
This thesis is submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science at the University of Waikato.

May 1996

© 1996 Craig G. Nevill-Manning

Inferring
Sequential
Structure

Craig G. Nevill-Manning

�

Abstract

Structure exists in sequences ranging from human language and music to the genetic

information encoded in our DNA. This thesis shows how that structure can be

discovered automatically and made explicit. Rather than examining the meaning of

the individual symbols in the sequence, structure is detected in the way that certain

combinations of symbols recur. In speech and text, these repetitions form words and

phrases. They can be concisely represented by a hierarchical context-free grammar,

where each repetition gives rise to a rule. As well as exact repetitions, sequences

often exhibit branching and looping structure. These can be inferred and visualised

as an automaton.

We develop simple, robust techniques that reveal interesting structure in a wide

range of real-world sequences including music, English text, descriptions of plants,

graphical figures, DNA sequences, word classes in language, a genealogical database,

programming languages, execution traces, and diverse sequences from a data

compression corpus. These techniques are useful: they produce comprehensible

visual explanations of structure, identify morphological units and significant

phrases, compress data, optimise graphical rendering, infer recursive grammars by

recognising self-similarity, and infer programs.

�

Acknowledgments

First and foremost, I would like to thank Ian Witten, my supervisor. It is impossible

to enumerate the ways in which he has supported me throughout writing this thesis,

but I shall attempt tonevertheless.

Ian has taught me, by word and by example, what it means to do research—

academically, organisationally and socially. His enormous energy for performing

research, and especially for instigating collaboration between graduate students and

faculty around the globe, is astonishing. Many of the acknowledgments below testify

to his constant enthusiasm for introducing people to each other. His grasp of the

broader picture—of distinguishing the significant from the trivial, and expansive

knowledge of many subjects—has been enormously beneficial in planning my

research directions. His insistence on allowing me to find and define my own

directions has been a source of both frustration (‘just tell me what I should do!’) and

learning.

Ian was also a great help financially, offering research and teaching assistant work

throughout my degree. However, he had an impeccable sense of timing, and it is not

entirely coincidental that the submission of my thesis occurred a mere three months

after the expiry of my assistantship. In 1994, Ian arranged for my wife, Kirsten, and

me to follow him to Calgary for six months. This time was immensely productive

and enjoyable. It has been good to spend out of work time with Ian, his wife Pam,

Nikki and Anna: at dinner parties and barbeques, walking in the bush, playing jazz

at the Witten home, and sailing on their yacht. Thanks for making us feel like part

of the family. Thanks, Ian, for your friendship, and your infectious laughter.

Kirsten was my closest companion during my thesis. She is the one who agreed to

move to Hamilton, and to support me emotionally, financially and practically. It is

her psychology training, I am sure, that helped her to choose the right blend of

positive and negative reinforcement, and she is the second most relieved person in

the world that the thesis is finished. I look forward to spending many years together

sharing the fruits of our labour. Thanks also to my wider family for their support and

encouragement over many decades.

The Department of Computer Science and the School of Computing and

Mathematical Sciences have gone beyond the call of duty in supporting my work.

Thanks to Lloyd Smith, Geoff Holmes and Mark Apperley who were heads of

department at various times during my degree, and provided me with assistantship

positions, travel funds to attend international conferences, and a superb research

environment. Ian Graham, dean of the school, funded an airfare to Calgary, as well

as a scholarship in the last few months of writing, both of which were invaluable to

the researching and writing process. Thanks to all of the staff of the department for

numerous discussions over coffee, and constant needling with the ‘forbidden

question’ near the end. Thanks to John Cleary for reading the first full draft, and

raising some intriguing issues. Thanks to Sally-Jo Cunningham for her support

throughout, and the best departmental parties I think I shall ever partake in!

At the University of Calgary, David Maulsby was a great collaborator and example.

He provided the germ for this thesis when he was in the final throes of his. I hope I

can provide the same support for other students in the same position. Thanks to

Camille Sinanan for her hospitality, organisational skills, and skilled cross-country

skiing instruction. I have enjoyed working with Przemek Prusinkiewicz, who

provided a fascinating application area in artificial life. Moving south of Calgary, I

am also thankful to Dan Olsen from Brigham Young University in Provo, Utah for

working with me on genealogical databases. Thanks also to Tim Bell from the

University of Canterbury, Christchurch, New Zealand for his excellent supervision

of my undergraduate project, for his continued interest, and for introducing me to

Ian Witten.

Despite the length of these expressions of gratitude, I have only scratched the

surface of the support that I have had during my thesis. There is one last group, the

largest, who I will thank as a nameless throng. They are the ones who, day or night,

rain or shine, weekday or weekend, would expectantly demand: “Is it done yet?”

Well, yes it is.

Table of Contents

Abstract .. iii

Acknowledgments ... v

List of Tables .. xi

List of Figures.. xiii

1. Introduction ... 1

1.1 Motivation.. 1
1.2 Thesis statement... 3

1.2.1 Existence of structure ... 3

1.2.2 Detection of structure .. 5
1.3 Some examples ... 7
1.4 Contributions ... 11
1.5 Thesis structure .. 12

2. Background .. 15

2.1 Sequence modelling ... 16

2.1.1 Techniques ... 17

2.1.2 Applications ... 23
2.2 Grammatical inference... 26

2.2.1 Techniques ... 26

2.2.2 Applications ... 31

2.2.3 Single versus multiple sentences .. 32
2.3 Machine learning and mdl ... 33

2.3.1 Machine learning vs sequence modelling 34

2.3.2 The minimum description length principle................................... 35
2.4 Data compression ... 38

2.4.1 The relationship between learning and compression 39

2.4.2 Dictionary techniques .. 41
2.5 Linguistic segmentation ... 43
2.6 Human sequence learning .. 45
2.7 Summary... 47

viii TABLE OF CONTENTS

3. Forming a hierarchical grammar .. 49

3.1 The algorithm ... 51

3.1.1 Digram uniqueness .. 53

3.1.2 Rule utility .. 55
3.2 Implementation issues... 55

3.2.1 Storing and manipulating the grammar.. 56

3.2.2 Maintaining rule utility .. 58

3.2.3 Maintaining digram uniqueness.. 59

3.2.4 Transient rules .. 62
3.3 Computational complexity ... 64
3.4 Exploring the extremes ... 66
3.5 A unifying representation ... 70

3.5.1 Enumerating repetitions ... 71

3.5.2 Forming a hierarchy .. 73
3.6 Summary ... 76

4. Improving the grammar .. 77

4.1 Preview of results .. 78
4.2 Inferring L-systems from example strings ... 79

4.2.1 L-systems ... 80

4.2.2 Comparing L-systems with Sequitur’s output 83
4.3 Domain knowledge ... 85

4.3.1 Restricting rules using domain knowledge 86

4.3.2 Results of the knowledge based restriction 88
4.4 Retrospective reparsing ... 89

4.4.1 The reparsing technique ... 89

4.4.2 Reparsing based on local optimality ... 90

4.4.3 Oblivious reparsing ... 93

4.4.4 Evaluation ... 95
4.5 Summary ... 97

TABLE OF CONTENTS ix

5. Generalising the grammar ... 99

5.1. Inferring recursion from self-similarity.. 100

5.1.1 Unification as generalisation ... 101

5.1.2 Implementation of the generalisation.. 104
5.2 Reconstructing a program from an execution trace................................. 106

5.2.1 Identifying procedures .. 109

5.2.2 Comments on the procedure identification algorithm 113

5.2.3 The effect of recursion ... 115

5.2.4 Summary of procedure identification... 118
5.3 Constructing automata from other sequences ... 118

5.3.1 Inferring branches and loops .. 119

5.3.2 Problems with inferring non-deterministic structure 123

5.3.3 Justifying inferences by the mdl principle.................................... 125
5.4 Detecting structure in semi-structured text ... 127

5.4.1 The genealogical database.. 127

5.4.2 Learning the structure of the genealogical database 128

Manual generalisation ... 129

Interpreting the grammar .. 130

Automatic generalisation .. 131
5.5 Summary... 134

6. Data Compression .. 135

6.1 Encoding sequences using Sequitur ... 136

6.1.1 Sending the grammar textually .. 137

6.1.2 Sending symbols based on frequency ... 137

6.1.3 Sending rules implicitly.. 138

6.1.4 Sending the sequence incrementally ... 141
6.2 Compression performance.. 142
6.3 Compression and grammar size .. 144
6.4 Compressing semi-structured text .. 146
6.5 Summary... 150

x TABLE OF CONTENTS

7. Applications .. 151

7.1 Natural language ... 152

7.1.1 Structure identification in large text sequences 152

7.1.2 Domain knowledge and reparsing... 155

7.1.3 Segmentation of language... 157

7.1.4 Sentence structure .. 162
7.2 Improving rendering performance .. 166
7.3 Music ... 169
7.4 Phrase identification ... 172

7.4.1 Computer-assisted abstracting .. 173

7.4.2 Query formulation for full-text retrieval systems 174
7.5 Macromolecular sequences ... 177
7.6 Summary ... 179

8. Conclusions... 181

8.1 The techniques ... 181
8.2 The applications ... 184
8.3 Future work ... 188

References ... 190

List of Tables

Table 2.1 Characterisation of related fields.. 15
Table 5.1 Predictions based on part of the GEDCOM database........................... 133
Table 6.1 Compression of book1 by several schemes.. 138
Table 6.2 Performance of various compression schemes 143
Table 6.3 Compression of context-sensitive L-system output 144
Table 6.4 Compression rates of various schemes on the genealogical data 147
Table 7.1 Statistics on the text of the Bible in three languages 152
Table 7.2 Statistics for grammars inferred from the Bible.................................. 153
Table 7.3 Application of domain knowledge and reparsing to text................... 156
Table 7.4 Compression of macromolecular sequences 178

�

List of Figures

Figure 1.1 Hierarchies for Genesis 1.1... 7
Figure 1.2 Inference of hierarchies from L-system output....................................... 8
Figure 1.3 Inference of a program from a trace of its execution.............................. 9
Figure 1.4 Detecting the structure of a C switch statement................................... 10
Figure 1.5 Illustration of matches within and between two chorales 11
Figure 2.1 Structure detection by enumeration of automata (after Gaines,

1976) ... 18
Figure 2.2 The finite context prediction mechanism for PUSS and FLM (after

Cleary, 1980) .. 20
Figure 2.3 Inferring a program from an execution trace (after Gaines, 1976)...... 22
Figure 2.4 Inferring an automaton by insertion and deletion of cycles 27
Figure 2.5 Automata to illustrate k-reversibility ... 29
Figure 2.6 One-reversible automaton for the English auxiliary system (after

Berwick and Pilato, 1987) .. 31
Figure 2.7 Inferring a customised data entry form from input (after Schlimmer

and Hermens, 1993) ... 32
Figure 2.8 Inferring a decision tree from data ... 34
Figure 2.9 Dictionary compression schemes.. 41
Figure 3.1 Example sequences and grammars that reproduce them...................... 51
Figure 3.2 Operation of the two grammar constraints ... 54
Figure 3.3 The entire SEQUITUR algorithm ... 55
Figure 3.4 The four operations required to build the grammar 57
Figure 3.5 Routines for creating and deleting symbols, incorporating

maintenance of rule utility constraint ... 58
Figure 3.6 Updating the digram index as links are made and broken 60
Figure 3.7 Routines for updating the digram index when symbols are linked 61
Figure 3.8 Outline of the SEQUITUR algorithm ... 61
Figure 3.9 Two outcomes for the rule creation postponement approach, after

seeing the string abcdebcdabcdebc ... 62
Figure 3.10 Reductions in grammar size for the three grammar operations............ 65
Figure 3.11 Some extreme cases for the algorithm ... 67
Figure 3.12 Growth rates on English text .. 69
Figure 3.13 Forming a matrix of repetitions ... 72
Figure 3.14 Illustration of possible rules ... 74
Figure 3.15 Effects of choosing between overlapping rules 75
Figure 4.1 Summary of results for the chapter .. 79

xiv LIST OF FIGURES

Figure 4.2 The LOGO language .. 80
Figure 4.3 Derivation of an L-system .. 82
Figure 4.4 Another plant image .. 83
Figure 4.5 The grammar produced by SEQUITUR from the sequence in

