support expanding the indexed string with char-
acters added to theright. This property of McCreight’s agorithm makesiit unfit for diding
window use if linear time complexity is to be maintained.

Here, we show that Ukkonen's suffix tree construction algorithm [11] can be extended
to obtain a straightforward on-line diding window agorithm which runsin linear time. We
utilize the update restriction technique of Fialaand Greene as part of our algorithm.

The most promising statistical compression method appears to be finite context model-
ing with unbounded context length, in the style of the PPM* algorithm presented by Cleary,
Teahan, and Witten [3]. (Some refinements are given by Teahan [10].) However, as pre-
sented in the original paper, this algorithm uses too much computational resources (both
time and space) to be practically useful in most cases. Observing that the context trie em-
ployed in PPM* isessentially asuffix tree, our algorithms can be used to accomplish aprac-
tical variant of PPM*, where space requirements are bounded by a window size, and time
complexity islinear in the size of the inpuit.

In asurvey of string searching agorithms for Ziv—Lempel ' 77 compression, Bell and
Kulp [1] rule out suffix trees because of the inefficiency of deletions. We assert that our
method eliminates thisinefficiency, and that suffix trees should certainly be considered for
implementation of the Ziv—Lempel algorithm.

2 Suffix Trees

We consider strings of characters over a fixed alphabet. The length of a string « is de-
noted |«|.

A trieisatree data structure for representing strings. Each edge is |abeled with a char-
acter, and each stored string corresponds to a unique path beginning at theroot. By (u) we
denote the string corresponding to the path from the root to a node .

A path compressed trieisatrie where only nodes with more than one outgoing edge are
represented. Paths of unary nodes are collapsed to single nodes, which means that edges
must be labeled with strings rather than single characters. By depth(w) we shall denote the
length of () rather than the number of edges on the associated path.

A suffix treeisapath compressed trie representing all suffixes (and thereby also all other
substrings) of astring 7'. The tree has at most » leaves (one for each suffix), and therefore,
sinceeach internal node has at | east two outgoi ng edges, the number of nodesislessthan 2n.
In order to ensure that each node takes constant storage space, an edge label is represented
by pointersinto the origina string. Note that we do not (asis otherwise common) require
that the last character of 7" is unique. Hence, our suffix trees are not guaranteed to have a
one-to-one correspondence between leaves and suffixes.

We adopt the following convention for representing edge labels: Each nodew inthetree
holds the two values pos(w) and depth(u), where pos(u) denotesa positionin 7" where the
label of theincoming edge of « isspelled out. Hence, the label of an edge (u, v) isthestring
of length depth(v) — depth(u) that begins at position pos(v) of 7.

By child(u,c) = v, whereu and v are nodes and ¢ is acharacter, we denotethat thereis
an edge (u, v) whose label beginswith ¢. We call ¢ the distinguishing character of (u, v).

In order to expresstree locations of stringsthat do not have a corresponding node in the
suffix tree (due to path compression), we introduce the following concept: For each sub-

string o of 7" we define point (o) asatriple (u, k, ¢), where u isthe node of maximum depth
forwhich (u) isaprefix of o, k = |a|—|(u)|, and c isthe (|(u)|+ 1)th character of «, unless
k = 0 inwhich case ¢ can be any character. Less formally, if we traverse the tree from the
root following edges that together spell out « for as long as possible, « is the last node on
that path, & isthe number of remaining characters of «, and ¢ isthe distinguishing character
that determines which of the outgoing edges of « spells out the last part of «.

3 Suffix Tree Construction

We giveadightly altered, and highly condensed, formulation of Ukkonen’s suffix tree con-
struction algorithm as a basis for discussions in subsequent sections. For a more elaborate
description, see Ukkonen'soriginal paper [11]. Ukkonen’salgorithm hasthe advantage over
the more well known algorithm of McCreight [6] that it builds the tree incrementally |eft-
to-right. Thisisessential for our application.

3.1 Preliminaries

At each internal node u of the suffix tree, the algorithm stores a suffix link, pointing to an-
other internal node v, such that (u) = ¢(v) (wherec isthefirst character of ()). Thisisde-
noted suf(u) = v. For convenience, we add a special node nil and define suf (root) = nil,
parent(root) = nil, depth(nil) = —1, and child(nil,c) = root for any character c. We
leave suf (nil) undefined. Furthermore, for anode « that has no outgoing edge with distin-
guishing character ¢, we define child(u, ¢) = nil.

