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Abstract

We describe a simple variant of the interpolated Markov model with non�
emitting state transitions and prove that it is strictly more powerful than any
Markov model� More importantly
 the non�emitting model outperforms the clas�
sic interpolated model on natural language texts under a wide range of experi�
mental conditions
 with only a modest increase in computational requirements�
The non�emitting model is also much less prone to over�tting�
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� Introduction

The Markov model has long been the core technology of statistical language
modeling� Many other models have been proposed
 but none has o�ered a better
combination of predictive performance
 computational eciency
 and ease of
implementation� Here we add hierarchical non�emitting state transitions to the
Markov model� Although the states in our model remain Markovian
 the model
itself is no longer Markovian because it can represent unbounded dependencies
in the state order distribution� Consequently
 the non�emitting Markov model is
strictly more powerful than any Markov model
 including the context model ���

��
 ���
 the backo� model ��
 ���
 and the interpolated Markov model ���
 ����
More importantly
 the non�emitting model consistently outperforms the best
Markov models on natural language texts
 under a wide range of experimental
conditions� The non�emitting model is also nearly as computationally ecient
and easy to implement as the interpolated Markov model�
The remainder of our report consists of �ve sections and one appendix� In

section �
 motivate the fundamental problem of time series prediction
 which is
to combine the probabilities of events of di�erent orders� Section � reviews the
interpolated Markov model and brie�y demonstrates the equivalence of inter�
polated models and basic Markov models of the same model order� Next
 we
introduce the hierarchical non�emitting Markov model in section �
 and prove
that even a second order non�emitting model is strictly more powerful than any
Markov model
 of any model order� Section � provides ecient algorithms to
optimize the parameters of a non�emitting model on data� In section �
 we re�
port empirical results for the interpolated model and the non�emitting model on
the Brown corpus and Wall Street Journal� Finally
 in section � we conjecture
that the non�emitting model excels empirically because it imposes a pseudo�
Bayesian discipline on maximum likelihood techniques� Appendix A reviews
the backo� model and explains how to construct a non�emitting backo� model
that is strictly more powerful than any backo� model�
Our notation is as follows� Let A be a �nite alphabet of distinct symbols


jAj � k
 and let xT � AT denote an arbitrary string of length T over the
alphabet A� Then xji denotes the substring of x

T that begins at position i and
ends at position j� For convenience
 we abbreviate the unit length substring xii
as xi and the length t pre�x of xT as xt�

� Time Series Prediction

A time series model must assign accurate probabilities to strings of unbounded
length� Yet unbounded strings don�t occur in recorded histories
 which are
always �nite� Therefore
 to estimate the probabilities of unbounded strings
from a �nite corpus
 we must assume that each symbol in a given string depends
only on a �nite number of �equivalence classes of� contexts� The most widely
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adopted independence assumption is the order n Markov assumption
 which
states that each symbol depends only on the immediately preceding n symbols

and is conditionally independent of the distant past�

p�xT jT � �
QT

t�� p�xtjx
t���

�
QT

t�� p�xtjx
t��
t�n�

The simplest statistical model to incorporate an order n Markov assumption
is the basic Markov model� A basic Markov model � � hA� n� �ni consists of
an alphabet A
 a model order n
 n � �
 and the state transition probabilities
�n � A

n�A� ��� ��� With probability �n�yjx
n�
 a Markov model in the state xn

will emit the symbol y and transition to the state xn� y� Therefore
 the probability
pm�xtjx

t��� �� assigned by an order n basic Markov model � to a symbol xt in
the history xt�� depends only on the last n symbols of the history�

pm�xtjx
t��� �� � �n�xtjx

t��
t�n� ���

Since the Markov model contains only a �nite number of parameters
 it is in
principle possible to estimate their values directly from data� All that remains
is to choose the model order�
In real�world time series problems
 the future depends on the entire past


even if only weakly� In order to more closely approximate a real�world source

we would like our model order to be as large as possible� Yet we have only a
�nite amount of training data from which to estimate our model parameters�
An order n Markov model over an alphabet of k symbols has kn�� events

while a corpus of length T has at most T � n distinct events of order n� The
exponential growth in events quickly exceeds the size of all available training
data
 and nearly all the higher�order events do not occur in the training data�
This tension between model complexity and data sparsity is fundamental to

time series modeling� The probabilities of the lower order events can be more
accurately estimated from the available training data
 while the higher order
events are better able to model complex real�world sources� An e�ective model

then
 must include individual events of both higher and lower orders�
The two most widely�used techniques for combining individual events of

varying orders are backo� and interpolation� In an interpolated model
 the
transition probabilities from lower and higher order states are combined stochas�
tically using mixing parameters� In a backo� model
 the event probabilities are
combined according to a partial order which typically favors higher order events
over lower order events� In section � and appendix A
 we show that back�
o� models and interpolated models are formally equivalent to basic Markov
models� Therefore
 backo� and interpolation are simply parameter estimation
schemes for basic Markov models�
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� Interpolation