Figure 4.3b, step 3 ... 84
Figure 4.6 The first part of the sequence from Figure 4.3b, step 3 85
Figure 4.7 Grammar induced from Figure 4.3b using background knowledge 87
Figure 4.8 Transforming a good grammar to a better one 89
Figure 4.9 Effects of reparsing .. 90
Figure 4.10 An L-system for drawing a Koch curve .. 93
Figure 4.11 Hierarchical parsing adjustment .. 94
Figure 4.12 How retrospective reparsing corrects initial mistakes 95
Figure 4.13 Identification of non-recursive L-systems .. 96
Figure 5.1 Unifying a rule to produce a recursive grammar 102
Figure 5.2 The results of a different initial unification 102
Figure 5.3 Consequences of initial unifications on a more complex grammar ... 103
Figure 5.4 Prolog code for transforming a non-recursive grammar to a recursive

one .. 104
Figure 5.5 Generating recursive grammars .. 105
Figure 5.6 Inferring a program from an execution trace (after Gaines, 1976) ... 108
Figure 5.7 Inferring procedures from an execution trace 110
Figure 5.8 Algorithm for identifying a procedure in an automaton 112
Figure 5.9 A case where a simpler algorithm identifies the wrong procedure 114
Figure 5.10 Sensitivity of loop-finding algorithm to sequence order 115
Figure 5.11 The effect of recursion ... 117
Figure 5.12 Detecting the structure of a C switch statement 120
Figure 5.13 Forming a recursive rule for a loop ... 121
Figure 5.14 A switch statement with break statements .. 122
Figure 5.15 A spurious branch .. 125
Figure 5.16 An excerpt from the GEDCOM genealogical database 128
Figure 5.17 A phrase from the genealogical database ... 130
Figure 5.18 Examples of two ways of coding symbol B ... 132
Figure 5.19 The text in Figure 5.16, with structure and content distinguished ... 133
Figure 6.1 Alternative encodings for a sequence .. 136
Figure 6.2 Encoded size versus number of symbols in grammar 145
Figure 6.3 Bits per symbol in grammar as a function of grammar size 146
Figure 7.1 Hierarchies for Genesis 1.1 .. 154
Figure 7.2 Reconstruction of Wolff’s (1975) segmentation experiment 159

LIST OF FIGURES xv

Figure 7.3 A sentence from the London-Oslo-Bergen corpus 164
Figure 7.4 Parses of the sentence from Figure 7.3 .. 165
Figure 7.5 Identical parts of a tree .. 167
Figure 7.6 Bottom-up rendering of a scene .. 169
Figure 7.7 Illustration of matches within and between two chorales 171
Figure 7.8 Hierarchy for O Welt, sie hier dein leben, chorale 50 by J.S. Bach 172
Figure 7.9 Phrases discovered by SEQUITUR for automated abstracting 174
Figure 7.10 Hierarchy of phrases for searching a large text base 175
Figure 7.11 Examples of macromolecular sequences .. 178
Figure 8.1 Relationships between techniques (in grey boxes) and applications

described in the thesis ... 182
Figure 8.2 Review of results .. 185
Figure 8.2 Review of results (continued) ... 186

�

1. Introduction

Order is heaven’s first law

Alexander Pope, An essay on Man

We live in a causal universe. We believe this because the laws that we infer from

nature successfully predict the observations that we make. Sometimes we cannot

perceive the mechanisms that give rise to our perceptions, but we can infer their

structure by the nature of their effects. In this thesis, we claim that for sources that

produce discrete sequences, there are certain fundamental structures that can be

discovered automatically from observing their output. Rather than examining the

meaning of the individual symbols in the sequence, this structure is detected in the

way that certain combinations of symbols recur. We develop techniques that reveal

interesting structure in a wide range of real-world sequences including music,

English text, descriptions of plants, graphical figures, DNA sequences, word classes in

language, a genealogical database, programming languages, execution traces, and

diverse sequences from a data compression corpus. These techniques are simple and

robust. They are also useful: they produce comprehensible visual explanations of

structure, identify morphological units and significant phrases, compress data,

optimise graphical rendering, infer recursive grammars by recognising self-similarity,

and infer programs.

1.1 Motivation

The great advantage that computers have over people is their ability to process large

amounts of data quickly and accurately. People, on the other hand, excel at

thinking creatively and bringing intuition to bear on problems. These

complementary strengths encourage a division of labour where machines undertake

large-scale, monotonous analyses and present concise results to humans for

interpretation. This is particularly true in structure discovery. As the amount of raw

information that is collected about the world increases (and it has been alleged that

it doubles every twenty months1), it becomes less feasible for people to process this

data unaided. For example, in an effort to understand our own biology and heredity,

1 Preface of Piatetsky-Shapiro and Frawley (1991).

2 CHAPTER ONE: INTRODUCTION

biologists are mapping the human genome. When the map is complete, it will

comprise a sequence of three billion base pairs. If a scientist were to examine one

pair every second, the analysis would take almost a century, without allowing time

to reflect on the meaning and function of the sequence.

But it is not necessary to look to computational biology to find massive quantities of

data—corporate databases overflow with data on companies’ performance. Because

good management relies partly on human intuition about products and markets, and

because it is not humanly possible to analyse the relevant data, computers are

employed to sift through it, detect significant patterns, and report the patterns to

decision makers. Researchers have coined the term data mining to describe this

process, because the patterns that are discovered are analogous to gold hidden

within the mountains of data. Thus computers are entrusted with the task of

emulating a limited intuition: judging, at a mechanical level, the significance of a

pattern or relationship in a database. To extend the metaphor, the computer

performs the dirty, exhausting work of the miner, while humans assay the nuggets.

Consistent with this division of labour, algorithms for structure detection should be

simple, generic, robust, and efficient. They can be simple because they are not

expected to interpret patterns—their role is confined to detection. They should be

generic, so that they can be applied to a wide variety of sequences, and be free to

find surprising structures unanticipated by the designer of a domain-specific

algorithm. They should be robust, so that they can produce a result in any domain.

Finally, they should be efficient, to enable analysis of very large sequences, because

that is where computers excel.

The specific aspect of structure addressed by this thesis occurs in sequences of

discrete symbols: sequences such as natural or artificial language, music, and DNA,

where symbols are drawn from a finite alphabet, and each individual symbol does

not itself contain significant meaning. The task of finding structure in such

sequences is a familiar one: it is performed by infants trying to make sense of the

sounds that are produced by people around them, linguists making sense of a new

language, archaeologists attempting to decipher an ancient clay tablet, military

intelligence decoding an encrypted message, and biologists unlocking the structure

of DNA. Of course, in all these situations purely syntactic analysis is combined with

semantic knowledge—the infant recognises objects that are associated with certain

sound combinations, archaeologists make associations with other artifacts, and

1.1 MOTIVATION 3

biologists understand the chemistry of the structures they find. This thesis, however,

concentrates on syntax.

1.2 Thesis statement

The thesis makes two claims: the first is a hypothesis about the structured nature of

the world, whereas the second asserts the feasibility of detecting that structure.

1. A variety of sources manifest their structure as repeated segments that are

related hierarchically, and as larger-scale branching and looping patterns.

2. Such structure can be detected efficiently and incrementally without

reference to the meaning of individual symbols. Once detected, it can be

employed to explain and compress the original sequence.

The following two subsections clarify and discuss the implications of these claims.

1.2.1 Existence of structure

We restrict attention to sequences of discrete symbols, where two symbols can be

either identical or utterly different—equality is the only meaningful relationship.

This restriction is illustrated by a property that holds for the inherent structure: if

the sequence is encrypted using a substitution cipher, so that each symbol in the

alphabet is replaced by a new symbol, the structure of the result will be identical to

the structure of the original. This precludes analysing sequences of measurements—

such as a sample of a continuously varying waveform—based on the numerical

relation between the samples. It also precludes analysis of natural language based on,

say, the phonetic distinction between vowels and consonants. Furthermore, the

sequence of symbols is ordered, but there is no temporal aspect to this order: symbols

are assumed to arrive at equally spaced intervals.

Despite the absence of semantics, we propose that such sequences possess structural

properties that can be inferred automatically, and moreover that there are particular

simple kinds of structure that occur in a variety of domains. This is a theory about

the world: that these regularities are fundamental to naturally occurring sequences.

Its veracity will be demonstrated by the successful detection of such regularities in

several case studies.

4 CHAPTER ONE: INTRODUCTION

The first kind of regularity proposed is a hierarchy of repetitions. Any sequence that

consists of symbols drawn from a finite alphabet will inevitably contain repeated

subsequences as it grows longer. Some of these repetitions may be coincidental, but

in many cases they represent significant morphological elements. For example, in a

sequence of letters representing English text, words appear as repeating

subsequences, as do word parts such as roots and affixes, and multi-word phrases. In

music such an element might be a motif or theme that unifies a melody. Repeated

groups of actions performed by a computer user may be common sub-tasks within

the user’s overall task.

As well as being repetitive, subsequences of English text and user action sequences

also form a hierarchy. In English, letters combine to form word roots and affixes.

Roots and affixes make up whole words, which in turn make up phrases. In the

context of a task performed on a computer, short action sequences combine to form

larger sub-tasks. In other contexts, hierarchies are employed to reduce the

complexity of a system. The biological hierarchy of phylum, class, order, family,

genus and species allows the relationships between many kinds of organisms to be

concisely and comprehensibly specified. Similarly, structured top-down

programming enables complex problems to be broken down into successively

simpler parts, until the individual parts are trivial. In this case, the hierarchy

provides layers of abstraction within which implementation details can be hidden.

Analogously, detecting natural hierarchies in repeated subsequences allows a

sequence to be described in a concise, perspicuous manner.

The second kind of regularity proposed by the thesis is larger-scale branching and

looping. Rather than comprising exact repetitions, a sequence may contain

subsequences that are similar, but vary slightly. In the vocabulary of programming,

the variations are branches and the repetitions are loops. Consider a sequence

produced by observing a computer user reformatting a bibliography. They might

perform identical actions for the authors and page numbers of all publications, but

vary the actions in between based on whether the publication is a journal paper or a

book. The sequence of actions would be identical at the start and end of processing

each publication, with a branch to the two strategies in between. Similarly, a

textual database may have a fixed template for each record, using fixed keywords to

provide the structure and free-form text between the keywords. These structures can

be represented by a branching structure in an automaton.

1.2 THESIS STATEMENT 5

It is equally important to consider what kind of regularities are not considered in this

study. The thesis ignores statistical regularities. For example, a sequence formed by

randomly choosing the symbols a and b with probability 2/3 and 1/3 respectively has

statistical regularities that, if known, can be utilised in a cipher–text-only attack on

a simple encryption scheme such as a substitution cipher. While this sequence will

certainly contain repeated subsequences, and longer repetitions of as than bs will

appear, recognising such repetitions reveals little about the structure of the source.

This thesis addresses properties of groups of symbols, such as repetition, rather than

properties intrinsic to a particular symbol, such as frequency. Another kind of

structure that may exist in sequences is periodicity, where a particular symbol

appears at certain intervals, regardless of context. A typical example is the

placement of line feed characters in a text file justified for an 80 column page,

where line feeds occur every 80 characters. This kind of structure is also ignored in

this thesis. Of course, if the periodicity is due to contiguous verbatim repetitions—

that is, if the interval is the length of the repetition—the structure will be

recognised.

1.2.2 Detection of structure

To show that hierarchical repetitions can be detected efficiently and incrementally,

it suffices to create a technique that performs the detection. We describe a

technique that forms a hierarchy of repetitions from a sequence in time proportional

to the size of the sequence. Furthermore, each symbol is integrated into the existing

structure as soon as it is observed, so that the hierarchy can be used at any point in

the sequence. This property is referred to as ‘incrementality.’ Linear time complexity

is important for lengthy sequences and for application to real-time systems. The

technique can be stated very succinctly in terms of two constraints, but these

constraints interact in interesting ways when presented with real-world sequences.

The computer program that implements this algorithm has been dubbed SEQUITUR,

Latin for ‘it follows’—a double entendre that alludes to both its proficiency with

sequences and its ability to infer structure.

The demand for incrementality stems from the application of these techniques to

on-line learning situations, such as the prediction of a system’s behaviour. On-line

applications require linear-time algorithms to avoid slowing down as processing

proceeds. Incremental processing and the linear time constraint inevitably lead to

greedy parsing. Greedy parsing makes decisions based purely on local optimality,

6 CHAPTER ONE: INTRODUCTION

which enables efficient incremental processing but usually results in a sub-optimal

parse overall. This is particularly noticeable in some artificial sequences. The thesis

describes two techniques for overcoming this deficiency. The first is to reconsider

the initial parse when evidence of a better one appears. A less expensive approach

can be employed if knowledge about preferred forms of rules is available from the

domain of the sequence. This is the only part of the thesis that takes advantage of

domain knowledge, but the mechanism is clearly separated from the main

algorithm, which operates without this knowledge.

We also develop a framework for understanding various approaches to choosing

between different parses and forming a hierarchy. The hierarchy provides a concise

representation of the sequence. None of the techniques developed in this thesis

guarantees finding the smallest possible hierarchy—this has been shown to be NP-

complete in the size of the input sequence. Previous techniques for finding sub-

optimal hierarchies operate in quadratic time, whereas those described here are

linear.

Branching and looping structure is more difficult to identify than exact repetition. It

can be detected efficiently in certain situations, such as in traces of program

execution, but in other cases requires an expensive search of many possibilities.

Furthermore, distinguishing correct structure from spurious structure is problematic.

Whereas the existence of an exact repetition is undeniable, the validity of a

particular branching structure is open to question.

Once structure in a sequence has been detected, it can be exploited in several ways.

The primary application is explanation: the hierarchy provides a comprehensible

account of the significant segments of the structure. In the case of natural language

such as English text, it can be used to partition the text into meaningful segments.