We denotethe individual charactersof 7' (thestring to beindexed) by ¢;, where1 < <
n,i.e,T =1 ---1,. Wedefine T; asthe prefix of 7' of length ¢, and let Tree(T;) denote a
suffix tree indexing the string 7;.

3.2 Construction Algorithm

Ukkonen'salgorithmisincremental. Initeration : we build Tree(T;) from Tree(T;-1), and
thus after n iterationswe have Tree(T,) = Tree(T'). Hence, iteration : adds: stringsat; to
thetreefor al suffixes o of T;_;. For each at; precisely one of the following holds:

1. a occursin only one position in 7;_;. Thisimpliesthat (s) = « for some leaf s
of Tree(T;_1). Inorder to add at; we need only increment depth(s).

2. «occursin morethan onepositionin’;_, but at; doesnot occur inT;_;. Thisimplies
that anew leaf must be created for a¢;, and possibly an internal node hasto be created
aswell, to serve as parent of that |eaf.

3. at; occursaready in 7;_, and thereforeis already present in Tree(7;_1).

Observethat if (in a specific suffix tree), for agiven ¢;, case 1 holdsfor a4 1;, case 2 for
ast;, and case 3for ast;, then o4 islonger than a,, which in turnislonger than as.

For case 1, al work can be avoided if we represent depth(s) implicitly for all leaves s:
We represent the leaves as numbers and let leaf(j) be the leaf representing the suffix be-
ginning at position j of 7. Thisimpliesthat if s = leaf(y), then after iteration : we have
depth(s) =1 —j 4+ 1 and pos(s) = j — depth(parent(s)). Hence, neither depth(s) nor
pos(s) needs to be stored.

Now, the point of greatest depth where the tree may need to be altered in iteration ¢
is point(«), where « is the longest suffix of 7;_; that also occurs in some other position
inT;_,. Wecall thisthe active point. Beforethefirstiteration, theactive pointis(root, 0, ¢),
where ¢ isany character.

Other pointsthat need modification can befound from the active point by following suf-
fix links, and possibly some downward edges. Finally, we reach the point that corresponds
to the longest at; string for which case 3 above holds, which concludesiteration ;. We call
this the endpoint. The active point for the next iteration is found simply by moving one
character (¢;) downward from the endpoint.

We maintain avariable front that holds the position to the right of the string currently
included in the tree. Hence, front = « beforeiteration:, and front = ¢ + 1 after.

Two variables ins and proj are kept so that (ins, proj, t freni—pr;) 1Stheinsertion point,
the point where new nodes are inserted. At the beginning of each iteration, the insertion
point is set to the active point. The Canonize function in Figure 1 is used to ensure that
(ins, proj, tient—proj) 1IS@VAld point after proj has beenincremented, by moving ins along
downward edges.

Figure 2 shows the complete procedure for one iteration of the construction algorithm.
This takes constant amortized time, provided that the operation to retrieve child (u, ¢) given
u and ¢ takes constant time. (Proof given by Ukkonen [11].) For most realistic al phabet
sizes, thisrequiresthat ahash coding representation is used, as suggested by McCreight [6].

4 Maintaining a Sliding Window

In this section, we assume that the string to be indexed iST' =t - - - Ljront, Where tail
and front are numbers such that at any point in time tail < front and front — tail < M
for some maximum length M. For convenience, we assume that front and tail may grow
indefinitely. However, in practice the indices should be represented as integers modulo A,
and 7" storedinacircular buffer. Thismeansthat, e.g., t; = t;1ar and leaf (¢) = leaf (1 + M)
for any :.

The agorithm of Figure 2 can be viewed as a method to increment front. Below, we
give amethod to increment ¢a:l without asymptotic increase in time complexity. Thus, we
can maintain asuffix treeasan index for adliding window of varying size at most M, while
keeping time complexity linear in the number of processed characters. The storage space
requirement is ©(M).

