
Glicbawls � Grey Level Image Compression By

Adaptive Weighted Least Squares

Bernd Meyer� Peter Tischer

School of Computer Science and Software Engineering�

Monash University

Clayton� Victoria� Australia� ����

Email� �bmeyer�pet��csse�monash�edu�au

� Introduction

In recent years� most research into lossless and near�lossless compression of greyscale
images could be characterized as belonging to either of two distinct groups�

The �rst group� which is concerned with so�called �practical� algorithms� encom�
passes research into methods that allow compression and decompression with low to
moderate computational complexity� while still obtaining impressive compression ra�
tios� Some well�known algorithms coming from this group are LOCO ��	� CALIC �
	
and P�AR��	�

The other group is mainly concerned with determining what is theoretically possible�
Algorithms coming from this group are usually characterized by extreme computational
complexity and�or huge memory requirements� While their practical applicability is
low� they generally achieve better compression than the best practical algorithm of the
same time� thus proving beyond a doubt that the practical algorithms fail to exploit
some redundancy inherent in the images� Well�known examples are UCM�	 and TMW
��	

What has been largely missing so far is an algorithm that combines the compression
rates of the impractical algorithms with the moderate computational requirements of
the practical ones� In this paper� we present Glicbawls� an algorithm that achieves that
goal for natural images�

The current implementation can compress and decompress greyscale images with
 to
� bits per pixel� using raw or ASCII �PGM �les� in both lossless and near�lossless mode�
Colour images �raw and ASCII �PPM �les� are also supported� and while compression
rates for them are not world class� they are usually better than PNG�s�

Due to the simplicity of the Glicbawls algorithm� a full featured encoder�decoder can
be implemented in
�� bytes of C code�� Even when including the decoder code with
each compressed image the compression rates achieved are still extremely competitive

�This is also due to some rather atrocious abuses of the C language � Glicbawls was originally
developed as an entry for the International Obfuscated C Contest�

and allow placing an absolute upper bound on the amount of information contained in
an image�

� Overview

Wu�s P�AR��	 algorithm uses a single linear predictor whose weights are recalculated
for each pixel� This is done by applying the least squares algorithm to the pixels in a
rectangular window around the current pixel� By choosing a rectangular window� the
computational complexity of calculating the least squares predictor can be markedly
reduced� thus making the method practical�

However� giving equal weight to the contribution of each pixel within the rectangular
window� and no weight to pixels outside the window� does not accurately re�ect the
correlations that exist within typical images� Pixels close to the current pixel should
have more in�uence on the choice of weights than pixels farther away�

Glicbawls uses a predictor similar to Wu�s� except that the predictor weights are
recalculated by taking all previous pixels into account� Each pixel�s contribution to
the least squares algorithm is weighted by a factor of ���di where di is the Manhattan�
distance between the pixel i and the current pixel� Given this choice of weights� least
squares predictors can be calculated using an algorithm similar in e�ciency to that used
in ��	

The resulting prediction errors are modeled by using the modi�ed t�distribution
introduced in ��	� The spread parameter � of the distribution is calculated from the
weighted average of the squared prediction errors for all previous pixels� with each
pixel�s contribution being given the weight ���di � This average can also be calculated
e�ciently�

The actual entropy coding of the prediction errors according to the t�distribution is
handled by a straightforward arithmetic coder�

� Least Squares Predictor

The calculation of weighted least squares predictors is at the very heart of the Glicbawls
algorithm� Only through an e�cient implementation of this calculation could Glicbawls
achieve its goal of practicality�

��� De�nition of Predictor

At any point during the encoding� there are a number N of previous pixels� with pixel
values p�� p�� � � � � pN at coordinates �x�� y��� � � � � �xN � yN�� as well as a current pixel at
coordinates �xC � yC� whose pixel value pC is to be predicted� For each of those pixels
pi� the
� causal neighbours with a Manhattan�distance of three or less� are referred to

as ni �

� ni��

���
ni���

�
�

�Which neighbouring pixel ends up at what position in n does not matter� as long as it is consistent
at each step

�

For each pixel pi� a matrix Ai and a vector bi can be calculated as

Ai � nini
T �
�

bi � pini ���

From those� AC and bC are calculated as

AC �
NX
i��

���jxC�xij�jyC�yijAi ��

and

bC �
NX
i��

���jxC�xij�jyC�yijbi ���

Then solving the linear equation system�

ACw � bC ���

will give the weights w �

� w�
���

w��

�
of the linear predictor that can be used to predict

pC from nC �

��� E�cient Calculation

Glicbawls encodes and decodes images in scanline order� This implies that yC can never
be smaller than the yi of any previously seen pixel� and thus jyC � yij � yC � yi�

Assuming the indices of the previously seen pixels pi to be ordered according to their
xi coordinates in such a way that xi � xi��� we can de�ne Nq as the index of the �rst
pixel with xi � q and Mq as the index of the last pixel with xi � q� In e�ect� pN�

� � � pM�

will be the set of all pixels in column one� and pNq
� � � pMq

the set of all pixels in column
q� Obviously� Mq �
 � Nq���

We can then rewrite equation ��� using X for the number of columns in the image�
as

AC �
XX
q��

����jxC�qj
MqX
i�Nq

����yC�yi�Ai� ���

De�ning Bq as

Bq �

MqX
i�Nq

����yC�yi�Ai ���

�Actually� this is a simpli�cation� See section ��� for one additional step that has been omitted from
this explanation�

equation ��� can be written as

AC �

xC��X
q��

�����xC�q�Bq� �
XX

q�xC

�����q�xC�Bq� ���

We can refer to the two parts of that sum as E and F� i�e�

E �

xC��X
q��

�����xC�q�Bq� ���

F �
XX

q�xC

�����q�xC�Bq� �
��

Then E contains the contributions of all

Current Pixel

E
F

Figure
� Pixel ranges accounted
for by E and F in e�cient calcu�
lation of predictor weights

previous pixels left of the current pixel� while
F contains the contributions of all pixels above
the current pixel that are not in E �see �g�
ure ���� As can easily be seen� in the case
where the current pixel is the top left corner
pixel �i�e� the �rst one in scanline ordering��
both are matrices containing only zeros� The
same is true for all Bq�

Whenever a pixel has been fully encoded
or decoded� it is added to the set of pre�
viously seen pixels� and the algorithm then
proceeds with the next pixel in scanline or�
der� Let l be the index of the pixel just added
to the set of previously seen pixels�

����� Non�border Case

Usually� the next pixel is at coordinates �xC �
� yC�� i�e� just to the right of the current
pixel� Proceeding to it does not change yC at all� As the Bq do not depend on xC at
all� the only Bq that changes is the B the Ai from the just �nished pixel gets added to�
which is BxC � Thus

Bq �
�
Bq if q �� xC �

Bq �Al if q � xC �
�

�

When proceeding to the right� a whole new column of pixels is added to the range
of pixels covered by E� The contributions of all the pixels in that column are contained
in BxC � On the other hand� for all the pixels that were already covered by E before� the
Manhattan�distance from the current pixel is going to become one larger than it was
before� and thus their contribution gets weighted down by a uniform factor of ���� Thus

E� ���E�BxC �
��

�

using the already updated BxC �
Similarly� proceeding to the right means that a whole column of pixels is removed

from the range covered by F� The contributions of those pixels are contained in the
pre�update version of BxC � For all pixels that remain in the range covered by E� the
Manhattan�distance from the current pixel is going to become one smaller� and thus
their contributions get weighted up by a uniform factor of �

��	
� Thus

F� F�BxC

���
�
�

using the pre�update BxC �

����� Border Case

Whenever the pixel just encoded or decoded was the rightmost pixel of a scanline� the
next pixel is at coordinates ��� yC �
�� i�e� the leftmost pixel of the next scanline�
Proceeding to it increases yC �

The Bq do not depend on xC at all� but they do depend on yC� Increasing yC by
one will increase the exponent in their de�nition by one� and thus their values need to
be scaled down by a factor of ����

Of course� the Ai from the pixel just encoded or decoded needs to be added to the
appropriate Bq before that scale�down�

Bq �
�
���Bq if q �� xC �

����Bq �Al� if q � xC �
�
��

When moving to the leftmost pixel of a new scanline� there will be no pixels to the
left of the current pixel� and thus

E� � �
��

F� however� needs to be recalculated completely from the updated Bq� to contain
the in�uence of all the pixels seen so far�

F�
XX
q��

�����xi���Bq� �
��

����� Implementation Issues

While the above algorithm is mathematically correct� repeated application of equation
�
� will lead to numerical instability� Also� calculating F directly according to equation
�
�� is ine�cient�

The solution is to pre�calculate all values for F each time work on a new scanline is
started� This can be done by de�ning