The same analysis could be applied to a sequence of unknown structure, such as

DNA, and provide some insight into its structure. In some cases, it is possible to

identify the exact structure of the source. We show that simple L-systems, a class of

recursive rewriting systems, can be inferred from their output. The inferred

structures are relevant to computational biology, as well as to graphical rendering.

In general, however, no guarantees can be made about identification of particular

source structures. In this sense, the goal of the thesis is distinct from that of

grammatical induction, where researchers assume that the source belongs to a

1.2 THESIS STATEMENT 7

a

������������������	�
�����
���	���

b

��������������������������������������
���������������������������
������������������������������

c

������������������	��������������������������
�������
�������������������
������������

Figure 1.1 Hierarchies for Genesis 1:1in (a) English, (b) French, and (c) German

particular class of grammars, and attempt to provide guarantees about identifying

the source grammar from its output.

The hierarchy of phrases provides a concise representation of the sequence, and

conciseness can be an end in itself. When the hierarchy is appropriately encoded,

the technique provides compression. Data compression is concerned with making

efficient use of limited bandwidth and storage by removing redundancy. Most

compression schemes work by taking advantage of the repetitive nature of

sequences, either by creating structures or by accumulating statistics. Building a

hierarchy, however, allows not only the sequence, but also the repeated phrases, to

be encoded efficiently. This success underscores the close relationship between

learning and data compression.

1.3 Some examples

This section previews several results from the thesis. SEQUITUR produces a

hierarchy of repetitions from a sequence. For example, Figure 1.1 shows parts of

three hierarchies inferred from the text of the Bible in English, French, and

German. The hierarchies are formed without any knowledge of the preferred

structure of words and phrases, but nevertheless capture many meaningful

regularities. In Figure 1.1a, the word beginning is split into begin and ning—a root

word and a suffix. Many words and word groups appear as distinct parts in the

hierarchy (spaces have been made explicit by replacing them with bullets). The

same algorithm produces the French version in Figure 1.1b, where commencement is

8 CHAPTER ONE: INTRODUCTION

a � → �
� → �� �!��"�!�

b �� �!��#�!�� �� �!��#�
!�!�� �!��#�!��#�� �!�
�#�!�!�� �!��#�!�� ���
 �!��#�!�� �� �!��#�!�
!�� �!��#�!��#�� �!��#
�!�!�� �!��#�!�!�� �!�
�#�!�� �� �!��#�!�!��
�!��#�!��#�� �!��#�!�!
�� �!��#�!��#�� �!��#�!
�� �� �!��#�!�!�� �!��
#�!��#�� �!��#�!�!�� �
!��#�!�!�� �!��#�!�� �
� �!��#�!�!�� �!��#�!�
�#�� �!��#�!�!�� �!��#
�!�� �!��#�!�� �� �!��
#�!�!�� �!��#�!��#�� �
!��#�!�!�� �!��#�!�� �
�� �!��#�!�� �� �!��#�
!�!�� �!��#�!��#�� �!�
�#�!�!�� �!��#�!�!�� �
!��#�!�� �� �!��#�!�!�
� �!��#�!��#�� �!��#�!

c d � → $� %�"%
% → $!$
$ → �� &�"&
& → �!�
� → �� '�"'
' → �!�

Figure 1.2 Inference of hierarchies from L-system output
(a) an L-system
(b) output from (a)
(c) graphical representation of (b)
(d) hierarchy inferred from (b)

split in an analogous way to beginning—into the root commence and the suffix ment.

Again, words such as Au, Dieu and cieux are distinct units in the hierarchy. The

German version in Figure 1.1c correctly identifies all words, as well as the phrase die

Himmel und die. In fact, the hierarchy for the heaven and the in Figure 1.1a bears some

similarity to the German equivalent. These examples are discussed in more detail in

Section 7.1.1.

Sequences produced by L-systems (a kind of grammar described in Section 4.2.1)

have associated graphical representations that include fractals and biological forms.

The L-system in Figure 1.2a produces the sequence partly reproduced in Figure 1.2b,

which draws the prototypical plant in Figure 1.2c. Identifying a hierarchy of

repetitions in the sequence is tantamount to finding a graphical hierarchy that

describes the relationships between different parts of the plant. Figure 1.2d shows

the non-recursive grammar inferred from Figure 1.2b. The original L-system can be

recreated by pattern matching on Figure 1.2d. This has two implications. First, the

original L-system can, under certain circumstances, be inferred from the sequence.

Second, identification of identical forms and hierarchies within a Figure can make

rendering the graphic much more efficient in terms of time and memory. For

example, Figure 1.2c can be rendered by traversing the hierarchy represented by the

grammar in Figure 1.2d, rather than executing all the instructions in Figure 1.2b.

1.3 SOME EXAMPLES 9

a ��
�()
*
��
���
+
������(
�,�-+�
�.,�/+�
�##)
��������(0�,�1+�0�2�
+�0�)
������
��(��0�#�1!�.���0!)�*
����������,���0�#�1!+
����������0�#�1!�,���0!+
��������3�
��4����5(�)+
����������0!�,��+
��������3�
��4����5(�)+
������6
6

3�
��4����5(����5)

�������5�!+
*
��
���
+

������(
�,�/+�����5�
!�7,�#1+�
�)
����3�
���(89�8������5�
!)+
��3������(:;�<)+
6

b
�,�-

��(
�.,�/)
0�,�1

��(0�2�
)

��(��0�#�1!�.���0!)
0�

��(0�2�
)

��(��0�#�1!�.���0!)
��,���0�#�1!+
��0�#�1!�,���0!+
��0!�,��+

�,�/

��(����5�
!�7,�#1)
3�
���(89�8������5�
!)

�

��(����5�
!�7,�#1)
3�
���(89�8������5�
!)

�
3�
���(89�8������5�
!)

�
3�
���(89�8������5�
!)
===

c
i = 10

j = 1

if (i >=

t

if (j < i)

i --

f

if (a[j - 1] > a[j])

t

j ++

f
t = a[j - 1]
a[j - 1] = a[j]
call procedure
a[j] = t
call procedure

t

f

i = 0

if (array[i]
!= -1)

putchar(’\n’)
printf("%d ", array[i])

i ++

f t

procedure

return

Figure 1.3 Inference of a program from a trace of its execution
(a) a bubblesort program
(b) the instructions executed by (a)
(c) an automaton reconstructed from (b)

This is especially important for complex figures that are used to produce realistic

simulations. Chapter 4, Section 5.1 in Chapter five and Section 7.2 in Chapter 7

examine these issues in more detail.

The sequence of instructions performed by a computer when executing a program

provides a well understood example of branching and looping structure. Figure 1.3a

shows a bubblesort program, which when executed performs the instructions partly

shown in Figure 1.3b. This stream can be reconstructed to form the original

10 CHAPTER ONE: INTRODUCTION

a switch (c) {
 case 1: value = 2
 case 2: value = 3
 case 3: value = 4
 case 4: value = 5
}

b S → switch (c) {A1B2A2B3A3B4A4B5↵}
A → ↵case
B → : value =

c
s

w

i

t

c

h

•

(

)

{

↵

a

e

1

:

v l

u

=

23

4 5 }

d

switch (c)

↵case

: value =

1 2 3 4

52 3 4

↵}

Figure 1.4 Detecting the structure of a C switch statement
(a) the switch statement
(b) SEQUITUR’s grammar for (a)
(c) an automaton formed from the individual characters in (a)
(d) an automaton formed from the contents of rule S

program, even if it contains procedure calls and recursion, producing the automaton

in Figure 1.3c. The reconstruction algorithm is discussed in Section 5.2.

The techniques for inferring branching and looping structure used for program

inference perform poorly at recognising structure such as the textual regularities in

Figure 1.4a. The automaton resulting from analysis of this sequence character-by-

character is shown in Figure 1.4c, and reflects little of the structure in the original.

The techniques for forming hierarchies of repetitions go some way to describing the

regularity in the sequence by identifying significant elements. Figure 1.4b shows the

grammar formed from the sequence. A hybrid technique drawing on the abilities of

each approach is much more successful, as shown in Figure 1.4d, which provides a

plausible explanation of the textual structure. This is discussed in Section 5.3.

To return to the humanities, Figure 1.5 shows the regularities detected in two of

Bach’s chorales. It transpires that both chorales are harmonisations of the same

1.3 SOME EXAMPLES 11

imperfect perfect

Figure 1.5 Illustration of matches within and between two chorales: for chorales O
Welt, sieh hier dein leben and O Welt, Ich muss Dich lassen by J.S. Bach.

original melodies, as indicated by the matching parts between the chorales. The

hierarchy identifies the common first and second half of the top melody, represented

by the light gray box, which also occurs in the second half of the bottom melody. It

also identifies the imperfect and perfect cadences labelled in the figure. A hierarchy

of repetitions is shown in the darker gray box and the white box within it. This

discussion is expanded in Section 7.3.

1.4 Contributions

The thesis makes contributions in the form of new algorithms for forming

hierarchies, for generalising hierarchies and inferring automata, and in applying

these algorithms to a range of sequences.

Grammar formation:

• It is possible to infer a hierarchical representation of a sequence in time linear

in the length of the sequence.

• Two constraints on grammar—digram uniqueness and rule utility—are

sufficient to form a hierarchical grammar from a sequence.

• A quadratic-time algorithm based on dynamic programming permits

visualisation of alternative parses.

• Reparsing can produce a better grammar using retrospective modifications,

while maintaining incremental qualities.

• Domain knowledge can be elegantly incorporated to improve the parsing of

the algorithm.

12 CHAPTER ONE: INTRODUCTION

Generalisation:

• It is possible to infer a recursive, non-deterministic L-system from a single

example of its output.

• Push-down and recursive push-down automata can be inferred from a

sequence of instructions.

• Phrase detection and non-deterministic structure recognition can be

combined to form a powerful structural inference technique.

Applications:

• A data compression scheme can perform explanation as well as achieve

conciseness.

• The minimum description length principle can be applied to detect structure

in textual databases.

• Inferring a hierarchy of repetitions can optimise graphical rendering of

biological forms.

• Structure of text in a variety of languages can be inferred using a generic

technique.

• Musical form can be inferred from melodic sequences.

1.5 Thesis structure

Chapter 2 surveys research related to the thesis, and partitions it into six areas:

sequence modelling, grammatical induction, machine learning, data compression,

language acquisition, and human sequence learning. All the areas except machine

learning are principally concerned with sequences, and all except data compression

address learning. Despite their commonalities, there has been little cross-

fertilisation between the disciplines. This thesis bridges some of the gaps by

demonstrating a scheme for inferring structure from sequences which both learns, in

the sense that it produces comprehensible models, and compresses.

Chapter 3 describes an algorithm for the recognition of repetitions and formation of

a hierarchy. The first section introduces the two constraints that apply to

SEQUITUR’s output and drive its operation. Section 3.2 explains some crucial parts

of the algorithm that ensure its efficiency when maintaining the constraints. A

proof of the linear time processing bound is provided in Section 3.3, while Section

3.4 presents some extreme cases of input, and the performance bounds that they

1.5 THESIS STRUCTURE 13

imply for SEQUITUR. Section 3.5 describes a quadratic time algorithm that forms a

framework within which various parses can be compared.

Chapter 4 studies problems with the greedy parsing of the basic algorithm when

applied to an artificially generated sequence. Section 4.1 previews results obtained

in the chapter. The L-system domain is described in Section 4.2, which provides the

motivation for the chapter. Where domain knowledge is available to provide an

extra constraint on the form that rules should take, this can be used to form a better

parse efficiently as described in Section 4.2. Section 4.4 describes how this problem

can be corrected by adjusting the parse of an earlier part of a sequence when more

data has been seen.

Chapter 5 discusses generalising the grammar. Section 5.1 shows how a recursive

grammar can be inferred from the reparsed grammar in Section 4.4. Section 5.2

gives a simple algorithm for inferring an automaton from the trace of a program, and

extends it to identify procedures calls and recursion. Section 5.3 demonstrates how

this technique can generalise SEQUITUR’s grammars to capture branching and

looping structure. This section also presents problems with this approach, and

discusses a solution based on searching for models that compress the sequence.

Section 5.4 describes the application of these generalisation techniques to a large

textual database in order to distinguish between fixed structure and variable

content.

Chapter 6 explains how the grammars produced by SEQUITUR can be efficiently

encoded. A brief review of the state of the art in data compression is given in

Section 6.1. Section 6.2 describes an efficient way of encoding grammars that

SEQUITUR produces, which transforms SEQUITUR into a data compression scheme.

It is then compared against other techniques on a standard data compression corpus

in Section 6.3. Section 6.4 returns to the textual database in Section 5.4 and shows

how inference can significantly increase compression performance.