4.1 Deletions

Removing the leftmost character of the indexed string involves removing the longest suffix
of T',i.e. T'itself, fromthetree. Itisclear that Tree(7") must havealeaf v suchthat (v) = T'.
Also, itisclear that v = leaf (tail). It therefore appears at first glance to be asimple task to
locate v and remove it from the tree in the following way:

Delete algorithm: Let v = leaf (tail), u = parent(v) and removethe edge (u, v). If u has
at least two remaining children, then we are done.

Otherwise, let s be theremaining child of «; « and s should be contracted into one node.
Let w = parent(u). Remove edges (w, u) and (u, s) and create an edge (w, s). u has now

been removed from the tree and can be marked unused. Finaly, if s isnot aleaf, pos(s)
should be updated by subtracting depth(u) — depth(w) fromit. O

However, thisis not sufficient for acorrect tail increment procedure. We must first en-
sure that the variables ins and proj are kept valid. Thisisviolated if the deleted node u is
equal to ins. Fortunately, it is an easy matter to check whether v = ins, and if o, let ins
back up by changing it to w and increasing proj by depth(u) — depth(v).

Secondly, we must ensure that no other suffix than the whole of 7" isremoved from the
tree. Thisisviolated if 7" has asuffix o that isalso aprefix of 7', and if point(«) islocated
on theincoming edge of the removed leaf; in this case « islost from the tree. A solution to
this problem can be found in the following lemma:

Lemma 1 Assume that:

1. T and « are nonempty strings,
2. aisthelongest string such that 7' = 6« = af for nonempty strings ¢ and 4;
3. if T has a suffix ap for some nonempty 4, then p is a prefix of 6.

Then « isthe longest suffix of 7' that also occurs in some other positionin 7'.

Proof: Trivialy, by assumptions 1 and 2, « is a suffix of 7" that aso occurs in some other
positionin 7. Assumethat it isnot thelongest one, and let y o« be alonger suffix that occurs
in some other position in 7'. Thisimpliesthat 7' = ¢éxa = Fyavy, for some nonempty
strings ¢, x, [, and 4.

Since ay isasuffix of T, it followsfrom assumption 3 that that v isaprefix of 4. Hence,
6 = ~0'forsomestring§’. Now observethat 7' = af) = a~#'. Lettinga’ = ayandé’ = By
thenyields T = §'a’ = o'6#', where |o/| > |a|, which contradicts assumption 2. O

Let o be the longest suffix that would be lost. (This guaranteesthat the premises of the
lemmaarefulfilled.) If weensurethat « iskept, no suffixes can belost, since al potentialy
lost suffixes are prefixes of 7" and therefore also of a.

From Lemma 1 we conclude that « is the longest suffix of 7" that occursin some other
positionin7'. Hence, point(c«) istheinsertion point. Therefore, beforewe delete v, we call
Canonize and check whether itsreturned valueisequal to v. If so, instead of deleting v, we
replaceit by leaf (front — |a).

Finally, we must ensure that edge labels do not become out of date when tail isincre-
mented, i.e. that pos(wu;) > tadl for al internal nodes ;. Since each leaf corresponds to a
suffix of 7" (and thereby a string contained in T'), traversing the tree to the root to update po-
sition valuesfor each added | eaf could take careof this. However, thiswouldyield quadratic
time complexity, so we must restrict the number of updates.

Thefollowing scheme originatesfrom Fialaand Greene [5]. We let each leaf contribute
acredit to the tree. When aleaf is added, it issues one credit to its parent. Each internal
node v hasacredit counter cred(u) thatisinitialy zero. If anodereceivesacredit whenthe
counter is zero, it setsthe counter to one. When anode with its counter set to one receivesa
credit, it sets the counter to zero and issues, to its parent, the one of the two received credits
that originates from the most recent leaf.

; Whl|<e_pr(})lel;(40, d(z) 1 r — Canonize, v — leaf(tail).
T CAAting, Lront—proj): 2 u «— parent(v), remove edge (u, v).
3 d — depth(r) — depth(ins) 3 Ifv—r then
4 fr isal‘eaf or proj < d then return r, 4 k_<— }mnt — (depth(ins) + proj).
Z Retetljfﬁ ‘Z;O] —proj —dyins —r. 5 Creste edge (ins, leaf (k)).
' 6 Update(ins, k), ins — suf (ins).
Figure 1. Canonize function. 7 dw
g 8 If u has only one remaining child, then
4 9 w — parent(u).
1 v e—ml 10 d — depth(u) — depth(w).
2 Repest 4 1 If u = ins, then
3 T Caﬁomze. 12 s «— w, proj — proj + d.
4 Ifr # nal, then _ 13 Assign s the child of u.
5 If % p0s(r)+proj = tfront, thenendpoint found, 4 If cred(u) = 1, then
6 else _ 15 Update(w, pos(s) — depth(u)).
7 Assign u an unused node. ‘ 16 Remove edges (w, u) and (u, s).
8 depth(u) — depth(ms‘) + proj. 17 Create edge (w, s).
9 pos(u) — front — proj. ‘ 18 If s isaninternal node, then
10 Createedg&c(zgs,u) and (u, r). 19 pos(s) — pos(s) — d.
1 Remove edge (ins, 7). 20 Make anote that « is unused.
12 If » isan internal node, then 21 tail — tail + 1.
13 pos(r) — pos(r) + proj.
14 ese Figure 3: Deletion.
15 If child(ins,tpront) = nil, thenu — ins,
16 €lse endpoint found. ,
17 If not endpoint found, then ; Wr:liu;jrzzzgo
18 s« leaf (front — depth(u)). 3 k — max{k po.s(u) — depth(v)}.
19 Create edge (u, 5). . . 4 pos(u) — k + depth(v).
20) suf(y) — U, U, ins — suf(ins). 5 cred(u) — 1 — cred(u).
21 until endpoint found. 5 If cred(u) = 1, then return
22 suf(v) <« ins. 5 de u — v ' ’

23 proj — proj + 1, front — front + 1.

Figure 2: One iteration of construction. Figure 4: Update(u, k).

If an internal node scheduled for removal holds one credit, that is issued to its parent
when the node is removed. Each time a credit is passed to anode u, pos(u) is updated. We
define afresh credit as a credit originating from one of the leaves currently present. Hence,
if anode u has received afresh credit, then pos(u) > tail

The following lemma states that this scheme guarantees valid edge labels. (Fialaand
Greene [5] make an analogous statement.)

Lemma 2 Each node hasissued at least one fresh credit.

Proof: Trivialy, al nodes of maximum depth areleaves, and haveissued fresh credits, orig-
inating from themselves. Assume that all nodes of depth £ have issued fresh credits. Let
be an internal node of depth & — 1, then each child v of « has issued a fresh credit. This
has either been passed on to » immediately or to a node between « and v which has later
been removed. Since remaining credits are sent upwards from nodes that are removed, that
credit or an even more recent credit must have propagated to «. Thus, v hasreceived fresh

creditsfrom all its children (at least two), and must therefore have issued at |east one fresh
credit.
Consequently, nodes of all depths have issued fresh credits. O

Figure 3 shows the final agorithm for advancing tail, and Figure 4 shows the routine
Update(u, k) for passing credits upwards in the tree, where the parameter « is a node to
which a credit isissued and £ is the starting position of a recently added suffix that starts
with (u). The agorithm to advance front isasin Figure 2, with the following additions to
supply credits from inserted leaves:

After line10: Update(ins, front — depth(u)), cred(u) « 1.
Afterline19: Update(u, front — depth(u)).

We can now state the following:

Theorem The presented algorithm correctly maintains a sliding window in time linear in
the size of the input.

The proof followsfrom Lemma 1 and 2 together with the previous discussions. The details
are omitted. If the alphabet size is not regarded as a constant this bound requires that hash
coding is used, i.e., it concerns randomized time.

5 Statistical Modeling

The most effective results in data compression have been achieved by statistical modeling
in combinationwith arithmetic coding. Specificaly, prediction by partial matching (PPM) is
the scheme that has generated the most notable results during the last decade. The original
PPM algorithm was given by Cleary and Witten [4]. Moffat’s variant PPMC [7] offers a
significant improvement.

The most prominent PPM variant with respect to compression performanceis a variant
named PPM*, given by Cleary, Teahan, and Witten [3]. However, as originally presented,
thisis hardly practical due to very large demands in computational resources. We show
that PPM*-style methods can be implemented in linear time and in space bounded by an
arbitrarily chosen constant, using the techniques of the previous sections.