Here we introduce the interpolated Markov model and explain why the interpo�
lated model class is equivalent to the class of basic Markov models� In the next
section �
 we introduce hierarchical non�emitting state transitions to the Markov
model
 and prove that the new non�emitting models are no longer Markovian
even though their states are�
In the interpolated Markov model
 the transition probabilities from states of

di�erent orders are combined using state�conditional mixing parameters� The
mixing parameters smooth the transition probabilities from higher order states
with those from lower order states ����� Mixing the transition probabilities
from states of di�erent orders results in more accurate predictions than can be
obtained from any �xed model order�
Formally
 an interpolated Markov model � � hA� n� �� �i consists of a �nite

alphabet A
 a maximal model order n
 the state transition probabilities � �
�� � � � �n
 �i � A

i�A� ��� ��
 and the state�conditional interpolation parameters
� � An � ��� n� � ��� ��� The state order is a hidden variable� The probability
assigned by an interpolated model is a linear combination of the probabilities
assigned by all the lower order Markov models�

pc�yjx
n� �� �

nX
i��

�i�yjx
i���ijxn� ���

An interpolated model is a valid probability model if every �i��jx
i� and every

��ijxn� is valid� It is nonzero for all strings A� if ����� is strictly positive for all
symbols A and no ��ijxn� is unity when ���jxi� is zero for some symbol�
Estimating the O�nkn� state interpolation probabilities is considerably easier

than estimating the O�kn��� state transition probabilities in an order n Markov
model� To begin with
 we set ��ijxn� to � if the order i state xi is novel� Now
we need only to estimate the O�nT � interpolation parameters that have been
observed in the training data�
Nonetheless
 there are still too many interpolation parameters to be ac�

curately estimated� Further re�nements are necessary to improve predictive
performance� One re�nement is to group similar parameters into equivalence
classes and then constrain them to take the same values� This is called param�
eter tying� At one extreme
 each state�conditional interpolation distribution is
its own equivalence class� At the other extreme
 all interpolation probabilities
are tied together and we have the state�independent interpolated Markov model

pc�yjx
n� �� �

nX
i��

�i�yjx
i��i ���

with only n� � interpolation parameters� While parameter tying can improve
performance
 reducing state�conditional interpolation to state�independent in�
terpolation results in poor performance�
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A hierarchical parameterization of the full state�conditional interpolation is
more e�ective� Let �i � A

i � ��� �� be the set of ith order state interpolation
parameters
 where �i�x

i� is the probability of using the ithorder state transition
probability �i��jx

i�
 conditioned on the decision not to use any higher order state
transition probability�

��ijxn� � �i�x
n
n���i�

nY
j�i��

��� �j�x
n
n���j��

Then the probability pc�yjx
n� �� that the state xn will emit the symbol y has a

particularly simple form

pc�yjx
i� �� � �i�x

i��i�yjx
i�

���� �i�x
i��pc�yjx

i
�� ��

���

where �i�x
i� � � for i � n
 and therefore pc�xtjx

t��� �� � pc�xtjx
t��
t�n� ��
 ie�


the prediction depends only on the last n symbols of the history�
A quick glance at the form of ��� and ��� reveals the fundamental simplicity

of the interpolated Markov model� Every interpolated model is equivalent to
a basic Markov model of the same order
 and every basic Markov model is an
interpolated model of the same order� We may convert an interpolated model
� into a basic model �� of the same model order n
 simply by setting ��n�yjx

n�
equal to pc�yjx

n� �� for all states xn � An and symbols y � A� Thus
 the class
interpolated Markov models is extensionally equivalent to the class of basic
Markov models�

� Non�Emitting Transitions

In the previous section
 we explained how to combine events of varying orders
using interpolation and backo�� Interpolation and backo� both use the proba�
bilities of lower events to estimate the probabilities of higher order events� As
a result
 interpolated and backo� models are extensionally equivalent to each
other and to basic Markov models of the same order� In this section
 we explain
how to combine events of varying orders using non�emitting state transitions�
The central idea is to allow actual non�emitting transitions between events of

di�erent orders� Unlike interpolation and backo�
 non�emitting transitions are
not merely an estimation method � they actually increase the expressive power
of the model class� As a result
 non�emitting models are strictly more powerful
than the class of basic Markov models� The next section � provides ecient
algorithms to evaluate the probability of a string according to a non�emitting
model and to optimize the parameters of a non�emitting model on data�
A non�emitting mixture Markov model � � hA� n� �� �i consists of a �nite

alphabet A
 a maximal model order n
 the emitting state transition probabilities
�i � A

i � A � ��� ��
 and the non�emitting state transition probabilities �i �
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Ai � ��� n� � ��� ��� The non�emitting model alternates between non�emitting
and emitting transitions according to the � and � parameters
 respectively� The
parameter ��jjxi� speci�es the probability that the model will transition from
the state xi to the state xj without emitting a symbol� The parameter �j�yjx

j�
speci�es the probability that the model will emit the symbol y from the state
xj and transition to the successor state xjy� Then the probability p��y

j jxi� ��
assigned to a string yj in the state xi has the form

p��y
j jxi� �� �

iX
l��

��ljxi��l�y�jx
l�p��y

j
�jx

ly� ��� ���

When the model order is suciently high
 then a hierarchical parameteri�
zation of the non�emitting transition probabilities may improve performance�
With probability � � �i�x

i�
 a hierarchical non�emitting model will transition
from the state xi to the state xi� without emitting a symbol� With probability
�i�x

i��i�yjx
i�
 the model will transition from the state xi to the state xiy and

emit the symbol y�
Therefore
 the probability p��y

j jxi� �� assigned to a string yj in the history
xi by a hierarchical non�emitting model � has the recursive form ���


p��y
j jxi� �� � �i�x

i��i�y�jx
i�p��y

j
�jx

iy�� ��
���� �i�x

i��p��y
j jxi�� ��

���

where �i�x
i� � � for i � n and ����� � �� Note that
 unlike the basic Markov

model
 p��xtjx
t��� �� �� p��xtjx

t��
t�n� �� because the state order distribution of

the non�emitting model depends on the pre�x xi�n� This simple fact will allow
us to establish that there exists a non�emitting model that is not equivalent to
any Markov model�
Lemma ��� states that there exists a non�emitting model � that cannot be

converted into an equivalent basic model of any order� There will always be
a string xT that distinguishes the non�emitting model � from any given basic
model �� because the non�emitting model can encode unbounded dependencies
in its state distribution�

Lemma ��� 	� 
�� 	xT � A� �p��x
T j�� T � �� pm�x

T j��� T ��

Proof� The idea of the proof is that our non�emitting model will encode the �rst
symbol x� of the string x

T in its state distribution
 for an unbounded distance�
This will allow it to predict the last symbol xT using its knowledge of the �rst
symbol x�� The basic model will only be able predict the last symbol xT using
the preceding n symbols
 and therefore when T is greater than n
 we can arrange
for p��x

T j�� T � to di�er from any pm�x
T j��� T �
 simply by our choice of x��

The smallest non�emitting model capable of exhibiting the required behav�
ior has order �� Lower order non�emitting models are equivalent to interpolated
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models of the same order
 with the same parameters� The non�emitting transi�
tion probabilities � and the interior of the string xT��� will be chosen so that the
non�emitting model is either in an order � state or an order � state
 with no way
to transition from one to the other� The �rst symbol x� will determine whether
the non�emitting model goes to the order � state or stays in the order � state�
No matter what probability the basic model assigns to the �nal symbol xT 
 the
non�emitting model can assign a di�erent probability by the appropriate choice
of x�
 ���xT �
 and ���xT jx

T��
T����

Consider the second order non�emitting model over a binary alphabet with
���� � �
 ���� � �
 and ����� � � on strings in A��A� When x� � �
 then
x� will be predicted using the �st order model ���x�jx��
 and all subsequent xt
will be predicted by the second order model ���xtjx

t��
t���� When x� � �
 then all

subsequent xt will be predicted by the zeroth order model ���xt�� Thus for all
t � p
 p��xtjx

t��� �� p��xtjx
t��
t�p� for any �xed p
 and no basic model is equivalent

to this simple non�emitting model� �
Every basic model is a non�emitting model
 with the appropriate choice of

non�emitting transition probabilities�

Lemma ��� 
� 	�� 
xT � A� �p��x
T j��� T � � pm�x

T j�� T ��

Proof� A basic model � � hA� n� �ni is equivalent to a non�emitting model
�� � hA� n� ��� ��i where ��n � �n and ���njxn� � � for all xn� In the hierarchical
parameterization
 ���xn� � � for all xn� �
Therefore
 the class P� of non�emitting Markov distributions is strictly more

powerful than the class Pm of basic Markov distributions�

Theorem � Pm � P�

Proof� Pm �� P� by lemma ��� and Pm � P� by lemma ���� �
Since interpolated models and backo� models are equivalent to basic Markov

models
 we have as a corollary that non�emitting Markov models are strictly
more powerful than interpolated and backo� models� Note that non�emitting
Markov models are considerably less powerful than the full class of stochastic
�nite state automata because their states are Markovian� For the same reason

non�emitting models are also less powerful than the full class of hidden Markov
models�
Let us now turn to the algorithms required to evaluate the probability of

a string according to a non�emitting mixture model and to optimize the non�
emitting state transitions on a training corpus�

� Estimation

Here we present an ecient expectation�maximization �EM� algorithm to op�
timize the parameters of a hierarchical non�emitting mixture model on data�
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An EM algorithm iteratively maximizes the probability of the training data ac�
cording to the model by computing the expectation of model parameters on the
data and then updating the model parameters to maximize those expectations
��
 �
 ���
The non�emitting mixture model is suciently expressive that any max�

imum likelihood estimator will over�t its parameters to the training corpus�
Unseen events will be assigned zero probability
 and the over�t model will fail
to accurately predict the future� The traditional solution to this problem for in�
terpolated Markov models is cross�estimation ����� Cross�estimation repeatedly
partitions the training data into two blocks and optimizes the mixing parame�
ters on one block after initializing the state transition parameters on the other
block� We present a traditional cross�estimation algorithm for hierarchical non�
emitting models�
We begin by partitioning the training corpus into a �xed set of blocks B�

Ideally our partition is linguistically meaningful and roughly uniform
 but nei�
ther condition is essential� For example
 we might divide a natural language
text corpus on sentence
 paragraph
 or article boundaries� Next we call cross�
estimate�B
�� on our hierarchical non�emitting model ��

cross�estimate�B���
�� Until convergence
�� Initialize ��� �� to zero�
�� For each block Bi in B
	� Initialize � using B�Bi�

� expectation�step�Bi ����

������
�� maximization�step����������
�� Initialize � using B�

The variables ���xi� and ���xi� accumulate expectations for the non�emitting
state transition parameter ��xi�� ���xi� contains the expectation of emitting
a symbol in state xi
 conditioned on being in state xi
 while ���xi� contains
the expectation of transitioning to xi� without emitting a symbol
 conditioned
on being in state xi� Lines ��� enumerate all one�block partitions of the train�
ing corpus� The emitting state transitions � are initialized to their maximum
likelihood estimates on the larger block B�Bi and then the non�emitting state
transitions � are optimized on the smaller �withheld� block Bi�
The heart of the algorithm is the expectation�step�� procedure
 which

calculates the expectation of the non�emitting transitions on the string xb and
then increments the ��� �� accumulators�

expectation�step�xb ���������
�� �  forward�xb����
�� 	  backward�xb����
�� for t � b downto �

�



	� for i � � upto min�n� t�

� ��t �i� � �t�i���� �t�i��	t�i� ���
�� ��t���i� ��� � �t���i� ���t���i� ���t���i� ��	t�i��
�� if �t � n� � ��t���n�� � �t���n��t���n��t���n�	t�n�� �

The forward variable �t�i� contains the probability p�xt� ot � ij�� that the
model � generated the pre�x xt and terminated in the order i state� The
backward variable 	t�i� contains the probability p�xt��bT jx

t� ot � i� �� that the
model � generated the sux xbt�� given that it was in the order i state at time
t� To simplify the notation
 we de�ne �t�i� to be the probability ��xtt���i� of
emitting a symbol from the ith order state at time t
 given that we are in that
state� We also de�ne �t�i� to be the probability �i�xt��jx

t
t���i� of the emitting

transition from state xtt���i to state x
t��
t���i�

The expectation�step�� algorithm requires O�nb� time and space for an
order n non�emitting model on a string xb of length b� A comparable inter�
polated model can take an expectation step in O�nb� time and O��� space ����
While the di�erence between O�nb� and O��� space can be considerable
 the
additional space requirements of the non�emitting algorithm are small when
compared to the cost of storing all the model parameters� An order n mixture
model has O�nT � parameters for a training corpus of size T 
 and the training
corpus is typically an order of magnitude larger than the withheld block�

forward�xT ���
�� ����� � ��
�� for t � � upto T � �
�� for i � min�n� �� t� downto �
	� �t�i�� � �t�i� ����� �t�i� ����

� �t���i� �� �� �t�i��t�i��t�i��
�� if �t � n� � �t���n�� � �t�n��t�n��t�n�� �
�� return����

backward�xT ���
�� for i � � upto min�n� �� T � ���
�� 	T���i� � �T���i��T���i��
�� if �T � n� � 	T���n� � �T���n��T���n�� �
	� for t � T � � downto �

� for i � � upto min�n� t�
�� 	t�i�� � ��� �t�i��	t�i� ���
�� 	t���i� �� � �t���i� ���t���i� ��	t�i��
�� if �t � n� � 	t���n� � �t���n��t���n�	T �n�� �
�� return�	��

The forward�� and backward�� algorithms each require O�nT � time and
space� It is possible to evaluate the probability p��x

T j�� of a string xT according
to an order n non�emitting model � in O�nT � time and O�n� space� In contrast


	



it is possible to evaluate the probability pc�x
T j�� according to an interpolated

model in O�nT � time and O��� space� Again
 the small additional cost in space
is negligible when compared to the cost of storing the model parameters�
Having done all the work in the expectation step
 the maximization step is

straightforward�

maximization�step����� ����
�� Forall states xi in A�n

�� ���xi� �� ���xi�
����xi� � ���xi���

Line � reestimates each non�emitting state transition parameter ��xi� as the
expectation of emitting a symbol from that state divided by the expectation
of being in that state� In order to ensure that no non�emitting state transi�
tion parameter ��xi� is ever reestimated to � or �
 we typically initialize each
accumulator to a small positive number �eg�
 ���� instead of zero�
When � parameters are tied
 then their �� and �� expectations must be

pooled before they are updated� Let ��xi� be the equivalence class of xi under
the tying scheme � � For simplicity
 imagine ��xi� to be an index� All algorithms
in this section would use the tied parameter ����xi�� instead of the untied
parameter ��xi�� The tied�expectation�step�� algorithm would increment
the �����xi�� and �����xi�� accumulators
 and the tied�maximization�step��
algorithm would be as follows�

tied�maximization�step����� ������
�� Forall classes i in ��A�n�
�� ���i� �� ���i�
����i� � ���i���

In some situations
 cross�estimationmay be approximated by forward�estimation�
Like cross�estimation
 forward�estimation initializes the � parameters on one
text block and optimizes the � parameters on another block� Forward�estimation
uses only a single text partition whereas cross�estimation uses all one�block
text partitions� As result
 forward�estimation is considerably faster than cross�
estimation
 both in the amount of time required per iteration and in the num�
ber of iterations until convergence� Unfortunately
 it can lead to inferior results
when there are too many mixing parameters�

forward�estimate�B� �B����
�� Until convergence
�� Initialize ��� �� to zero�
�� Initialize � using B� �
	� expectation�step�B� ����

������

� maximization�step����������
�� Initialize � using B�  B��
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Implementation Note� Unless the corpus and the alphabet size are very
small
 then the �t�i� and 	t�i� values used in the expectation�step�� proce�
dure will exceed the representational range of double precision IEEE �oating
point numbers� When this happens
 a �oating point exception will occur and an
alternate representation must be used for the probability values� The simplest
approach is to use a logarithmic representation� Multiplication and division of
probability values is straightforward in a logarithmic representation�

log�x � y� � log�x� � log�y�
log�x
y� � log�x� � log�y�

Addition of logarithmic probability values is more costly
 and care must be taken
to avoid under�ow�

log�x�y� �

�
log�x� if log�y�� log�x� � �
log�x� � log�� � exp�log�y�� log�x��� otherwise

Here � is the smallest representable exponent
 for example
 ������ for IEEE
double precision �oating point numbers when the logarithms are natural �ie�

base e�� This test is necessary to avoid under�ow in the call to exp���
While it is simple to implement
 logarithmic arithmetic can be ����� times

slower than straight probability arithmetic
 depending on the speed of the �oat�
ing point unit and the math library provided with the operating system� For
this reason
 our implementation used an extended exponent representation from
the library of practical abstractions ����� This balanced�tmodule provides sin�
gle precision �oating point numbers with �� bit exponents� It is ��� to ��� times
faster than the logarithmic representation
 depending on the machine�
When computation time is at a premium
 then the most e�ective solution is

to periodically scale the probability values in the �t�i� and 	t�i� arrays to keep
them in an acceptable range� Scaling is more dicult to implement than loga�
rithmic arithmetic or balanced�t arithmetic
 and it is inherently nonmodular�

� Empirical Results

The ultimate measure of a statistical model is its predictive performance in
the domain of interest� To take the true measure of non�emitting models for
natural language texts
 we evaluate their performance as character models on
the Brown corpus ��� and as word models on the Wall Street Journal� Our results
show that the non�emitting Markov model consistently gives better predictions
than the traditional interpolated Markov model under equivalent experimental
conditions� In all cases we compare non�emitting and interpolated models of
identical model orders
 with the same number of parameters� Note that the
non�emitting bigram and the interpolated bigram are equivalent�
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Corpus Alphabet Size Blocks

Brown �� �
���
��� ��
WSJ ��	� ��
��� �
���
��� ��
WSJ ��	��	� ��
��� ��
���
��� ���

All � values were initialized uniformly to ��� and then optimized using cross�
estimation on the �rst �� of each corpus� The remaining �� percent of each
corpus was used to evaluate model performance� While this validation paradigm
exposes the models to nonstationarity
 it is simple to understand and easily
reproduced�
We consider a single parameter tying scheme
 in which all states with the

same frequency and diversity are considered equivalent� The frequency c�xi� of
a state is the number of times that the string xi occurred in the training corpus�
The diversity q�xi�

�
� jfy � c�xiy� � �gj of a state is the number of distinct

symbols observed in the state� Experience with multinomial prediction suggests
that frequency and diversity are necessary to accurately estimate the likelihood
of novel symbols �����
In related work ����
 Thomas compares the performance of the interpolated

and non�emitting models on the Brown corpus and Wall Street Journal with ten
di�erent parameter tying schemes� His experiments con�rm that some parame�
ter tying schemes improve model performance
 although to a lesser degree when
cross�estimation is used� The non�emitting model consistently outperformed
the interpolated model on both corpora for all ten parameter tying schemes�
Thomas shows that our frequency�diversity parameter tying scheme is one of
the more e�ective parameter schemes�

��� Brown Corpus

Our �rst set of experiments were with character models on the Brown corpus
���� The Brown corpus is an eclectic collection of English prose
 containing
�
���
��� characters partitioned into ��� �les� We performed �� iterations of
cross estimation on �� blocks� Results are reported as per�character test message
entropies �bits!char�
 � �

v
log� p�y

vjv�� The non�emitting model outperforms
the interpolated model for all nontrivial model orders
 particularly for larger
model orders� The non�emitting model is considerably less prone to over�tting�
After �� EM iterations
 the untied order � non�emitting model scores �����
bits!char while the untied order � interpolated model scores ����� bits!char�
The untied non�emitting model even outperforms the tied interpolated model
for all nontrivial model orders�

��



Model Interpolation Non�Emitting
order untied tied untied tied

� ����� ����� ����� �����

� ����� ����� ����� �����

� ����� ���	� ����� �����

� ����� ����	 ����� �����

� ����� ����� ����� �����

� ����� ���	� ����� �����

� ����� ����� ����� ����	

	 ����� ���	� ����� �����

� ����� ����� ����� �����

We also compared the performance of our techniques with two new interpo�
lation schemes recently proposed by Potamianos and Jelinek ����� Their DI�TD
scheme uses hierarchical state�conditional interpolation ��xi�
 variable�width
frequency � order parameter tying
 and �top�down optimization� on one with�
held block� Their DI�BU scheme uses general state�conditional interpolation
��jjxi�
 variable�width frequency � order parameter tying
 and bottom�up op�
timization on one withheld block� The comparison is performed on a modi�ed
version of the Brown corpus
 which they provided to us� This modi�ed corpus
eliminates the unusual punctuation of the original Brown corpus
 reduces the
alphabet size from �� to ��
 and separates distinct linguistic tokens with single
spaces�

Corpus Alphabet Size Train Test Blocks

Brown �std� �� �
���
��� �
���
��� ���
��� ��
Brown �JHU� �� �
���
��� �
���
��� �	�
��� ��

Another di�erence between the Potamianos�Jelinek validation paradigm and
ours lies in how the corpus is partitioned into training and testing blocks� In
our experiments
 the test block was the last �� of the Brown corpus � the last
��	 characters from br�n���txt plus all �les from br�n���txt through br�r���txt
inclusive� In the Potamianos�Jelinek experiments
 the test block consisted of
complete sentences chosen uniformly from the entire �modi�ed� Brown corpus�
To this comparison
 we added the original interpolation schemes of Je�

linek and Mercer ���� under �� iterations of forward�estimation �DI�FE� and
cross�estimation �DI�CE�� Both models used hierarchical state�conditional in�
terpolation ��xi� and straight frequency � diversity parameter tying� We also
added the hierarchical non�emitting model with straight frequency � diversity
parameter tying
 and �� iterations of forward�estimation �NE�FE� and cross�
optimization �NE�CE�� The results are summarized in the following table as
mean test message entropies �bits!char��

��



Model Interpolation Non�Emitting
order DI�TD DI�BU DI�FE DI�CE NE�FE NE�CE

� ����� ����� ����	 ����	 ����	 ����	

� ��	�� ��	�� ��	�� ��	�	 ��	�� ��	��

� ����	 ����� ����� ����� ����	 �����

� ����� ����� ����� ����� ����� �����

� ��	�� ��	�	 ��	�� ��	�� ��	�� ��	��

� ��	�� ��	�� ��	�� ��	�� ���	� ���	�

� ��	�� ��	�� ��	�� ��	�� ����� �����

	 ��	�	 ��	�� ��	�� ����� ����� �����

� ��	�� ����� ��	�� ����	 ����	 �����

The non�emitting model consistently outperforms all interpolation schemes at
all model orders above �
 by a signi�cant margin� The original Jelinek�Mercer
interpolation scheme also tends to outperform the two new DI�TD and DI�BU
schemes at higher model orders
 for both forward�estimation �DI�FE� and cross�
estimation �DI�CE��
Note also that the best order � result in the Potamianos�Jelinek paradigm

������ bits!char� is considerably better than the best order � result in our val�
idation paradigm ������ bits!char�� We believe this is partially attributable
to the reduced alphabet size of the modi�ed corpus
 and principally due to
the di�erence in the two train�test partitions� The prediction problem posed
by our paradigm is more dicult because the last �� of the Brown �les are
appreciably di�erent than the �rst �� of the �les�

��� WSJ ����

The second set of experiments was on the ��	�Wall Street Journal corpus
 which
contains �
���
��� words� Our vocabulary consisted of the ��
��� words that
occurred at least �� times in the entire WSJ ��	� corpus� All out�of�vocabulary
words were mapped to a unique OOV symbol� We performed �� iterations of
cross estimation on �� blocks� Following standard practice in the speech recog�
nition community
 results are reported as per�word test message perplexities
p�yv jv��

�
v � The perplexity represents the e�ective alphabet size� Again
 the

non�emitting model outperforms the interpolated model for all nontrivial model
orders
 even without parameter tying�

��



Model Interpolation Non�Emitting
order untied tied untied tied

� ����� ����� ����� �����

� ����� ����	 ����� �����

� ����� ����� ����� �����

� ����� ����� ����� �����

� ����� ����� ����� �����

��� WSJ ����	��

The third set of experiments was on the ��	��	� Wall Street Journal corpus

which contains ��
���
��� words� Our vocabulary consisted of the ��
��� words
that occurred at least �� times in the entire WSJ ��	��	� corpus� Again
 all
out�of�vocabulary words were mapped to a unique OOV symbol� We performed
�� iterations of cross estimation on ��� blocks� Results are reported as test
message perplexities� As with the WSJ ��	� corpus
 the non�emitting model
outperforms the interpolated model for all nontrivial model orders
 even without
parameter tying�

Model Interpolation Non�Emitting
order untied tied untied tied

� ����� ����� ����� �����

� ���� ���� ���� ����

� 	��� 		�� 	��� 	���

��
 Posthoc Analysis

In order to understand the striking empirical advantage of the non�emitting
model over the interpolated model
 we conducted the following experiment� We
induced order � interpolated and non�emitting models from the Brown cor�
pus using forward estimation with no parameter tying� This con�guration was
chosen to maximize the performance di�erence between the two models� The re�
sulting interpolated model predicts the Brown test corpus with ����	� bits!char
while the resulting non�emitting model predicts the Brown test corpus with
������ bits!char� Figure � visualizes the overwhelming advantage of the non�
emitting model in this experiment�

��
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Figure �� The relative performance of the non�emitting and interpolated mod�
els through the Brown test corpus on a character by character basis� The
horizontal access represents time through the test corpus
 proceeding from
left to right� The vertical access represents the ratio p��xtjx

t���
pc�xtjx
t���

when p��xtjx
t��� � pc�xtjx

t��� and the ratio pc�xtjx
t���
p��xtjx

t��� other�
wise� Thus
 each positive spike represents a win for the non�emitting model

and each negative spike represents a win for the interpolated model� The mag�
nitude of the win is encoded by the magnitude of the spike� The largest win for
the non�emitting model is a factor of ��
�	�
��� ������ bits�� The largest win
for the interpolated model is a factor of �
���
��� ������ bits��
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The following table shows the mean state order occupancy statistics for the
two models on the Brown corpus�

Order Interpolated Non�Emitting

� ����� �����
	 ����� �����
� ����� �����

� ����� �����
� ����� �����
� ����� �����
� ����� ����	

� ����	 �����
� ����� �����
� ����� �����


���� 
��
�

As might be expected
 the interpolated model spends more time than the non�
emitting model in the higher order states �orders ����� It is arguably more
surprising
 however
 that the interpolated model also spends more time in the
lower order states �orders �����
One of the smaller positive spikes in the �gure � occurs when both models try

to predict the space � that follows the string ��but�now�Keith in the Brown test
corpus� Unfortunately
 the string �Keith does not occur in the training corpus�
Nonetheless
 the non�emitting model assigns ��� times more probability than
the interpolated model to the event that a space will follow the string �Keith�
According to the non�emitting model
 a space will follow the string �Keith with
probability ������ The interpolated model assigns probability ����� to the same
event�
The reason is somewhat subtle� On the training corpus
 the string eith

is followed by the letter e with near certainty ��������� As a result
 ��eith�
approaches unity in both the interpolated and non�emitting models� Since the
model order � is suciently high
 the interpolated model will use the eith state
whenever it occurs and no higher order state is preferred �see �gure ���
The hierarchical non�emitting model has no such freedom �see �gure ���

In order to reach the eith state
 it must accurately predict every symbol in
the string eith� Otherwise
 it will be forced to a lower order state along the
way� The transition to a lower order state occurs when the non�emitting model
attempts to predict the symbol t from the state ei� Since ei is rarely followed
by t in the training corpus �������
 the non�emitting model is forced into the
lower order state i
 from which it is able to predict the symbol t with greater
probability �������� As a result
 the non�emitting model is never able to reach
the eith state� Instead
 it must predict the space � after �Keith using the state
ith� This works quite well because ith is followed by � with high probability
in the training corpus ���������
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Figure �� State occupancy probabilities for the order � interpolated model on
part of the Brown test corpus �����	� bits!char�� The horizontal axis represents
the position in the test string and the vertical access represents the hidden state
order� The bottom column shows the conditional probability of the symbol

given the hidden state distribution� Thus the interpolated model is in the order
� state eith with probability at least ����� when predicting the �nal symbol

and it assigns probability ����� to this symbol�

� ����� �����
	 ���	� �����
� ����� �����
� ����� �����
� ����� �����
� ����	 �����
� ����	 ����� �����
� ����� ����� ����� ��	�	 ����� ���	�
� ����� ����� ����� ����	 ����� �����
� ����� ����� �����

� K e i t h �

����� ����� ����� ����� ���	� ����� �����

Figure �� State occupancy probabilities for the order � non�emitting model on
part of the Brown test corpus ������� bits!char�� The horizontal axis represents
the position in the test string and the vertical access represents the hidden state
order� The bottom column shows the conditional probability of the symbol

given the hidden state distribution� Thus the non�emitting model is in the
order � state ith with probability ����� when predicting the �nal symbol
 and
it assigns probability ����� to this symbol�

��



��� Posterior Tying

This posthoc analysis led John La�erty �personal communication� to suggest
that the interpolated model might be able to approximate the empirical per�
formance of the non�emitting model with a suitable parameter tying scheme�
According to the non�emitting model
 two states should be considered equiva�
lent if they are equally e�ective at predicting the future and they are equally
well predicted by the model� A state is well�predicted if the string that it rep�
resents is assigned high probability
 relative to the other states available at the
time� A state provides strong predictions if the entropy of its emitting state
transition probabilities is low�
The most e�ective way for the interpolated model to mimic the non�emitting

model is to tie its states based on their expectations in the corresponding non�
emitting model� In order to avoid implementing the non�emitting model
 we may
reasonably impose a uniform distribution on the non�emitting state transitions�
And in order to avoid running the full expectation�step�� algorithm
 we may
approximate the non�emitting state expectations by their forward expectations
in O�nT � time and O�n� space�
A further simpli�cation is to use the mean empirical posterior probability�

The mean empirical posterior of a state is the empirical expectation ��xi� of the
state divided by its frequency c�xi�� The empirical expectation ��xijyT � of an
ith order state xi in an order n mixture Markov model with respect to a string
yT is computed as follows

��xijyT � �
X

ft�xi�yt
t���i

g

��ot � ijyt��

with the empirical posterior

��o � ijyt� �
��ytt���i�Pn

j�� ��y
t
t���j�

�

Note that ��xijyT � may be calculated for all states in O�nT � time using dynamic
programming� The empirical posterior ��o � ijyt� of the ith order state at time
t could be weighted also by its predictive success � log ��yt��jy

t
t���i�� A further

re�nement is to compute the mean empirical posterior on withheld data�
As a �nal step
 these values must be quantized to a �nite number of levels

to construct the parameter tying scheme�

� Conclusion

In this report
 we propose a time series model that combines Markovian events
of varying orders using stochastic non�emitting transitions� We prove that the
resulting class of non�emitting Markov models is strictly more powerful than