Chapter 7 describes the application of SEQUITUR to sequences from several

domains. Section 7.1 discusses applications to natural language, including the

discovery of words, word parts and multi-word phrases. Here, SEQUITUR is

compared to earlier research in language acquisition. Section 7.2 shows how

SEQUITUR, with the aid of domain knowledge, can optimise graphical rendering of

complex natural scenes. Section 7.3 discusses the hierarchical structures that occur

14 CHAPTER ONE: INTRODUCTION

in music, while Section 7.4 investigates how word hierarchies from large corpora

can be employed in full-text retrieval and abstracting. Section 7.5 describes

experiments in the compression of DNA and amino acid sequences, where

SEQUITUR significantly outperforms the best current techniques.

field input output predicts

sequence modelling one sequence automaton or context table next symbol

grammatical induction set of sentences grammar or automaton membership

machine learning unordered tuples decision tree, rules, etc. class

data compression one sequence compressed sequence next symbol

linguistic segmentation stream of language parsing into words word boundaries

human sequence
learning

artificial sequence anticipation next symbol

SEQUITUR one sequence grammar and automaton next symbol

Table 2.1 Characterisation of related fields

2. Background

Bernard of Chartres used to say that we are like dwarfs on the shoulders of
giants, so that we can see more than they, and things at a greater distance,
not by virtue of any sharpness of sight on our part, or any physical
distinction, but because we are carried high and raised up by their giant size.

John of Salisbury, Metalogicon, 1159

If I have seen further it is by standing on the shoulders of giants.
Sir Isaac Newton, letter to Robert Hooke, 1675

This thesis is about how to make inferences from a sequence. Six areas of study have

been identified that are concerned either with making inferences, processing

sequences, or both: sequence modelling, grammatical induction, machine learning, data

compression, linguistic segmentation and human sequence learning. Table 2.1 summarises

the distinctive features of each area in terms of the kind of input the techniques

expect, the form of the output that they produce, and the predictions that they

make.

Sequence modelling techniques bear the most similarity to the methods developed in

this thesis. They take a single sequence as input, and form a model of it. The model,

which is usually represented as an automaton, can then be used both to explain and

to extrapolate the sequence.

Whereas sequence modelling is motivated by the need to predict behaviour,

grammatical induction is inspired by problems in language. Rather than dealing with

the internal regularity of a single sequence, techniques for grammatical induction

examine several sentences generated by the same grammar, and attempt to identify

16 CHAPTER TWO: BACKGROUND

the grammar itself. These techniques attempt to emulate people’s ability to infer

natural language grammars directly from the utterances that they hear.

Research in machine learning is less concerned with sequential structure, but

concentrates on finding relationships between individual objects with internal

structure. These relationships are encoded in structures such as decision trees and

rules. Studying the problems of learning these relationships has led to the

development of the minimum description length (MDL) principle, which is a

formalisation of Occam’s razor. A theory is chosen by MDL if it allows the original

data to be encoded more concisely than any competing theory does. Chapter 6

employs this principle to justify inferences of branching and looping structure.

Drawing on work in sequence modelling and information theory, data compression

involves the application of sequence modelling to enable efficient use of storage and

transmission resources. Despite its ad hoc beginnings, data compression is now firmly

based on information theoretic results, and the best current techniques grew out of

behaviour prediction in sequence modelling. In addition to providing practical

benefits, it represents a robust evaluation methodology for competing sequence

models.

There have been several computational attempts to account for linguistic

segmentation by children—how they learn to divide speech into words. Techniques

that have been developed for segmentation have similarities to the methods

described in this thesis.

People deal with sequences other than language, such as predictable sequences of

events. In the 1950s, the prevailing hypothesis for the human sequence learning

mechanism was a stimulus-response model. Since then, experiments have been

performed that indicate that we form mental hierarchies to record repetitions and to

replay them in learned skills. The last section reviews work in experimental

psychology concerned with human sequence learning.

2.1 Sequence modelling

Sequence modelling encompasses techniques that take a single string and form a

model based on its internal regularity. This section describes these techniques and

discusses how they have been applied to real prediction and explanation problems.

2.1 SEQUENCE MODELLING 17

The first subsection describes the modelling techniques, and the second outlines the

way in which they have been applied to various problems.

We partition the techniques into three groups: techniques that enumerate automata

and select the ones that perform well, ones that construct finite context models, and

ones that form automata by construction. Enumeration is the simplest approach,

and it guarantees to find the optimal model. However, it is usually infeasible.

Constructive techniques have the advantage of tractability, but at the expense of

optimality. Finite-context predictors are a constructive technique, but are discussed

separately because they represent models as context tables rather than automata.

Automata are the representation of choice for sequential structure—even context

prediction methods can be recast as automata. Automata can capture the branching

and looping structure of a sequence and represent it analogously to a flowchart

representation of program sequence. Although there is a theoretical equivalence

between grammars and automata—every regular grammar has an equivalent finite

state automaton, and every context free grammars has an equivalent push-down

automaton—the visual impact of automata makes them useful for illustrative and

explanatory purposes.

Current research has by no means exhausted the possibilities for modelling

techniques—in fact, the relevant work is rather sparse. The existing techniques,

however, are capable of providing useful inferences in practice, and the second

subsection shows how simple techniques have been successfully applied.

2.1.1 Techniques

Enumerative

For a given space of models, the simplest inference technique is to enumerate all

possible models and choose the best according to some preference criterion. This

approach is usually infeasible, because of the large (or infinite) number of models in

the space. However, enumeration provides a bound on how successful any heuristic

search of the space can be, because it guarantees to maximise any given criterion.

Other techniques use knowledge about the problem to eliminate large parts of the

space, but risk missing the optimal solution. A key advantage of enumerative

techniques is their robustness in the presence of noise, or when the source of the

sequence does not belong to the class of automata that is being enumerated. In these

18 CHAPTER TWO: BACKGROUND

a �
� �
� � � � � � � � � � � � � � � � � �

b
h

t

h
t

h

t

hh

t t

2 state

4 state

h

t

1 state

h t

t

h
h

t
3 state

c

states

po
or

ne
ss

 o
f f

it

1 2 3 4 5 6

Figure 2.1 Structure detection by enumeration of automata (after Gaines, 1976)
(a) results of a rigged coin toss
(b) admissible 1, 2, 3 and 4 state models
(c) tradeoff between automaton size and fit

cases, enumerating all models guarantees to choose the one that maximises the

preference criterion. A heuristic search may be misled by one piece of spurious data,

causing it to reject a part of the model space that contains the best solution.

The idea of modelling acausal phenomena, or sequences generated by a process

belonging to a different class to the structure being inferred, is central to this thesis,

which describes general-purpose techniques that use structures such as grammars

and automata as a convenient framework rather than an exact replica of the source.

Real world sequences are often acausal—or the causes are not recorded in the

sequence—and there is no evidence that structure in sequences such as DNA can be

fully captured by a grammar or automaton. It is nevertheless useful to capture some

2.1 SEQUENCE MODELLING 19

parts of the structure.

An enumerative technique was proposed by Gaines (1976) for the space of finite

automata. To make the problem more feasible, the inference technique, called

ATOM, enumerated automata in order of size starting from the smallest, one state,

automaton. Because ATOM’s preference criterion is biased towards small automata,

it is likely to find a solution sooner if the space is searched in this order. Each model

that ATOM generates is evaluated according to both its size and its fit to the data.

Gaines examines several ways of characterising the goodness of fit of a non-

deterministic automaton: the expected number of errors, the entropy of the original

sequence with respect to the distribution implied by the automaton, and the sum of

the squares of the differences between the probabilities implied by the automaton

and the symbols that occur. An admissible model is defined as one that cannot

simultaneously be made smaller and more accurate. There is therefore at most one

admissible model with two states, one with three states, and so on.

For example, consider a rigged betting machine proposed by Andreae (1977) that

produces coin tosses as in Figure 2.1a. Figure 2.1b shows the admissible one-, two-,

three- and four-state models, and Figure 2.1c shows the first six models plotted as

size against fit. To choose the best model, A T O M chooses the model that is

significantly better than the model with one less state, but not significantly worse

then the model with one more state. In this case, the best model is chosen to be the

four-state one, because of the large improvement in fit from the three-state model

but the small gain in using the five-state model. The improvement in fit from three

to four states indicates that the four-state model captures an important structure not

present in the three state model. The actual structure of the sequence is that when

it is broken into groups of three symbols, the second symbol in every triplet is a

repetition of the first symbol. Other modelling procedures discussed below cannot

detect this periodicity.

Extending this enumerative technique to a larger space could be expected to slow

the inference process. However, this is not necessarily the case. Witten (1981b)

extends ATOM to enumerate recursive transition networks. Surprisingly, in one

situation inference is more efficient for recursive automata because a three-state

recursive model captures structure as well as a four-state non-recursive model, and

there are fewer of the former to search. Section 6.2 discusses constructive

20 CHAPTER TWO: BACKGROUND

A B C D A B C...

A B C D

B C D A

C D A B

D A B C

most recent event

tail head

memory

sequence of events seen by PUSS

successive traces stored in memoryLearning

Prediction

A B C
tail

D
predicted
head

Figure 2.2 The finite context prediction mechanism for PUSS and FLM (after
Cleary, 1980)

techniques for finding an automaton, and provides extensions for inferring push and

pop operations.

Constructive techniques for finite context predictors

Finite context modellers are based on the observation that a symbol in a sequence is

often determined by the symbols that immediately precede it. For example, in

English text, the letter q determines that the next symbol is most likely to be u. In a

less extreme example, the letters th usually precede the letter e, but may also precede

a , i, o , u , or r. In fact, the most successful predictors used for data compression

schemes are based on this principle.

In his pioneering work on learning sequences, Andreae (1977) developed a system,

PUSS, that predicts future events based on past events in the same context. Andreae

likened this approach to the stimulus-response model of behaviour in animals. PUSS

stands for Prediction Using Slide and Strings, the ‘slide’ referring to the window of

context preceding the current prediction, and ‘strings’ to the table of previous

contexts and subsequent symbols. Along with PURR (Purposeful Unprimed

Rewardable Robot), PUSS formed a system that interacted with a user through a

2.1 SEQUENCE MODELLING 21

character terminal and learnt complex behaviour by conditioned reflex. In fact,

PURR coordinated several PUSS predictors that acted on different kinds of sequences,

and selected an action based on the predictions of the PUSSes. This system was

capable of learning counting, simple picture recognition, and to navigate an

imaginary world.

Figure 2.2 shows PUSS’s basic learning and prediction mechanism. As each new

symbol appears in the input, it becomes the head of a buffer whose tail is the three

most recent symbols. The size of the tail is called the order of the predictor—in this

case three. This buffer is stored in an associative memory in such a way that it can

be efficiently retrieved based on its tail. When the mechanism is called on to make

a prediction, the last three symbols are used as an index into the memory, and the

most common head for that tail is returned. PUSS is programmed by example—

incrementally providing actions or correcting predicted actions for a specific

problem until the correct responses to the range of contexts has been learnt.

A modelling system based on context prediction can, in fact, be recast as a

computing device capable of emulating a Turing machine. Cleary (1980) described

such a system, the Finite context Learning Machine (FLM), and showed that despite

the constantly changing context memory, it can be programmed to execute a fixed

algorithm. The innovation that allows PUSS to be teachable and the FLM to act as a

computer is the interleaving of patterns and actions in the sequence, analogous to

stimuli and responses. The patterns are the input to the computer, and the actions

represent the execution of the program. In this way, the memory contains previous

predictions as well as inputs.

A finite-context predictor can be represented as an automaton by creating a state

for each context, and transitions for each symbol seen in that context to the state

representing the new context. The new context is formed by deleting the oldest

symbol in the old context, and appending the new symbol on which the transition

is made. Although efficient and effective at capturing some kinds of structure,

finite-context predictors cannot capture counting events, and can only recognise

periodicities that are no greater than the size of the context. Furthermore, the

models lack comprehensibility—the learned relationships are not crystallised in a

concise structure, but rather embodied in a potentially large and unstructured

context memory.

22 CHAPTER TWO: BACKGROUND

a
�����!�,�*>�?@�>?�A�B�@?�A�1�A�@6+

��
�()�*
������(
�,�1/+�
�.,�/+�
�##)
��������(0�,�1+�0�2�
+�0�)
������
��(��0�#�1!�.���0!)�*
����������,���0�#�1!+
����������0�#�1!�,���0!+
����������0!�,��+
������6
6

b
�,�1/

��(
�.,�/)
0�,�1

��(0�2�
)

��(��0�#�1!�.���0!)
0�

��(0�2�
)

��(��0�#�1!�.���0!)
��,���0�#�1!+
��0�#�1!�,���0!+
��0!�,��+
===

c

i = 10

j = 1

if (i >= 0)

if (j < i)

i --
if (a[j - 1] > a[j])

j ++
t = a[j - 1]
a[j - 1] = a[j]
a[j] = t

Figure 2.3 Inferring a program from an execution trace(after Gaines, 1976)
(a) bubblesort program
(b) part of the trace produced by (a)
(c) finite state automaton produced from the bubblesort trace

Constructive techniques for automata

A particularly straightforward method of constructing an automaton from a

sequence is to create a state for each unique symbol in the sequence, and a

transition between two states whenever the symbols are adjacent in the sequence.

This automaton is equivalent to a finite context predictor with a context of one: the

state for a particular symbol represents the context of that one symbol. Witten

(1979) calls this the ingenuous non-deterministic model of the sequence.

Despite its simplicity, this is a powerful way of producing an automaton. Consider

the bubblesort program in Figure 2.3a, an example proposed by Gaines (1976).

Tracing its execution on the given array results in the sequence of instructions in

Figure 2.3b. Creating the ingenuous automaton from the sequence, where one

2.1 SEQUENCE MODELLING 23

instruction becomes one node, results in the automaton in Figure 2.3c. This is, in

fact, a correct program for bubblesort, except for the non-determinism at the

conditional branches. Extending the idea to longer contexts, so that one state

signifies the observation of k consecutive symbols, allows the technique to identify

any deterministic automaton with k or less states. Section 5.3 describes how k can

be allowed to vary from state to state in order to capture the changing nature of

some structures.

2.1.2 Applications

The simple techniques described in the previous subsection can achieve

considerable success in practical situations. Of course, enumerative techniques must

generally be discarded as impractical, so these applications utilise finite-context and

automaton construction techniques. The ability of these techniques to make

predictions enables them to be used in a variety of ways, including data

compression, programming by demonstration, optimisation of data entry, predictive

data caching, and the optimisation of Prolog programs.

Using arithmetic coding, a technique described in Section 2.4, it is straightforward

to transform a predictor into a data compression scheme. The finite-context

computer (FLM) described above was adapted by Cleary and Witten (1984) to

become a data compression scheme called prediction by partial matching (PPM). This

scheme is described in more detail in Section 2.4, but the general idea is to use the

finite contexts to provide a probability distribution for the next symbol in a stream

of symbols. This distribution, which can be calculated by both the encoder and the

decoder, can be used by the arithmetic coder to transmit the symbol efficiently. The

key innovation in PPM is the blending of predictions from various context lengths,

so that the effective order of the predictor grows as more of the sequence is seen,

and it becomes more confident in its predictions.

A particularly fruitful application of these techniques is to programming by

demonstration (PBD), where a computer is taught a repetitive procedure by

demonstrating several examples of its execution. A key advantage of PBD over

traditional programming is that it allows a computer user to specify a procedure in

the environment where the task is performed—an environment with which they are

familiar. The following paragraphs summarise the application of sequence modelling

24 CHAPTER TWO: BACKGROUND

to PBD in four different domains: a hand-held calculator, a text-based computing

environment, a text editor, and a graphical editor.

Whereas calculators alleviate the drudgery of manual calculation, they do little to

allow automation of complex calculations involving several separate steps. Witten’s

(1981a) predictive calculator used a fixed-length context to predict the user’s next

action when making a repetitive calculation, such as plotting several points of a

complicated function. In several example calculations, the calculator learnt the

fixed parts of a computation, and after a couple of iterations only prompted the user

for variable parts.

People’s interaction with computers is often highly predictable. Darragh and Witten

(1992) used a finite context predictor to expedite text entry. The system was

especially targeted at disabled users, for whom typing is difficult or impossible. By

predicting characters or groups of characters based on preceding characters, data

entry speeds can be vastly increased over typing every character. The technique was

applied to UNIX command line editing, where repeated commands and file names

give rise to spectacular gains in efficiency, and many disabled users routinely take

advantage of the system. The technique was also applied to a text editor, where

predicted phrases can be selected with a pointing device.

The EMACS editor has a built-in programming language based on LISP. Despite its

power, few casual users take advantage of it, so Witten and Mo (1993) set out to

provide a PBD system that would construct programs automatically from user traces.

This text editing learning system (TELS) forms an automaton from a trace of user

actions in the same way that the bubblesort automaton in Figure 2.3c was formed.

The system is able to relate two slightly different actions that are in fact the same

action in different contexts. Once this generalisation has been performed, creation

of the automaton is trivial.

Repetitive graphical editing is another domain in which sequence modelling can

vastly improve efficiency. Maulsby et al. (1989) describe METAMOUSE, a system for

programming by demonstration within a drawing package. A key part of

METAMOUSE was its ability to understand graphical constraints indicated by the

user, which is largely a user-interface issue, but an equally important function was its

ability to infer loops and branches from the sequence of user actions. Witten and

Maulsby (1991) describe a way of evaluating various automata inferred from a trace

2.1 SEQUENCE MODELLING 25

of user actions. They choose the automaton that allows the entire trace to be

encoded in the smallest amount of information. This specifies a tradeoff between

the size of the automaton and its fit to the sequence. A small automaton may not

capture much of the sequence’s structure, so the sequence must be transmitted

explicitly. On the other hand, a very large automaton might record the sequence

verbatim with one state per symbol in the sequence. In this case, the automaton

itself takes as much space as the sequence in the first place. Minimising the sum of

the size of the model and the size of the sequence encoded according to the model

gives a particular tradeoff that works well in practice. This technique is described in

more detail in Section 2.3.

Modelling and predicting sequences can be seen as a learning problem. While there

has been little work on sequence learning in the machine learning literature (one

notable exception is Dietterich and Michalski’s (1986) SPARC/E, described in

Section 2.3), Laird (1994) argues that it should be included with the other main

paradigms of machine learning, which he summarises as concept learning,

clustering, and associative learning. This issue is discussed further in Section 2.3,

but it is appropriate to discuss Laird’s contribution to sequence modelling here. He

defines the discrete sequence prediction (DSP) task as finding ‘statistical regularities in

the input so that the ability to predict the next symbol progresses beyond random

guessing,’ and suggests five applications for DSP. Within information theoretic

applications, he includes data compression and using prediction in on-line game-

playing situations. Data optimisation refers to the use of prediction to optimise

programs so that situations predicted by DSP take less time. Dynamic buffering

algorithms predict which data an application is likely to require next, and use this

prediction to prefetch data to a fast memory cache. Adaptive human-machine

interfaces refers to systems such as the PBD systems described above, which use

sequence modelling to adapt to the usage patterns of a computer user. Finally,

anomaly detection systems flag unexpected events—those that are hard to predict—to

identify unusual uses of a system.

The specific algorithm described by Laird (TDAG: transition directed acyclic graph)

is a finite context predictor similar to PPM. It performs somewhat worse that PPM as

a data compression algorithm because of the crude context blending and the use of

Huffman rather than arithmetic coding. The paper describes two other applications

of TDAG: the optimisation of Prolog programs and predictive caching. In the former,

26 CHAPTER TWO: BACKGROUND

Laird notes that where a goal to be satisfied unifies with the heads of several clauses,

selecting the correct clause at each step (avoiding clauses that will fail) eliminates

backtracking and accelerates program execution. Of course, perfect prediction of the

correct clause is unlikely, but TDAG, using the previous clauses satisfied as a context,

predicts the correct clause often enough to provide a 10%–20% improvement in

execution time on the Prolog programs tested. In predictive caching, TDAG was

used to predict which block would be required next based on the pattern of blocks

recently requested, and was shown to outperform standard caching techniques.

In summary, then, sequence modelling techniques provide simple but powerful ways

of capturing regularities in a sequence, and have supported several useful

applications.

2.2 Grammatical inference

Biermann and Feldman (1972) summarise the grammatical inference problem as

follows: ‘a finite set of symbol strings from some language L and possibly a finite set

of strings from the complement of L are known, and a grammar for the language is

to be discovered.’ There are two important differences between sequence modelling

and grammatical induction. First, sequence modelling deals with single strings and

analyses their internal regularity, whereas grammatical induction deals with

multiple strings generated by a single source, and analyses their similarity to each

other. Second, grammatical induction assumes that the source grammar belongs to a

particular class of grammars, whereas sequence modelling, especially when invoked

on acausal sequences, seeks to approximate the source, which belongs to an

unknown class. This means that it is possible for a grammatical inference procedure

to guarantee identification of the source, whereas this is not possible for sequence

modelling. This section describes specific work in the field of grammatical induction

and the significance it has for this thesis.

2.2.1 Techniques

Research in grammatical inference appeared after the development of formal

grammars, most notably by Chomsky (1957b). Part of the motivation for formalising

notions of grammar was to understand how people are able to learn language. The

search for techniques to infer a grammar from its language followed naturally.

2.2 GRAMMATICAL INFERENCE 27

a

c

b
b

c

a

a

a

description sequence membership

b original sequence abcca yes

delete bcc aa yes

add bcc abccbcca yes

add bccbbc abccbccbbca yes

add a abacca yes

c delete one symbol bcca no

acca no

abca no

abcc no

delete two symbols cca no

aca no

aba no

abc no

delete three symbols ca no

aa yes

ab no

repeat bcc abccbcca yes

abccbccbcca yes

Figure 2.4 Inferring an automaton by insertion and deletion of cycles
(a) the automaton to be inferred
(b) some membership-preserving transformations
(c) a systematic search for cycles

An early inference procedure was described by Chomsky and Miller (1957a), as

reported in Solomonoff (1959). Chomsky proposed a method for detecting loops in

finite state languages. The approach requires a set of valid sentences, and an oracle

that determines whether a sentence is in the language.

The algorithm proceeds by deleting part of a valid sentence and asking the oracle

whether the sentence is still valid. If it is, the deleted part is reinserted into the

sequence and repeated, so that it appears twice. If the sentence is still in the

language, a cycle has been detected. Figure 2.4 shows an example. Figure 2.4a is the

28 CHAPTER TWO: BACKGROUND

target automaton, and the initial valid sentence, abcca, is given in Figure 2.4b. The

sentence can be modified in several ways while maintaining its validity: the

sequence bcc can be deleted, leaving the sentence aa. Alternatively, bcc can be

repeated one or more times, or replaced with bbc. After the first b, the symbol a can

be inserted an arbitrary number of times. To infer the automaton, parts of the initial

sentence are systematically deleted, as shown in Figure 2.4c. First all the ways of

deleting one symbol are tried, then the two-symbol deletions, and so on. Out of all

the resulting sentences, only one, aa, is still valid. To establish bcc as a valid cycle, it

is repeated and checked to see if it is still valid. Proceeding in this way, it is possible

to identify the target automaton.

Cycles in a grammar may not always involve contiguous symbols. For example, in a

phrase-structure grammar that defines nesting of brackets, cycles of open brackets

must be matched by a corresponding cycle of closing brackets. Solomonoff (1959)

described a method of grammatical inference for phrase structure grammars that

detects this more complex cyclic structure. The approach for phrase structure

grammars is similar to that for finite grammars—it relies on an oracle to determine

whether a sentence with additional cycles belongs to the language of the source

grammar.

People seem to be capable of learning a language without specific provision of

negative examples. Their ungrammatical utterances are not always corrected, and

they must rely mainly on inference from positive examples. However, it does not

follow that an inference procedure should be able to infer any grammar from

positive examples alone, as illustrated by Gold (1967). Gold proposed the concept

of identification in the limit, which allowed inference algorithms to be analysed in

terms of their ability to converge on a grammar, given enough examples. An

important result is that given positive and negative examples of strings from a

language, the grammar generating that language can be identified, but without

negative examples no algorithm can guarantee identification.

Gold defines identification in the limit in the following way. Sentences from the

language are presented to the learner. After each one, the learner makes a guess at

the correct grammar. If after some finite time the learner’s guesses are all the same,

and the guessed grammar is the target grammar, then the language has been

identified. If this guarantee can be given for all grammars in a class for a particular

learner, the class of grammars is identifiable in the limit. ‘In the limit’ means it is

2.2 GRAMMATICAL INFERENCE 29

a
try

work

hard

hard

b
try

work

hard

hard

c
try

work

hard

Figure 2.5 Automata to illustrate k-reversibility
(a) an automaton
(b) the reverse of (a)
(c) a zero-reversible version of (a)

not possible to bound the identification time. This process assumes some effective

algorithm for inferring a grammar from the sentences, and the discovery of such an

algorithm for various classes of grammar is the subject of ongoing research in

grammatical induction. For Gold’s purposes, however, an algorithm that enumerates

all grammars in a class suffices to demonstrate some important results.

Gold’s result that identification in the limit cannot be guaranteed where negative

examples are unavailable is justified as follows. Imagine a class of languages that

includes all finite languages and one infinite language L∞. After some number of

examples, a finite language L1 can be inferred (say, by the enumerative algorithm

just described). By presenting some examples not covered in L1 but covered by L2,

the learner’s guess will change to L2. Since there are an infinite number of finite

languages, the learners guess can be made to change indefinitely, preventing it from

ever identifying the infinite language.

Whereas Gold’s theorem holds for many classes of grammar, it is not true for some

restricted classes. Angluin (1982) proposed a new class of k-reversible automata and

an associated inference mechanism that, for each k, guarantees identification from

positive examples only. Explaining k-reversibility is best achieved by generalising

from the case where k is zero, i.e. zero-reversibility. If both an automaton and its

reverse are deterministic, the automaton is zero-reversible. The reverse of an

automaton is formed by changing the directions of all the transitions and swapping

the initial and final states. This effect can be achieved by starting at the final state

of the automaton and following transitions only in the reverse direction of the

arrows. For example, Figure 2.5b is the reverse of Figure 2.5a.

K-reversibility is a generalisation of the requirement of determinism in the reversed

30 CHAPTER TWO: BACKGROUND

automata. Instead of having to determine a unique next state given a single symbol,

the process interpreting the automaton is permitted to look k symbols ahead in the

sequence. If these symbols always determine a unique state, the automaton is

deterministic with lookahead k. If an automaton is deterministic, and its reverse is

deterministic with lookahead k, the automaton is k-reversible.

For example, Figure 2.5a shows an automaton that accounts for two English verb

phrases, try hard and work hard. The automaton is deterministic because the start

state is the only one with more than one transition leading from it, and the

transitions have different labels. This means that considering the transition symbols

as input symbols, it is always clear what the next state is whenever a new symbol is

seen. Figure 2.5b shows the reverse of 2.5a. The start and accepting states have been

interchanged, and the transition directions have been reversed. The start state here

is non-deterministic: it has two transitions leading from it with the same label, so

when accepting a sentence starting with hard, it is not clear which transition to

take. This means that the original automaton is not zero-reversible. However, it is

one-reversible, because by looking ahead one symbol to try or work in Figure 2.5b,

the correct transition from the start state can be determined—the reverse

automaton is deterministic with lookahead one.

Inferring a k-reversible automaton from a set of sentences proceeds as follows. To

begin, the trivial automaton is formed from the sentences by making one path from

start to accepting state for each sentence. Figure 2.5a was formed from the sentences

try hard and work hard. To infer a zero-reversible automaton from this automaton,

states are merged where they violate the determinism rules in either direction. The

original automaton is already deterministic, but the reverse is not, so the two states

that the start state transitions to on the symbol hard are merged. Performing this on

the original automaton produces Figure 2.5c, which is deterministic, and its reverse

is deterministic. This means that it is zero-reversible. In general this process is

iterative, because merging states may cause further non-determinism. The algorithm

for forming a k-reversible automaton is identical, except for replacing the

determinism constraint with determinism with lookahead k. The time complexity of

the zero-reversible inference algorithm is O(nα(n)), where n is the sum of the

lengths of the sentences. and α(n) grows very slowly (Tarjan, 1975). The time-

complexity for the k-reversible inference algorithm is O(kn3), where n is defined in

the same way.

2.2 GRAMMATICAL INFERENCE 31

3

0 2 45 6 71
Judy

does|did

gives|gave

give
get

is|was

has|had

Modals
(may,
might,
etc.)

have been

be giving|given

given

give

being given bread
8

Figure 2.6 One-reversible automaton for the English auxiliary system (after
Berwick and Pilato, 1987)

2.2.2 Applications

K-reversible grammars form an important class because there exists a polynomial-

time inference procedure for them that guarantees identification in the limit. The

complexity of the inference algorithm means that inference can be performed on

some real-world problems. Returning to one of the motivating problems behind

grammatical induction, does k-reversibility help in the identification of the grammar

for English? Berwick and Pilato (1987) used k-reversibility to infer automata for two

sublanguages of English: the auxiliary system (Judy gives bread, Judy has given

bread, Judy might have been given bread, etc.) and noun phrase specifiers (those

several deer, no big deer, many deer, these two hundred deer, etc.). They found that

the auxiliary system could be represented by a 1-reversible automaton, reproduced

in Figure 2.6, while noun phrase specifiers required a 2-reversible automaton with

81 states and about 300 transitions. In both cases the correct automaton was

inferred from a hand-formed corpus of examples using the k-reversible inference

mechanism. The corpus for the auxiliary system is included in the paper, and

represents a systematic exercising of various combinations of auxiliaries for Judy,

giving, and bread. It is unclear how the procedure would perform on a representative

sample of English.

Recall the PBD tasks discussed in the last section. Tedious computer work often

consists of several repetitions of similar work, which can be treated as multiple

sentences from the same language. Schlimmer and Hermens (1993) applied the

inference algorithm for k-reversible automata to the design of an adaptive user

interface. The domain is a form-filling exercise, where each sentence is the

32 CHAPTER TWO: BACKGROUND

a Butterick 4198 Size 12 Dress/Top
Butterick 4352 Sizes 12 Jumper
McCall’s 5057 Size 12 Dress/Top
Simplicity 5424 Size 11/12 Jumper/Top
Butterick 6171 Size 10 Dress/Skirt/Top
Simplicity 5465 Size 11/12
Dress/Jumper
Butterick 3674 Size 10 Dress
Butterick 3035 Size 11/12 Dress
Butterick 3611 Size 10 Dress/Top
McCall’s 5377 Size 12 Dress
McCall’s 5096 Size 12 Dress/Top
Butterick 3722 Sizes 8-10-12 Jumper

b

TopSkirt

Top Skirt Jumper

Dress Jumper Dress DressDress Dress Jumper

11/12 10108-10-1212 1012 12 11/1212 11/12

Size SuzeSize SizeSize SizeSize SizeSizeSizeSizes

3035 3611367437224198 4352 6171 4864 5377 59065057 5424 5465

SimplicityMcCall'sButterick

:NULL

start

terminal

c

Figure 2.7 Inferring a customised data entry form from input (after Schlimmer and
Hermens, 1993)
(a) the input data
(b) a reversible automaton inferred from (a)
(c) a customised form based on (b)

specification of a member of a class such as sewing patterns or computer models.

The k-reversible automaton inferred from the sentences is not only useful for

predicting values and saving the user work, but it can be automatically transformed

into a custom-built form for quicker entry. For example, Figure 2.7a shows some

sample sentences from a list of sewing patterns. The automaton inferred from these

sentences is shown in Figure 2.7b, and the custom interface is shown in Figure 2.7c.

2.2.3 Single versus multiple sentences

The techniques described in this thesis take only one sequence as input, so there

can be no negative examples. It follows from Gold’s (1967) theorem that there can

be no guarantee of convergence to the source grammar. Furthermore, our sequences

do not always emanate from a well defined grammatical source, whereas

2.2 GRAMMATICAL INFERENCE 33

grammatical inference assumes a certain class of grammars to aid inference. This

thesis uses grammars as a useful representation for different kinds of structure, even

if the structure is not in fact generated by a grammar, and certain parts of the

sequence cannot be explained by a particular class of grammar. In this sense, the

techniques are pragmatic rather than designed to facilitate convergence proofs. This

difference in approach is emphasised by the artificial nature of the input sequences

described in most research on grammatical induction, as opposed to the real-world

sequences treated here.

The multiple sentence assumption of grammatical induction makes it suitable for

many realistic problems. Human speech can usually be partitioned into utterances,

each of which corresponds to a single sentence from a language. Schlimmer and

Hermens (1993) examine the sentence-like structure of a repetitive data-entry task,

where the task varies from iteration to iteration but nevertheless exhibits some

constant grammatical structure. However, there are many cases in which sequences

do not fall naturally or automatically into sentences. Consider the text of a high-

level computer program. A program represents a single sentence generated by a

grammar, and is therefore unsuitable for analysis by grammatical inference

techniques. It does, however, possess much internal structure such as repeating

keywords and template structures, which can be exploited to provide insight into

the nature of the source grammar.

2.3 Machine learning and MDL

Whereas machine learning largely deals with non-sequential data, the issues

surrounding learning and inference discussed in the machine learning community

apply equally to sequence modelling. This section describes the distinctive features

of research in machine learning, and then discusses how a fundamental problem—

learning approximate relationships from positive examples alone—relates to

sequential structure detection.

34 CHAPTER TWO: BACKGROUND

a outlook temperature humidity windy class

sunny 85˚ 85% false Don’t Play

sunny 80˚ 90% true Don’t Play

overcast 83˚ 78% false Play

rain 70˚ 96% false Play

rain 68˚ 80% false Play

rain 65˚ 70% true Don’t Play

overcast 64˚ 65% true Play

sunny 72˚ 95% false Don’t Play

sunny 69˚ 70% false Play

rain 75˚ 80% false Play

sunny 75˚ 70% true Play

overcast 72˚ 90% true Play

overcast 81˚ 75% false Play

rain 71˚ 80% true Don’t Play

b outlook

humidity windy

sunny
rain

truefalse<= 75 >75

Play Don’t Play Don’t PlayPlay

Play

overcast

Figure 2.8 Inferring a decision tree from data
(a) the golf data set
(b) a decision tree inferred from (a)

2.3.1 Machine learning vs sequence modelling

One way to define learning is the intentional adaptation of a system to improve its

performance. Machine learning is the study of algorithmic means of performing this

adaptation. Although in its widest sense this encompasses sequence modelling and

grammatical induction, the most commonly studied problem in machine learning is

classification, where the target is a concept rather than a grammar or automaton.

The inference technique is given a series of instances, each consisting of several

attributes describing a particular object or event, and a class to which that object or

event belongs. The inferred concept is a function that computes the class from the

attributes. A plethora of machine learning techniques exist, and they can be

categorised according the form of the function that they induce. Langley (1996)

suggests five paradigms of learning: neural networks, instance based learners, genetic

algorithms, rule induction, and analytic learning.

2.3 MACHINE LEARNING AND MDL 35

Machine learning is distinct from both sequence modelling and grammatical

induction because it is concerned with the relationship between single objects with

internal structure, rather than between a sequence of objects with no internal

structure. Figure 2.8a shows a toy machine learning data set that lists fourteen

instances describing attributes of the weather on various days, and whether those

days were suitable for playing golf (the class). Figure 2.8b shows a decision tree

inferred from the data that can be used to classify other days according to their

suitability for golf. To classify a new instance, the tree is traversed by starting at the

root and following branches dictated by the value of the attribute tested at each

node.

Not all machine learning systems ignore sequences. The card game Eleusis involves

a dealer presenting players with a sequence of cards, where the sequence is

determined by a rule invented by the dealer. The players must extrapolate the

sequence by guessing the dealer’s rule. Whenever the player places a card, the dealer

informs them whether or not the card was a correct extrapolation. Dietterich and

Michalski (1986) created a system, SPARC/E, which is capable of playing Eleusis by

searching the space of possible rules. These rules involve use of the colour, suit and

rank of the cards, which can be related in various ways. For example, one possible

rule is strings of cards such that each string contains cards all in the same suit and has an

odd number of cards in it. The problem therefore involves finding rules that relate

particular attributes of the instances, as well as their sequential relationships. In

contrast, sequence modelling and grammatical induction techniques would treat the

cards as 52 distinct symbols with no greater similarity between cards of the same suit

than cards in different suits.

2.3.2 The minimum description length principle

Despite the different context and approach to learning, sequence modelling and

machine learning have broad issues in common. Because machine learning has

repeatedly been applied to real-world problems, practitioners have acquired valuable

experience in the necessary characteristics of a successful learning scheme. The issue

that we concentrate on here is the evaluation of a candidate function in the absence

of negative examples, or where few examples are available for testing.

The success of a machine learning system is usually measured by its prediction

accuracy on test data—how good it is at anticipating new observations. This is

36 CHAPTER TWO: BACKGROUND

applicable where instances from several classes are available, for example positive

and negative examples. This kind of evaluation also assumes that some examples

can be set aside from the set from which inferences are made, for the purposes of

testing. Using a separate testing set minimises the possibility of overfitting the

function to the idiosyncrasies of the particular training examples available. A test

set is difficult to provide if very few instances are available, in which case it is best

to use all the instances to maximise the justification for the inference. Where the

data does not contain positive examples, or where there is only a small amount of

data available, inference can be guided and evaluated by the minimum description

length (MDL) principle.

MDL was independently formulated by Rissanen (1978) and Wallace and Freeman

(1987) and draws its inspiration from Occam’s razor. William of Occam is claimed

to have stated the maxim entia non sunt multiplicanda praeter necessitatem, which

essentially means ‘things should not be more complicated than is necessary.’ For

example, when two competing theories describe the same observations, the simpler

one should be chosen. In practice, theories rarely fit observations exactly, so fit must

be traded off against complexity. Gaines (1976) provides one tradeoff in his choice

of points on the poorness-of-fit vs automaton size curve, choosing the point where

there is a large deterioration of fit by allowing one less state in the automaton, but

only a small improvement in fit when one more state is allowed. This is an

attractive intuitive notion that is unfortunately difficult to define rigorously—

particularly the quantification of large and small.

MDL appeals to Bayes’ theorem to provide a more concrete comparison. Let D be

the data to be described, and H a hypothesis that explains the data. Bayes’ theorem

states that

p(H|D) = p(D|H) ⋅ p(H)
p(D)

The ‘maximum likelihood’ principle chooses the most likely hypothesis for the

data—the one where p(H|D) is maximised. The MDL principle is the same as

maximum likelihood except that it is usually expressed in terms of description sizes.

Shannon (1948) showed that an event that occurs with probability p can be

described in –log2p bits. Taking the negative logarithm of both sides of the equation

above gives

2.3 MACHINE LEARNING AND MDL 37

− log2 p(H|D) = − log2 p(D|H) + log2 p(H) − log2 p(D)[]
When evaluating competing theories, p(D) is constant, so the best theory minimises
− +[]log (|) log ()2 2p D H p H . This can be interpreted as choosing the theory that

minimises the sum of the description length of the theory, – log ()2 p H , and the

description length of the data given the theory, − log (|)2 p D H . These two

quantities correspond to Gaines’ automaton size and poorness of fit respectively.

The advantage of MDL is that both quantities are expressed in the same terms, bits

of information, and the evaluation function is a simple sum. Of course, this

simplification comes at a price. MDL avoids having to define small and large, but

replaces this decision with the selection of the a priori probabilities of the theories

and of the data given a particular theory.