5.1 PPM and PPMC

The idea of PPM is to regard the last few characters of the input stream as a context, and
maintain statistical information about each context in order to predict the upcoming char-
acter. The number of characters used as a context is referred to as the order.

For each context, atable of character countsis maintained. When a character ¢ appears
in context ', the count for ¢ in C' is used to encode the character: the higher the count,
the larger the code space allocated to it. The encoding is most effectively performed with
arithmetic coding [8, 13]. When acharacter appearsinacontext for thefirst time, itscount in
that context iszero, and the character can not be encoded. Therefore each context also keeps
an escape count, used to encode anew event in that context. WWhen a new event occurs, the
agorithm“falsback” to the context of nearest smaller order. A (—1)-order context, where

all characters are assumed to be equally likely, is maintained for characters that have never
occured in the input stream. New contexts are added as they occur in the input stream.

How and when to update escape counts is an intricate problem. Witten and Bell [12]
consider several heuristics.

5.2 PPM*

Previous to PPM*, the maximum order has usually been set to some small number. Thisis
primarily to keep the number of states from growing too large, but also a decrease in com-
pression performance can be observed when the order isallowed to grow large (to morethan
about six). Thisis because large-order contexts make the algorithm less stable; the chance
of the current context not having seen the upcoming character islarger. However, the per-
formance of PPM* demonstrates that with a careful strategy of choosing contexts, allowing
the order to grow without bounds can yield a significant improvement.

In PPM* all substringsthat have occured in theinput stream are stored in atrie and each
nodeinthetrieisacontext. A context list ismaintained, holding all the contexts that match
the last part of the input stream. Among these, the context to use for encoding is chosen.
(Using the strategy of earlier PPM variants, the context to use would be the one of highest
order, i.e. the node with greatest depth, but Cleary, Teahan, and Witten argue that thisis not
the best strategy for PPM*.) Thetreeis updated by traversing the context list, adding nodes
where necessary. Escaping isalso performed along the context list.

5.3 Using a Suffix Tree

Cleary, Teahan, and Witten observe that collapsing paths of unary nodes into single nodes,
i.e. path compression, can save substantial space. We make some further observations that
lead us to the conclusion that the suffix tree operations described in previous sections are
suitable to maintain the data structure for a PPM* model.

1. Acontext trieisequivalent to a suffix tree. A path-compressed context trieisa suffix tree
indexing the processed part of the input, according to the definitionin Section 2.

2. Context list. The context list of the PPM* scheme corresponds to a chain of nodesin the
suffix tree connected by suffix links. Using suffix links, it is not necessary to maintain a
Separate context list.

3. Storing the counts. The charactersthat have non-zero countsin a context are exactly the
onesfor which thethe corresponding nodein thetriehaschildren. Hence, if child (u, ¢) = v,
the count for character ¢ in context « can be storedinv. Thereisno need for additional tables
of countsfor the contexts.

Cleary, Teahan, and Witten state that path compression complicates node storage, since
different contexts may belong to the same node. However, if two strings (contexts) belong
to the samenode, thisimpliesthat oneisthe prefix of the other, and that thereare no branches
between them. Hence, they have always appeared in the input stream with one as the prefix
of the other. Therefore, it appears that the only reasonable strategy isto let them have the
same count, i.e., only one count needs to be stored.

We conclude that PPM modeling with unbounded context length for an input of size » can
be doneintime O(n + U(n)), where U(n) isthe time used for updating frequency counts

and choosing states among the nodes. Thus, we are in a position where asymptotic time
complexity depends solely on the count updating strategy. Furthermore, restraining update
and state choice to a constant number of operations per visited node (amortized) appearsto
be areasonable limitation.

5.4 Sliding Window

Using asuffix treethat isallowed to grow without bounds, until it coversthewholeinput, is
still not a practical method. For largefiles, primary storage can not even hold the complete
file, let alone a suffix tree for that file.

Clearly, it is necessary to bound the size of the data structure. We do that by letting the
suffix treeindex only thelast M charactersof theinput, using the dliding window techniques
of Section 4. In thisway, contexts corresponding to strings occuring in the latest M char-
acters are always maintained, while older contexts are “forgotten.” Note, however, that we
do not lose all earlier information when del eting old contexts, since the counts of remaining
contexts are influenced by earlier parts of the input.

Preliminary experimentsindicate that this scheme, already with asimplistic strategy for
updating and choosi ng states (choosing the active point as current state and updating nodes
only when used), yield highly competitive results—e.g. an improvement over PPMC in most
Cases.

6 Ziv—Lempel Compression

Methods based ontheoriginal algorithm of Ziv and Lempel [14] operate by storing the latest
part (typically severa thousand characters) of the input seen so far, and for each iteration
finding the longest match for the upcoming part of theinput. It then emitsthe positionin the
buffer of that matching string, together with its length. If no match isfound, the character
istransferred explicitly.

The main part of Ziv—Lempel compression consists of searching for the longest match-
ing string. This can be done in asymptotically optimal time by maintaining a suffix tree to
index the buffer. For each iteration, the longest match can be located by traversing the tree
from the root, following edges corresponding to characters from the input stream.

Rodeh and Pratt [9] show that it is possible to implement a linear-time Ziv—Lempel al-
gorithm utilizing a suffix tree. However, since they do not allow deletions from the suffix
tree, their algorithm requires ©}(n) space to process an input of length ». This impliesthat
large inputs must be split into blocks, which decreases compression performance.

Our diding window techniqueyieldsanatural implementation of Ziv—Lempel compres-
sion, which operatesin linear time.

7 Conclusion

We conclude that, using our algorithm, PPM modeling with unbounded context length for an
input of sizen canbedoneintime O(n + U(n)), where U (n) isthetime used for updating
frequency counts and choosing states among the nodes. Thus, asymptotic time complexity
depends solely on the count updating strategy. Space requirements can be bounded by a

constant, whichischosen depending on the application and avail ableresources. Preliminary
experiments indicate that this yields highly competitive results.

Furthermore, with our diding window technique we obtain anatural implementation of
Ziv—Lempel compression which runsin linear time.

It has been noted, e.g. by Bell and Witten [2], that there is a strong connection between
string substituting compression methods and symbolwise (statistical) methods. Our asser-
tion that the exact same data structure is useful in both these families of agorithms serves
as afurther illustration of this.

References

[1] T.Bell and D. Kulp. Longest-match string searching for Ziv—Lempel compression. Software
—Practice and Experience, 23(7):757—771, July 1993.

[2] T.C. Bel and I. H. Witten. The relationship between greedy parsing and symbolwise text
compression. J. ACM, 41(4):708-724, July 1994.

[3] J. G. Cleary, W. J. Teahan, and |. H. Witten. Unbounded length contexts for PPM. In Proc.
|EEE Data Compression Conference, pages 52—61, 1995.

[4] J.G.Cleary and|. H. Witten. Data compressi on using adaptive coding and partial string match-
ing. |IEEE Trans. Commun., COM-32:396-402, Apr. 1984.

[5] E. R. Fidaand D. H. Greene. Data compression with finite windows. Commun. ACM,
32(4):490-505, Apr. 1989.

[6] E.M.McCreight. A space-economical suffix tree constructionagorithm. J. ACM, 23:262—272,
1976.

[7] A. Moffat. Implementing the PPM data compression scheme. |EEE Trans. Commun., COM-
38(11):1917-1921, Nov. 1990.

[8] A.Moffat, R. Nedl, and I. H. Witten. Arithmetic coding revisited. In Proc. IEEE Data Com-
pression Conference, pages 202-211, 1995.

[9] M. RodehandV.R. Pratt. Linear agorithm for datacompression viastring matching. J. ACM,
28(1):16-24, Jan. 1981.

[10] W. J. Teahan. Probability estimation for PPM. In Proc. Second New Zealand Comput. Sci.
Research Students' Conference, Apr. 1995.

[11] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, Sept. 1995.

[12] 1. H. Wittenand T. C. Bell. The zero-frequency problem: Estimating the probabilitiesof novel
eventsin adaptivetext compression. IEEE Trans. Inf. Theory, IT-37(4):1085-1094, July 1991.

[13] 1. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression. Commun.
ACM, 30(6):520-540, June 1987.

[14] J.Zivand A. Lempel. A universal algorithmfor sequential datacompression. IEEE Trans. Inf.
Theory, 1T-23(3):337-343, May 1977.