�	



the class of Markov models
 including interpolated and backo� models� More
importantly
 our empirical investigation reveals that the non�emitting model
consistently outperforms the strongest interpolated Markov models on natural
language texts
 with only a modest increase in computational requirements�
The expressive power of the non�emitting model comes from its ability to

represent additional information in its state order distribution� To prove that
the non�emitting model was strictly more powerful than any Markov model
 we
used the state order distribution to represent an unbounded dependency� In
our posthoc analysis
 we revealed how the model uses its hidden state order
distribution to remember the short�term e�ectiveness of all available Markovian
states�
The non�emitting model succeeds empirically because it imposes a pseudo�

Bayesian discipline on maximum likelihood techniques� The interpolated model
will favor a high�order state if it provides strong predictions on withheld data�
The non�emitting model will favor a high�order state if the state provides strong
predictions on withheld data and it is well�predicted by the model � In order to
reach a high order state
 the non�emitting model must assign high probability
to each symbol in that state� Otherwise
 the non�emitting model will be forced
to transition to a lower order state at a previous time step and will not be able
to reach the high order state� Thus
 the state occupancies of the non�emitting
model are in�uenced as much by their prior probabilities �pseudo�Bayes� as their
past ability to predict the future �maximum likelihood��
Finally
 we note the use of non�emitting transitions is a general modeling

technique that may be employed in any time series model
 for symbolic domains
and for continuous domains�

��
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A Backo	

The backo� model is arguably the most widely used statistical language model

due in large part to its ease of implementation
 computational eciency
 reason�
able performance at lower model orders
 and an in�uential paper ����� Backo�
models are also widely used in the data compression community
 in large part
due to their computational eciency ���� Here we review the backo� model

establish the equivalence of backo� models and basic Markov models
 and then
specify a class of non�emitting backo� models that is strictly more powerful than
the class of traditional backo� models�
In a backo� model
 event probabilities are combined according to a partial

order� Typically
 higher order events are preferred over lower order events� The
event probabilities are rescaled as we move through the partial order so that the
derived probability function is valid� The ecacy of the backo� model depends
on the events that are included in the model
 their individual probabilities
 and
the order in which they are combined�
Formally
 a hierarchical backo� model  � hA�E� �i consists of an alphabet

A
 a dictionary E of selected state transitions
 E � A� � A
 and the state
transition probabilities � � E � ��� ��� The state transition probabilities � are
extended to an unbounded domain by selecting the maximal sux of the history
that appears with the relevant symbol in the dictionary E of state transitions�

pb�yjx
t� � �

�
��yjxt� if hxt� yi � E
��xt�pb�yjx

t
�� � otherwise

���

where ��xt� rescales the conditional probability distribution as we backo� from
higher order events to lower order events

��xi�
�
� ��� ��E�xi�jxi��
��� pb�E�x

i�jxi���

and E�xi� is the set of symbols available in the context xi�

E�xi�
�
� fy � xiy � Eg

The rescalar ��xi� is computed directly form the transition probabilities ���jxi�
in conjunction with the transition dictionary E� It is not a free parameter�
A hierarchical backo� model is a valid probability model if the dictionary E

includes every �th order state transition � f�g�A � E � and every ��E�xi�jxi�
is a valid probability function� A backo� model is nonzero for all strings A� if
every ��yjxi� is nonzero and no ��E�xi�jxi� is unity when E�xi� � A�
In order to induce a hierarchical backo� model from data
 we must select

the state transition dictionary and estimate its probabilities� One simple � but
highly e�ective � selection technique is to include every state transition whose
frequency exceeds a �xed threshold
 that may depend on the state order� More
e�ective selection techniques require signi�cant computational resources �����

��



The state transition probabilities ��yjxt� are typically assigned by multinomial
estimates
 either as conditional events yjxi in the symbol alphabet A or as joint
events xiy in the string alphabet Ai��� The most widely used multinomial
estimates for statistical language modeling employ some form of discounting
��
 	
 �
 ��
 ���
 although other estimators have also been shown to be e�ective
���
 �	
 ����
A valid backo� model  whose event dictionary E is a subset of An�� can

be converted into an equivalent basic Markov model �� of order n
 simply by
setting ��n�xtjx

t��
t�n� equal to pb�xtjx

t��
t�n� �� Every basic model is a backo� model

with a complete state transition dictionary� Consequently
 the class of backo�
models is extensionally equivalent to the class of basic Markov models�
The hierarchical non�emitting backo� model  � hA�E� �i has the same

parameterization as the traditional backo� model� Unlike the traditional model

the backo� from the state xi to its maximal proper sux xi� is permanent in
the non�emitting backo� model�

p��y
j jxi� � �

�
��y�jx

i�p��y
j
�jx

iy�� � if hxi� y�i � E
��xi�pb�y

j jxi�� �� otherwise
�	�

The rescalar ��xi� is identical in both version of the backo� model�
The class of non�emitting backo� models is strictly more powerful than the

class of basic Markov models
 by a similar argument as in lemma ���� Although
the backo� model does not have any mixing parameters
 we may use the pres�
ence or absence of a state transition yjxi in the dictionary E to control the
hidden state order� Conversely
 every order n backo� model can be converted
into an equivalent non�emitting backo� model with a complete state transition
dictionary E � An��� Therefore
 the class of non�emitting backo� models is
strictly more powerful than the class of simple backo� models�
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