MDL’s advantage over Bayes’ theorem is that instead of talking in terms of

vanishingly small probabilities, calculation is in terms of description sizes, and

intuitions about efficiency and biases of various encoding schemes help in the

choice of probability distributions. For example, some discussion has occurred in the

literature about the merits of various coding schemes for decision trees, one of the

most popular classes of classification functions in machine learning. Quinlan and

Rivest (1989) proposed one coding scheme, which was subsequently analysed and

modified by Wallace and Patrick (1993). These discussions centre on the structure

of the data and how it could be transmitted efficiently. Because people may be more

comfortable with the idea of expressing concepts concisely than assigning extremely

small probabilities to them, it is easier to discuss coding schemes in terms of

description lengths.

The MDL approach is used in two ways in this thesis. First, it justifies the general

approach of the modelling algorithm, which enforces two constraints on the

grammar that seek to reduce the overall size of the input sequence. While this is by

no means a quantitative application of MDL, it is certainly in the spirit of Occam’s

razor. Second, it is used quantitatively to rank competing generalisations of a

grammar according to their size (section 5.4). MDL is necessary here, because many

generalisations are possible, of which the majority are misguided.

38 CHAPTER TWO: BACKGROUND

2.4 Data compression

Data compression is a pragmatic field that seeks techniques for reducing data storage

and transmission. From ad hoc beginnings, a robust theoretical framework has been

developed that relies heavily on information theory, and relates closely to learning.

In the last section, the MDL principle was discussed. It assumes an efficient scheme

for encoding a theory and the data given that theory. An inefficient coding scheme

reduces the accuracy with which MDL can identify the best theory. One way to

encourage efficiency is to provide a representative corpus of example theories and

data, and allow researchers to compete and hone their encoding techniques. This is

exactly what has taken place for sequences over the last two decades in data

compression. Evaluation on a standard corpus measures how successfully a

compression scheme captures regularities.

Data compression schemes can be distinguished according to whether they are

‘lossy’ or ‘lossless.’ Lossy schemes do not guarantee to reproduce the original data

exactly from the compressed version, whereas lossless versions preserve the data

exactly. Lossy schemes usually operate on data that has been sampled from an

analog source, such as an image or a sound. In this case, people will tolerate some

loss of information without noticing any degradation. Furthermore, some noise is

introduced in sampling, and it would be wasteful to reproduce this exactly.

However, in the sequences we deal with, loss of information might change the

meaning of a sequence significantly. Indeed, as the symbols are individually

meaningless, it is difficult to know which ones can safely be deleted. Consequently,

this discussion centres on lossless compression.

This section discusses the two main approaches to lossless compression: statistical

and dictionary techniques. Statistical techniques use finite context models, such as

those described in Section 2.1, along with arithmetic coding, which turns

predictions into a bit stream. This separation of modelling and coding clarifies the

relationship between data compression and learning. Dictionary techniques, on the

other hand, explicitly store and reference repeated subsequences, so modelling and

coding are intertwined. They are discussed here because they resemble the

techniques described in Chapters 3 and 4.

2.4 DATA COMPRESSION 39

2.4.1 The relationship between learning and compression

As mentioned in the previous section, Shannon (1948) showed that the number of

bits required to code a message that occurs with probability p is –log2p. For example,

assigning all 128 ASCII characters an equal probability of 1/128 leads to –log2(1/128)

= 7 bits per symbol. Often, some symbols have a higher than average probability,

e.g. the space symbol in text. In this case, it would be more efficient to assign a

shorter code to a space. All probabilities must sum to one, so all of the other symbol

probabilities must be reduced, implying longer codes.

It is easy to imagine a symbol having a probability that is not a negative power of

two: for example, expecting a space symbol with 10% likelihood. In this case, the

optimal code length is about 3.32 bits, which is impossible to encode in isolation.

The solution to this problem lies in the fact that most messages contain more than

one symbol. In this case, a sequence of three spaces could be coded in ten bits,

wasting only 0.04 bits. A message can theoretically be coded in a length that

asymptotically approaches that determined by its probability, with the wastage of

less than one bit at the end becoming less significant as the message length

increases.

In the late 1970s, a practical technique for performing such a coding was discovered,

and dubbed arithmetic coding (Pasco, 1976; Rissanen, 1976; Rissanen and Langdon,

1979; Rubin, 1979; Guazzo, 1980; Witten et al., 1987). Arithmetic coding operates

by ordering all possible messages, and partitioning the interval from zero to one into

subintervals for each message. The decoder forms the same partition, and to

transmit a message, the encoder must unambiguously identify the subinterval

covered by it. This can be done by transmitting a binary fraction that falls within

that interval. This requires a number of bits determined by the size of the

subinterval, which is the probability of the message. As described here, the method

is impractical, because the number of possible messages is potentially very large. An

important innovation of arithmetic coding is the ability to code a message

incrementally, symbol by symbol. Each symbol narrows the subinterval, and every

time the interval halves (which may take several symbols), one bit of the binary

fraction can be transmitted. A fuller description of arithmetic coding is given by

Bell et al. (1990).

40 CHAPTER TWO: BACKGROUND

Because arithmetic coding can code a message in a number of bits that is arbitrarily

close to the negative logarithm of the message’s probability, it is possible to separate

the coding part of a data compression scheme, which can be performed by

arithmetic coding, from the modelling part, which depends on the kind of structure

expected in the input messages. This separation takes data compression from the

domain of ad hoc heuristics that have only pragmatic applications, to the domain of

systems that learn and predict. A data compression scheme can be viewed as a

theory generator, where the success of the theories that it generates can be

evaluated by measuring the size of its output.

The evaluation criterion for compressors has always been clear: the best one is the

one that produces the smallest output on the kind of messages that occur in a

particular domain. The most popular compression schemes are those that perform

well on a wide range of sequences, and corpora have been created to test and

compare performance on files including text, graphics and binary data. The most

popular general corpus is the Calgary corpus created by Bell et al. (1990), which

includes English text, program text, a transcript of a computer interaction, seismic

data, a bilevel image, a bibliography and executable machine code. Machine

learning also has a well-established corpus. The University of California at Irvine

maintains a repository of over 80 datasets, most in the form of unordered tuples, and

comparison between techniques is based on test set accuracy. Discussions of coding

schemes in machine learning tend to be at an intuitive level, with little empirical

investigation of the practical effects of coding decisions on a variety of problems.

The system described in this thesis represents a bridging of these disciplines: a

system that learns and produces comprehensible output in the tradition of decision

trees, but that can also be evaluated alongside a huge number of data compression

schemes. Of course, SEQUITUR is not alone in relating learning to compression.

Cleary’s (1980) FLM system was transformed, with the help of arithmetic coding,

from a predictive learning system into a practical compression scheme (Cleary and

Witten, 1984). It immediately set a prodigious new record for data compression, and

today, variations on the algorithm remain at the leading edge of compression

technology (Teahan and Cleary, 1996).

2.4 DATA COMPRESSION 41

a Humpty Dumpty sat on a wall.

Humpty Dumpty had a great fall.

all the king’s horses and all the king’s men

couldn’t put Humpty together again.

b Humpty D(1,6)sat on a wall.

(0,14)had(20,3)gre(15,3)f(24,4)

(24,4) the king’s horses and (61,16) men

couldn’t put (0,7)toge(66,3)r again.

c input a aa b ba baa baaa bab
phrase 1 2 3 4 5 6 7
output (0,a) (1,a) (0,b) (3,a) (4,a) (5,a) (4,b)

Figure 2.9 Dictionary compression schemes
(a) a nursery rhyme
(b) LZ77 coding of (a)
(c) an artificial sequence and its LZ78 coding

2.4.2 Dictionary techniques

Rather than forming a model and using an arithmetic coder, it is possible to take

advantage of repetitions directly, by transmitting a repeated subsequence only once

and thereafter referring to the single instance whenever it recurs. This idea was

proposed by Ziv and Lempel (1977), and forms the basis of most popular data

compression schemes. Because it is able to code several symbols at a time, it is faster

than symbol-by-symbol statistical compressors. Techniques that use this approach,

referred to as LZ77 techniques, operate by specifying an offset into a window of the

last few thousand characters. Figure 2.9a shows a nursery rhyme, and Figure 2.9b

shows how LZ77 would encode it. The repeated sequence umpty in Dumpty is

replaced by a reference to the occurrence in Humpty, using the offset 1 into the

sequence, and a length of five. Similarly, the whole sequence Humpty Dumpty in the

second line can be replaced by a reference to the first fourteen characters: (0,14).

Encoding the numbers efficiently results in a smaller representation of the sequence.

There are two problems with the LZ77 approach. First, the pointers are large

because they are allowed to index any character in the window, even though most

positions are never used. Second, the windowing technique for reducing search

means that repetitions that are separated by more than a windowful of symbols

cannot be used. To address these problems, Ziv and Lempel (1978) proposed a new

scheme, LZ78, which operates by building up a dictionary of phrases and referencing

the phrases when repetitions occur. Figure 2.9c shows an artificial sequence,

aaabbabaabaaabab, and its coding by LZ78. The dictionary starts with one phrase,

the null phrase. The entire sequence is encoded as pairs of phrase numbers and

symbols, so the first a is coded as (0,a)—the null phrase with a appended. After a

42 CHAPTER TWO: BACKGROUND

pair has been encoded, this new phrase is added to the dictionary. In this case,

dictionary entry 1 is the sequence a. This can be used in coding the next two

characters, aa, by using dictionary entry 1 and appending a. This results in a new

entry, aa, being added to the dictionary. Continuing in this way, the dictionary

grows by appending a single symbol to an existing entry. New entries are added

speculatively in the hope that they will be used later on the sequence. In this case,

entry 2 is never used, so its slot in the dictionary is wasted. The advantage of LZ78

over LZ77 is that there are less dictionary entries than possible pointers into the

window, and the length of the matches do not need to be transmitted. LZ78 has

been shown to be asymptotically optimal under some assumptions about the source,

but the rate of convergence is very slow because dictionary builds slowly. For

example, in the case of Humpty Dumpty, little compression is obtained for the first

repetition of umpty, because none of the phrases in the dictionary are longer than

one character.

The objective of compression is to encode the sequence as efficiently as possible. It

has been shown, however, that the problem of finding the dictionary that produces

the best compression is NP-complete. Storer (1982) proves this by showing that

various schemes are equivalent to either the node cover problem, the restricted node

cover problem, the K-node cover problem or the superstring problem (references given in

the original paper). Here we review the equivalence to the node cover problem. The

node cover problem involves choosing a set of nodes from a directed graph such that

all edges originate or terminate in at least one of the nodes in the set. It is NP-

complete to determine whether this can be done for less than or equal to K nodes.

Choosing a dictionary for a text that produces a compressed version of size ≤ K is

NP-complete. To show this, an instance of the node cover problem is chosen, and

the graph is transformed to an example sequence. The sequence is constructed by

concatenating the node name for each node, and the names of the originating and

terminating nodes for each edge. A special symbol is used to delimit the node

names. This string can be optimally compressed by choosing a dictionary of node

names that corresponds to the node cover for the graph. The string representation

of an edge has at least one node name replaced by a pointer to the dictionary,

because the node cover guarantees to contain at least one node that participates in

each edge. Similarly, the string representation of every node in the cover can be

replaced by a pointer. For the full proof, see Storer (1977). Because the techniques

2.4 DATA COMPRESSION 43

in this thesis can never guarantee to find the smallest grammar for a sequence,

evaluation involves more than a single proof: the techniques must be justified

empirically in a variety of domains.

A final observation about data compression schemes: Storer classifies macro

techniques into those that build new entries out of existing entries (compressed

pointer macros, CPM) and those that build entries out of the original text (original

pointer macros, OPM). The techniques described in this thesis fall into the CPM

category, because the hierarchy is formed by building longer repetitions out of

shorter ones. LZ78 and its variants are also CPM schemes, while LZ77 is an OPM

scheme. LZ78 builds its phrases from one dictionary entry and one terminal symbol,

so its hierarchy is of a restricted form. A variant, LZMW (Miller and Wegman,

1984), forms phrases by concatenating the previous two phrases encoded, which

allows phrases to grow more quickly. This produces a balanced hierarchy of phrases,

but the opportunistic phrase construction means that many phrases are unused in

coding.

2.5 Linguistic segmentation

The sequence that people are required to understand most often is written or spoken

language. Linguists have studied these sequences for centuries, and in a sense every

person is an amateur linguist, learning to make sense of language. An open question

in linguistics is how people acquire language, and an important component of this is

segmentation: how people break a string of phonemes into meaningful segments

such as words. This section looks at computational models that have been

constructed to account for segmentation.

Can people perform segmentation without accompanying semantics? To answer this

question, Hayes and Clark (1970) performed an experiment where adult subjects

listened to an ‘artificial speech analogue’ which was constructed by assembling

artificial ‘phonemes’ into a small set of short strings (‘words’). They generated these

strings in random sequence for as long as required. Tests showed that, after listening

to this artificial speech, adult subjects had, in varying degrees, learned to identify

the beginnings and ends of the word segments even though there were no cues from

pause, intonation or correlation with entities outside the stream of sound.