Fq �

�
Bq � ���Fq�� if q � X�

� if q � X �
�
�
��

�

At the start of each scanline� all F�� � � � �FX are calculated �starting at FX and
working downward� i�e� working from right to the left� and stored� These precalculated
values are then used instead of the single� constantly maintained F described in the
algorithm above� Except for di�erences introduced by numerical inaccuracies� they are
identical� However� the storage required for the precalculated values roughly doubles
the memory requirements of the e�cient calculation�

All of the above has dealt only with Ai and AC and has completely ignored the bi
and bC � The exact same methods are used for them� Simply replacing every A with b
in the above will su�ce to arrive at an e�cient method for calculating bC �

��� Bias

One problem commonly encountered when using least squares predictors� especially ones
calculated from relatively few observations
� is that they tend to over�t data� sometimes
producing horrendously large predictor weights� However� large weights are usually not
desirable for predicting in the presence of noise� as they tend to amplify the noise in the
predicted value�

To avoid this problem as much as possible� Glicbawls adds a bias u towards an
averaging predictor to the equation system before calculating the weights� A matrixcAC and a vector cbC are de�ned as

cAC � AC � uI �
��

cbC � bC �

�

�B�u���
u

�CA �
��

Instead of actually using equation ��� to calculate the predictor weights� we use

cACw � cbC ����

The strength of this bias� u� is initially given a value of ��� and then dynamically
adapted during the encoding or decoding of an image� For each pixel� two predicted
values are calculated� P� �which is used for coding� using a bias of u� and P� using a
smaller bias of ���u� For both� the prediction errors are calculated �e� � P� � pC and
e� � P� � pC�� Then u is adjusted as follows�

u�
�
u� e
� e� if e� � �

u� e�� e
 if e� � �
��
�

Experiments show that this way of changing u allows for rapid adjustment in case
the characteristics of the image change strongly� while being fairly robust in the presence
of small� random� noise induced di�erences between P� and P�

�Or� in the case of Glicbawls� calculated from many observations� relatively few of which are given
enough weight to dominate the calculation�

�

� Prediction Error Modeling

��� Modi�ed t�distribution

Once the predictor has predicted a pixel value P for the current pixel� a modi�ed t�
distribution is centered around that prediction� The probability of the current pixel
value being less than X is given by the formula

p�x � X� � K

Z X�P

��
�

 � v�

����

�
��

� dv ����

and the probability of the current pixel value being between X� and X� by

p�X� � x � X�� � p�x � X��� p�x � X�� ���

with K chosen so that p�x ��� �
� Because in Glicbawls the probabilities passed to
the arithmetic coder are always ratios of values given by these formulae� the constant
factor K can be ignored for the calculation�

This distribution is similar to a Normal Distribution� but has the useful property of
having more weight in the tails� and thus being more forgiving about large mispredictions
by the least squares predictor� Its other useful property is that the integral can be solved
analytically�� Ignoring the term K� that probability can be calculated as

p�x � X� � �X�P �
�

r��
�X�P ��
����

�
� � c ����

rn�y� �

�
�n���
n

rn���y�
y

� �p
y

if n �
��
�p
y

if n �
��
����

where c is an integration constant that cancels out in equation ��

��� Calculation of �

To determine the distribution parameter � and thus the width of the distribution� the
weighted average S of the squared prediction errors for all previously seen pixels is
calculated� Each pixel�s contribution e�i is being weighed proportionally to ���di � This
average can be calculated e�ciently using the methods described in section ��� As the
result of the calculation� however� is supposed to a scalar value �rather than an equation
system�� scaling has to be applied to ensure that the weights sum up to one� � is then
calculated as

� � �����
p
S ����

The factor ����� was arrived at empirically and provides a slight compensation for the
shape of the used distribution� which is slightly wider than a Normal Distribution with

�By looking it up in ���� the book the German engineering term 	Bronstein
integrierbar� is derived
from

�

the same ���

��� Avoiding Numerical Instability

Using the de�nitions given so far on a machine with limited numeric precision can in
rare cases lead to a probability being calculated as zero� If that happens� the program
would either fail or enter an in�nite loop�

For this reason� bp is de�ned as

bp�X� � x � X�� � p�X� � x � X�� �
����X� �X�� ����

and bp is used instead of p for for coding� Because in Glicbawls� all probabilities passed to
the arithmetic coder are ratios of two bp thus calculated� it is not necessary to explicitly
renormalize the bp to ensure they add up to
�

For most natural images� the di�erence of this modi�cation on the compressed image
size is negligible�

��� Coding

Pixel values are encoded by repeatedly subdividing the possible value range into two
�roughly� equal sized parts� and encoding which part contained the actual value� En�
coding stops when the possible value range has been reduced to a size small enough to
ensure reconstruction with the required accuracy� For lossless compression� this is the
case when the size of the value range reaches one� but for near�lossless compression with
a maximum allowed error of e� reaching a size of �e �
 is su�cient�

When encoding a greyscale image with a maximum pixel value of M � the initial
range �i�e� the range of possible non�quantized pixel values� is R� � ������M � ����

Whenever a value is known to be in the range Ri � �X�� X�� and a further reduction
in the size of the range is necessary� a value X is calculated that splits Ri into Ri�� �
�X�� X� and Ri�� � �X�X���

Given that the pixel value is known to be in Ri� the probability r� of it being in Ri��

is

r� �
bp�X� � x � X�bp�X� � x � X��

����

A simple binary arithmetic coder is used to encode which part of Ri the actual
pixel value was in �or� in the case of decoding� to provide that information�� The range
bounds are then adjusted� and if necessary� another iteration is taken�

�The actual implementation contains some extra detail which cannot be discussed in the limited
space available� In particular� measures to ensure that � does not become unreasonably small� even in
the face of large areas of perfect prediction� For natural and thus noise
containing images� the in�uence
of these measures is negligible�

�In the case of near
lossless compression� the total possible range is �rst divided into 	bins� of size
e � �� and X is chosen to be on a boundary between bins� The bins are aligned in such a way that
the predicted pixel value is centered in the middle of a bin� thus minimizing the expected number of
bits needed to encode the pixel�

�

� Weight Adjustment

There is one more twist to the Glicbawls algorithm� As described so far� the unavoidably
large prediction errors near edges in the image will dominate the least squares algorithm�
The resulting predictors are well suited for predicting pixels near edges� but are generally
suboptimal for non�edge regions�

Due to the way the � parameter is calculated� however� the Glicbawls algorithm
usually expects predictions for pixels near edges �i�e� in the vicinity of previous larger
prediction errors� to be less accurate � � will be larger for those pixels� Figuratively
speaking� �getting it wrong� is not as much of a problem for those pixels as for the
others�

For this reason� the in�uence of pixels for which � was large should be reduced� In
Glicbawls� this is done not by using the de�nitions in equations �
� and ���� but rather
the following scaled versions�

Ai �
nini

T

�
����

bi �
pini
�

���

Di�erent powers of � were tried for the weight adjustment� There is no single �best�
choice� di�erent images compress best with di�erent exponents� but simply reducing
weights by �

�
gives the best overall performance over a large suite of test images�

� Self Extraction

Due to the small size of the C source that implements the Glicbawls algorithm� including
it with the compressed data is feasible� The total overhead for including the complete
�gzip�compressed� source code as well as a small shell script that extracts� uncompresses
and compiles it and then uses the resulting executable to decompress an image� is no
more than
�� bytes� The resulting �le is a shell script that will output the image to
its standard output�

As that �le contains everything needed to recreate the image �le on any UNIX
machine which has gunzip and a C compiler installed� its total size can serve as an
absolute upper bound for the amount of information contained in the image�

� Colour Images

In order to keep the Glicbawls code size small� colour images are essentially treated as
greyscale images in which the colour components are interleaved on a per�pixel basis�
Each row of the greyscale image is three times as wide as those of the colour image
it was derived from� The values in columns n � � of the greyscale image are the R
components of the colour pixels in the matching columns n� the values in columns n�

are the G components� and the values in columns n� � the B components�

When dealing with colour images� the local neighbourhood used to predict pixel
values is modi�ed by multiplying all horizontal o�sets by � E�ectively� this means that

�

balloon barb barb� board boats girl gold hotel zelda lenna Avg

lossless compression

LOCO ����
���
��� ���
 ���� ����
�

��� ��	
��

���
CALIC ��	�
�
�
��� ���� ��	� ��
���
��� ���
��� ���

P�AR ���	 ���

��� ���� ��	
Glicbawls ���� ���� ���� ���� ���� ���� ���	 ���	 ���� ���
 ����

near�lossless compression e��

LOCO ���
 ���� ��� ���� ��
	 ��
� ���� ��	 ��� ��� ����
Glicbawls ���� ���� ��	� ���� ���� ���� ���� ���� ��
� ���� ����

near�lossless compression e��

LOCO �� ��� ���� �	� ���� ���� ���� ���	 ���� ��� ���	
Glicbawls ��� ��
� ���	 ��
 �	� �	� ���� ���� ��� �	� �		

lossless compression self extracting �le

Glicbawls ���� ���� ���� ���� ���� ���� ���
 ���
 ���� ���� ����

Table
� Compression results� in bits per pixel� for Glicbawls compared to CALIC�
LOCO and P�AR in lossless and near lossless modes

pixel values from one colour band are predicted based only on values from the same
band� However� as the weights used for predicting pixel values are calculated as before�
data in one colour band will still e�ect the predictions the others�

Also� no adjustment is made in the calculation of � parameter� This means that the
magnitude of prediction errors in one colour band will in�uence the expected magnitude
of prediction errors in other bands�

� Results

Table
 lists �le sizes �in bits per pixel� obtained by running Glicbawls	� CALIC using
arithmetic coding�� LOCO�� and P�AR��	�� on a variety of test images� In all cases�
Glicbawls provides the best compression rates of all programs compared�

Table � lists �le sizes �in bits per pixel� obtained by running Glicbawls as well
as several well�established colour compression programs on a number of photographic
test images���� While certainly not being competitive with state�of�the�art methods�
Glicbawls consistently outperforms both Locoe and Pngcrush� two programs in common
use today�

Table lists �le sizes for the so�called �artistic� �i�e� non�photographic� CLEGG�
FRYMIRE and SERRANO images� As can clearly be seen� Glicbawls is not suitable
for such images�

Quite surprisingly� given that it was designed as a compression program for contin�
uous tone greyscale images� Glicbawls performs reasonably well on the eight CCITT
sample fax pages as well��� The total set is compressed to �����kB� for a compression
ratio of
�����
� This is ahead of the Group� fax standard �
����
�� but loses to IBM�s
Q�coder �
����
� and JBIG �
����
��

�As available from http���www�csse�monash�edu�au��bmeyer�glicbawls
	As available from ftp���ftp�csd�uwo�ca�pub�from wu�

�
As available from http���www�hpl�hp�com�loco�
��The average for PAR was estimated based on the available results
��Comparison values� http���www�geocities�com�SiliconValley�Bay������artest���html
��The binary images are treated as two
level greyscale images�

�

lena monarch peppers sail tulips Avg

lossless colour compression

BMF
���� ���
 ��
�
���� ��
 ����
Rkim
���� ��� ��
�
���� ��� ����
Locoe
���

���

���
���

����
����
Pngcrush
���

����
����
��
�
���
���

Glicbawls ����� ����� ���	
 ���
� ����� ���		

Table �� Colour compression results� in bits per pixel� for Glicbawls compared to a range
of existing methods

clegg frymire serrano Avg

lossless colour compression

BMF ����
���
��� ����
Rkim
��� ��� ��� ����
Locoe ��� ���� ���� ����
Pngcrush ���

��
��
 ����
Glicbawls �	��� ����� ���
	 �����

Table � Colour compression results for �artistic� images� in bits per pixel

	 Conclusion

We have presented an algorithm for lossless and near�lossless compression of greyscale
images which consistently achieves higher compression ratios than CALIC while having
a computational complexity low enough to be practical�

Including the source code of the decompressor with the compressed image allows the
creation of self�extracting �les� thus giving absolute upper bounds for the information
contained in images�

While originally developed for greyscale images� the algorithm can also handle colour
as well as bi�level images� achieving respectable compression on them�

References

�
	 X� Wu and N� Memon� �Context�based� Adaptive� Lossless Image Codec�� IEEE
Trans� on Communications� vol� ��� no� �� April
����

��	 X� Wu� K�U� Barthel and W� Zhang� �Piecewise �D Autoregression for Predictive
Image Coding�� International Conference on Image Processing conference proceed�

ings� Vol �
���

�	 M� J� Weinberger� J� J� Rissanen and R� B� Arps� �Applications of universal con�
text modelling to lossless compression of gray�scale images�� IEEE Trans� Image

Processing� ��
���� ��������

��	 M� Weinberger� G� Seroussi and G� Sapiro� �LOCO�I� A Low Complexity� Context�
Based� Lossless Image Compression Algorithm�� Proceedings IEEE Data Compres�

sion Conference� Snowbird� Utah� March�April
���

��	 B� Meyer and P�E� Tischer� �TMW � a New Method for Lossless Image Com�
pression�� International Picture Coding Symposium PCS�� conference proceedings�
September
���

��	 I�N� Bronstein� K�A� Semendjajew� G� Musiol and H� M�uhlig� �Taschenbuch der
Mathematik� �� Au�age�� Verlag Harri Deutsch� Frankfurt am Main�
���

�

