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Run-Length Encodings

[. A CONTEXT FOR THE PROBLEM

Secret Agent 00111 is back at the Casino again, playing a game of
chance, while the fate of mankind hangs in the balance. Each game
consists of a sequence of favorable events (probability p), terminated
by the first occurrence of an unfavcrable event (probability ¢ =1—p).
More specifically, the game is roulette, and the unfavorable event is
the occurrence of 0, which has a probability of ¢ = 1/37. No one
seriously doubts that 00111 will come through again, but the Secret
Service is quite concerned about communicating the blow-by-blow
description back to Whitehall.

The bartender, who is a free-lance agent, has a binary channel
available, but he charges a stiff fee for each bit sent. The problem
perplexing the Service is how to encode the vicissitudes of the wheel
so as to place the least strain on the Royal Exchequer. It is easily
seen that, for the case p = ¢ = 1/2, the best that can be done is to
use 0 and 1 to represent the two possible outcomes. However; the
case at hand involves p > ¢, for which the “direct coding’ method is
shockingly inefficient.

Finally, a junior code clerk who has been reading up on Infor-
mation Theory, suggests-encoding the run lengths between successive
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TABLE I
Run-LENGTH DICTIONARIES FOR SMALL m

_ . e | s
n G(n) Codeword n G(n) Codeword n Gin) Codeword | n G(n) Codeword
o 1/2 0 | 0 0.293 00 0 0.206 00 { 0 0.151 000
1 174 10 ! 1 0.207 01 1 0.164 010 1 0.128 001
2 1/86 1100 3 8'%(1)6 ig(l) § 8}83 Oél i 2 0.109 010
3 171 111 : 104 .10 100 i 3 0.092 oLl
4 1732 11110 [ 1 0.073 1100 4 0.081 1010 i 1 0.078 1000
5 1/64 111110 { 5 0.051 1101 5 0.064 1011 , 3 0.066 1001
6 17128 1111110 \ 8 0.036 11100 6 0.051 1100 ; 6 0.056 1010
7 17256 11111110 \ 7 0.025 11101 7 0.041 11010 : 7 0.048 1011
8 1/512 111111110 ! 8 0.018 111100 8 0.032 11011 ! 8 0.040 11000
y 171024 1111111110 ¢ 9 0.013 111101 9 0.026 11100 | 9 0.034 11001
10 172048 11111111110 | 10 0.009 1111100 10 0.021 111010 | 10 0.029 11010
i !
unfavorable events. In general, the probability of a run length of RUN-LENGTH Dlmwg\‘:ils‘féé}{ m = 14 AND m = 16
nis prq, for n = 0, 1, 2, 3,..., which is the familiar geometric distri-
bution. (See Feller,! page 174.)
m = 14 m = 16
11. Tue EnxcopIiNG PROCEDURE
. . . . . Codeword Codeword odeword Cod d
If the list of possible outcomes were finite, we could list them with r i " ewor n Codewor i ewer
their probabilities, and apply Huffman coding’ (as done by ¢ 2000 211 101100 9 90000 28| jo1000
Abramson,® page 77 et seq.). However, with an infinite list, it 1s s | ooee 3(75 }gﬁ}(l) % 00010 3175 %g}g%?
clear that we cannot start at the bottom and work our way up. 3 00101 28 110000 1 88%(1) 28 | 101100
Fortunately, the fact that the probabilities follow a distribution law é 8(0)3(1) 29 110001 g 88}(1)(1) gg igﬁ%
furnishes a short cut, as follows. 6 01000 30| 1100100 7 00111 31 | 101111
Let m = — log 2/log p. (That is, p™ = 1/2.) The results will be 8 01010 32 “80110 S 8%88(1) 32 | 1100000
4 readilv e . , ; ; i 9 01011 33 1100111 10 01010 33 | 1100001
most I‘e—ddll) apghgable for t}iose p such that m is an 1ntfger (viz., 10 01100 3% 1161000 11 01011 31 | 1106010
p=035p=0707.,p=07%..,p=0849.,p=0.873.,etc). 11 01101 35| 1101001 12 | 01100 35 | 1100011
St ding © . iallv i ] . 12 01110 36 1101010 13 01101 36 | 1100100
The resulting coding scheme is especially simple when m is a power 13 01111 37 1101011 14 01110 37 | 1100101
of 2, but any integer m is a favorable case. 1 10000 33 1101100 15 01111 38 %}%ﬂ?
If p» = 1/2, then a run of length n 4+ m is only half as likely as a ) Toonon 4(1J 1101}}(1) 16 100000 40 | 1101000
. i 4 1 0000
run of length n. (The respective probabilities are p=** ¢ = ipn¢ and 1(75 100101 12 1}%000 }g iooou% ié {}8}8‘1’5
p"g.) Thus, we would expect the codeword for run-lengthn +mtobe 1% 100120 43| 1110001 20 100011 a2 howll
one bit longer than the codeword for run-length n. This argument, 20 101000 44 11100100 21 100101 45 | 1101101
although nonrigorous, leads to the correct conclusion that there 3; }8{8‘{(‘, 22 }{}88}% §§ }%}i? 2? ﬁgiﬂ?
should be m codewords of each possible wordlength, except for the 23 101011 47 11100111

shortest wordlengths, which are not used at all if m > 1, and possibly
one transitional wordlength which is used fewer than m times.
Knowing this answer, there i1s a rigorous proof by mathematical
induction. The dictionaries for the first several values of m are as
shown in Table I, where G(n) is used to designate p=q.

In general, let k be the smallest positive integer such that 22 2m.
Then the corresponding code dictionary contains exactly m words of
every word length = k, as well as 21— m words of length £ —1.
(The simplification which occurs for m a power of 2 is that the col-
lection of words of length £ ~ 1 is empty.) This result is obtained by
seeing how much “signal space’ is used up by having m words,of
every length = k. This consumes

m m m m
“27;+5Zﬁ+2k+2+ =f)k—1;

leaving 1 — m/2%1 = (2k-! — m)/2%1 unused, which means that
26=1—m words of length £ —1 may be adjoined.

I11. FURTHER EXAMPLES

We will consider the cases m = 14 and m = 16, to illustrate what
happens when m is not a power of 2 and when m is a power of 2,
respectively. The dictionaries in these two cases are shown in Table
II. In the case m = 14, we find k = 5, and 2¥1—m = 2, so that there
are two codewords of length 4, followed by fourteen codewords of
lengths 5, 6, 7, etc. On the other hand, since m = 16 is a power of 2,
the corresponding dictionary contains exactly 16 words of every
wordlength starting with length 5.

In a practical situation, if m = — log 2/log p is not an integer, then
the best dictionary will oscillate between [m] words of a given
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length and [m] + 1 words of another length. (Here [m] denotes the
greatest integer < m.) For large m, however, there is very little
penalty for picking the nearest integer when designing the code.
Very often, the underlying probabilities are not known accurately
enough to justify picking a non-integral value of m. (For example,
saying p = 0.95 on the basis of statistical evidence may involve as
large a round-off error as saying m = 14.) For Agent 00111, the
approximation m = 25 corresponds closely to ¢ = 1/37.

IV. DEcopInG

The dictionaries in ‘Table II exhibit striking patterns which
suggest that a rather simple decoding procedure might be employed.
For the case m = 16, the following rule for decoding is adequate.

Start at the beginning (left end) of the word, and count the number
of 1’s preceding the first 0. Let this number be A = 0. Then the word
consists of A + 5 bits. Let the last 5 bits be regarded as the ordinary
binary representation of the integer B, 0 £ B < 15. Then the correct
decoding of the word is 16A + R. This simple decoding reveals an
equally simple method of encoding. To encode the number N, we
divide N by 16 to get N = 164 -+ R, and write 4 1’s followed by the
5-bit binary representation of R. ' )

The case m = 14 is only slightly more complicated. Suppose a
word starts in 4 1's, and the next three bits are not all 0's. Then we
consider the word to consist of A + 5 bits altogether. Let the last 5
bits be the binary representation of the integer R. Then the correct
decoding of the codeword is 144 + R — 2. On the other hand, if the
initial A 1's are followed by three or more 0’s, we regard the codeword
as consisting of a total of A -+ 4 bits. Letting the last 4 bits be the
binary representation of an integer ', the correct decoding in this
case is 144 + R’. This procedure also can be inverted to describe
direct encoding from ordinary numbers to codewords.
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Y. IMPLEMENTATION

The Senior Cryptographer observes that although run length
coding is a big improvement over no coding at all, it is less than
100 percent efficient for the mission at hand. He has heard that a
method invented at M.I.T. is 100 percent efficient. However, a
hasty briefing on this method convinces Operations that it is unimple-
mentable, because it requires infinite computing capability. The
run-length system is employed after all. As it turns out, however,
Agent 00111 has bribed the croupier, and the ““Unfavorable Case’”
occurs only half as often as expected. Fortunately, the coding
procedure is such that the cost of communicating has also decreased
as a result!

It is appropriate to mention that there really is a method, invented
by Elias and Shannon (see Abramson,? page 61), which is 100 percent,
efficient for communicating events from a p: ¢ distribution. More-
over, the assertion that “infinite computing capability” is required is
a gross overstatement. Nevertheless, British Intelligence quite
possibly made the correct practical decision. We shall leave it to the
reader to judge.

VI. PeRrspPECTIVE

The literature in statistical communication theory generally
contains a significant shift in viewpoint between the discrete and the
continuous case. In the latter context, a particular distribution is
assumed almost from the outset, and most of the theorems refer to
suich things as the “white Gaussian noisy channel,” or other equally
specific assumptions. For the discrete case, on the other hand, the
results are rarely evaluated in terms of specific distributions. The
present remarks are intended as a step in this direction, viz., the
explicit form which Huffman coding assumes when applied to the
geometric distribution. It would also be appropriate to have explicit
answers for the binomial distribution, the Poisson distribution, etc.
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