44 CHAPTER TWO: BACKGROUND

In discussing possible mechanisms to explain their observations, Hayes and Clark

describe a ‘subject’s eye view’ of the experiment:

The process seems to proceed roughly as follows. At first, the sound stream
seems quite amorphous and featureless. After a minute of listening, an
event—perhaps a phoneme or part of a phoneme—stands out of the stream.
When the event has recurred several times, the listener may notice that it is
typically preceded or followed by another event. The combination of events
can in turn be related to events that happen in its neighbourhood.
Recognition of a word, then, seems to proceed from perceptually distinctive
foci outwards in both directions towards the word boundaries. Presumably,
the process would tend to stop at word boundaries because the correlations
across the boundaries are weak.

This result suggests that it may be feasible to mimic human segmentation ability by

recognising repetitions in a stream. It inspired Wolff (1975) to construct ‘an

algorithm for the segmentation of an artificial language analogue,’ called MK10.

Rather than applying the algorithm to phoneme sequences, Wolff produced an

artificial sequence of words using a simple finite state automaton. The words were

not delimited by spaces, and the task of the program was to infer word boundaries by

analysing repetitions. MK10 processed the text from left to right, and whenever a

digram appeared more than ten times, it was added to a list of elements, the digram

counts were set to zero, and the process started again, either from the beginning of

the text, or continuing on from the current point. The system successfully formed

elements for the twelve words in the sequence, as well as the 64 possible sentences

generated by the automaton. It did not form elements that crossed word or sentence

boundaries or contained partial words or sentences. This experiment will be further

analysed in Section 7.1, where we will see that if the form of the automaton is

changed very slightly the sentence formation method fails to work. A better test of

its abilities is real text.

To determine whether MK10 is effective on natural language, Wolff (1977) applied

it to 10,000 letters from a children’s book, 20,000 letters from a novel, and 20,000

letters from speech transcripts. MK10 successfully delimits most words in the text.

Wolff relates the word inference process to observations of human learning with

respect to segmentation, and makes some interesting comparisons. It is also

interesting to consider the structure of sequences of word classes, and Wolff (1980)

applies MK10 to a sequence of word classes from the 20,000 letter novel. The novel

was hand-tagged with word classes, and the hierarchy produced by M K10 was

2.5 LANGUAGE ACQUISITION 45

compared with surface structures assigned by a linguist and the author. The

hierarchies were shown to be better than random in a statistically significant way,

and correctly identified about half of the structure. However, much of this success is

due to identifying pairs such as determiner-noun and adjective-noun, rather than

larger structures.

In experiments with English text, the number of entries grows linearly with the size

of the sequence. Because MK10 scans the sequence for each entry, run time is

quadratic in the size of the sequence. The techniques described in this thesis run in

linear time. Moreover, MK10’s learning rate based on the size of the sequence is

slow, because it requires digrams to appear ten times. This threshold is arbitrary,

whereas SEQUITUR forms new rules as soon as a repetition appears.

Another attempt to simulate children’s acquisition of segmentation was made by

Oliver (1968), described in Brown (1973). The task, as with Wolff, was word

discovery from text. His system started with a dictionary containing the 26 letters of

the alphabet, as did MK10. On each pass through a 480 character sample, all pairs of

elements in the dictionary are added to the dictionary. Brown writes that the

program ‘finds for each stretch a maximum likelihood parsing into words. For this

task certain “shortest path” algorithms from operations research are employed.’ It

seems that Olivier used some form of optimal parsing, where weights in the parsing

graphs come from frequencies for the dictionary entries. This dictionary contains

many non-words, but entries are culled if they have only occurred once when the

dictionary becomes full. Olivier found that after 550 sections, 45% of entries were

words and 30% were groups of words. This approach builds the dictionary much

faster than MK10, allowing many errors, but culling removes spurious entries. The

repeated optimal parsing using updated probabilities may lead to better results than

Wolff’s longest-first parsing at the expense of processing time.

2.6 Human sequence learning

One aspect of human behaviour that psychologists have sought to explain is our

ability to learn sequences and to perceive sequential structure. A key experiment in

this area was conducted by Nissen and Bullemer (1987), and involved pressing

buttons in response to asterisks appearing on a computer screen in certain positions.

Whenever an asterisk appeared, the subject was required to press the button in the

46 CHAPTER TWO: BACKGROUND

corresponding position. There were four buttons and asterisk positions. In one

experiment, the asterisks appeared in a set sequence which repeated after ten steps.

In another experiment, the asterisks appeared at random. In the first experiment,

subjects became faster with practice, indicating that they had learnt the pattern and

were able to anticipate the next position in which an asterisk would appear. In the

random experiment, the subjects showed no improvement over time. The research

also showed that sequence learning and awareness were not necessarily related. That

is, in certain circumstances the subjects could not articulate the structure of the

sequence even though they had unconsciously learnt it. This indicates that

identifying sequential structure is an in-built cognitive process in humans. Cohen et

al. (1990) show a more extreme effect: even when subjects are distracted from the

sequence learning task by another competing task, they still improve their

performance. That is, sequence learning occurs without the subjects’ attention to

the task. If neither attention nor awareness are essential to sequence learning, it

must be a fundamental cognitive skill.

The mechanisms in the brain for learning sequences have been the subject of

continuing research. One theory, articulated and investigated by Restle (1970), is

that people form internal hierarchies to deal with sequences:

Human speech can be divided into passages, which in turn divide into
sentences, clauses and phrases, words, and speech sounds. Music is divided
into movements, sections, themes, and measures. It seems overwhelmingly
obvious that long and complex serial patterns are divided into natural
subparts, and that mastery is facilitated if the incoming sequence is marked
off into natural subparts.

The advantage of recognising such structures is that sequences are easier to

remember in this way. Restle says that ‘the first characteristic of such a theory is

that it provides a concise description of very long sequences, yet gives a kind of

structural analysis at the same time.’ This is precisely the goal of the techniques in

this thesis: to provide compression and explanation simultaneously.

The claim that hierarchies are used to learn sequences was initially made by Lashley

(1951) in his article ‘The Problem of Serial Order in Behaviour.’ The prevailing

idea at the time was that sequences were remembered by stimulus-response pairs

where the stimulus was either previous parts of the sequence or positional cues.

Lashley argued that such associative models were not capable of explaining people’s

2.6 HUMAN SEQUENCE LEARNING 47

ability to learn sequences, whereas a hierarchical model could. Restle and Brown

(1970) tested this hypothesis by performing an experiment similar to Nissen and

Bullemer, but using lights rather than asterisks. Because the sequence contained the

same light more than once, and was followed by different lights in each instance,

the associative theory would predict that the subjects could not learn the

association. This is because two different responses would be required for the same

stimulus. Restle and Brown called these patterns branching sequences. The positional

cue hypothesis would predict no difference in ability to learn any of the elements of

the sequence. The results indicated that both of these hypotheses were inadequate,

and that a hierarchical internal model is a more plausible explanation for sequence

learning.

The hierarchical nature of structures inferred from sequences is also indicated by the

pauses and errors that occur in the replication of sequences. Rosenbaum et al.

(1983) show this for a finger tapping experiment where subjects were required to tap

certain patterns with the middle and index fingers of both hands. Both pauses and

errors are consistent with a depth-first traversal of a hierarchy to execute the

patterns.

While these experiments do not exactly parallel the patterns treated in this thesis,

they nevertheless lend weight to the usefulness of hierarchies for acquiring and

representing sequential structure.

2.7 Summary

This chapter has discussed various aspects of learning structure from sequences:

learning from a single sequence; from multiple sequences; evaluating learning based

on the size of the inference; compression of sequences; learning linguistic sequences;

and human learning of discrete sequences. This sets the background for the rest of

the thesis, which concentrates on learning structure from a single sequence, and

evaluating the structure in terms of plausibility and conciseness. The techniques are

inspired by the recognition of repetition by compression schemes, the building of

automata by sequence modelling techniques, the minimum description length

principle from machine learning, and the evaluation of linguistic models. But the

techniques advance the state of the art by combining grammars with automata,

48 CHAPTER TWO: BACKGROUND

inferring linguistic structure efficiently, devising compression schemes that explain,

and inference schemes that compress.

3. Forming a hierarchical grammar

What I tell you three times is true.
The Bellman, from The Hunting of the Snark by Lewis Carroll

The thesis statement in Section 1.2 asserts that sequences exhibit hierarchical

repetitive structure, and that it can be detected efficiently and incrementally. These

claims will be proven in the reverse order: first by building a recognition

mechanism, then by applying it to a range of sequences. This chapter describes the

mechanism.

Repetition is a fundamental kind of structure in sequences of discrete symbols. Wolff

(1975) has shown that detecting repetitions is sufficient to perceive words and

sentences in undelimited text. Hayes and Clark (1970) showed that humans find

repetition sufficient to identify morphemes in continuous speech. In Chapter 7 we

will see that meaningful units in many other sequences can be elicited in a similar

way. Moreover, the thesis asserts that repeated subsequences often relate to each

other hierarchically—that long repetitions are composed of shorter ones. We have

already mentioned the hierarchy in language of phrase, word, word part and letter.

Similar hierarchies will be demonstrated in other sequences including music, textual

databases and plant descriptions. It is important, however, to distinguish

hierarchical repetitions from hierarchies in general. The biological taxonomy

mentioned in the introduction of phylum, class, order, family, genus and species is a

hierarchy based on similarity between members of the taxonomy rather than

repetitions within a sequence. Similarly, whereas the sentence is normally part of a

hierarchical decomposition of language, sentences are rarely repeated verbatim, so

do not usually appear in the hierarchies described here.

The thesis requires that repetitions be detected efficiently and incrementally. Any

algorithm that examines a set of data in its entirety has complexity at least linear in

the size of the data. The technique described here matches this bound and is

therefore as efficient as possible in a computational complexity sense. Higher

complexity, such as quadratic time, would preclude analysis of very long sequences,

as the time to incorporate successive symbols in the sequence would increase

linearly. Some of the sequences analysed in this thesis comprise many millions of

50 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

symbols, and are analysed in several minutes. A naive algorithm running in

quadratic time would take years to process the same sequence.

The second constraint is incrementality—the algorithm should, after each symbol,

be in the same state as it would if the sequence ended there. That is, there is no lag

between a symbol appearing and its incorporation into the hierarchy. This ensures

that any use made of the hierarchy at any point benefits maximally from the elicited

sequence structure. Incrementality and efficiency are somewhat interdependent: a

linear time algorithm means that the average time required to process one symbol

does not increase throughout the sequence, so the incremental processing

requirements are constant. Furthermore, the incremental inclusion of each symbol

into the hierarchy means that all state information is embodied in the hierarchy,

rendering an expensive search of pending matches unnecessary.

A context-free grammar provides a natural representation for the hierarchy. Each

repetition corresponds to a rule, and rules are allowed to contain non-terminals.

These non-terminals reference other rules in the grammar, forming the hierarchy.

Furthermore, the sequence and the grammar are not separate entities, with the

sequence being restated in terms of the grammar. Rather, the sequence is embodied

in the grammar. The rule headed by S, the start symbol, (hereafter referred to as rule

S) expands to reproduce the entire sequence. This simplifies transformations on the

grammar, as rule S can be treated equivalently to other rules in the grammar. S,

however, remains distinct as the rule to which new symbols are appended, and is the

only rule allowed to occur just once.

The first section of this chapter gives a concise description of the algorithm in terms

of the two grammar properties it maintains: digram uniqueness and rule utility.

Section 3.2 describes its implementation in more detail, with particular emphasis on

efficiency. Section 3.3 shows that the running time and storage requirements are

linear in the number of input symbols, while Section 3.4 discusses the algorithm’s

behaviour on extreme input strings. The final section introduces a naive quadratic

time algorithm that is useful for demonstrating the transformations that the efficient

technique performs.

3.1 THE ALGORITHM 51

Sequence Grammar Sequence Grammar

a S → abcdbc S → aAdA
A → bc

b S → abcdbcabcdbc S → AA
A → aBdB
B → bc

c S → abcdbcabcdbc S → AA
A → abcdbc

d S → aabaaab S → AaA
A → aab

S → CC
A → bc
B → aA
C → BdA

S → AbAab
A → aa

Figure 3.1 Example sequences and grammars that reproduce them
(a) a sequence with one repetition
(b) a sequence with a nested repetition
(c) two grammars that violate the two constraints
(d) two different grammars for the same sequence that obey the

constraints.

3.1 The algorithm

SEQUITUR forms a grammar from a sequence based on repeated phrases in the

sequence. Each repetition gives rise to a rule in the grammar, and is replaced by a

non-terminal symbol, producing a more concise representation of the sequence. It is

this pursuit of brevity that drives the algorithm to form and maintain the grammar,

and as a by-product, provide a structural explanation of the sequence.

For example, at the left of Figure 3.1a is a sequence that contains the repeating

string bc. Note that the sequence is already a grammar—a trivial one with a single

rule. To compress the sequence, a new rule A → bc is formed, and both occurrences

of bc are replaced by A. The new grammar is shown at the right of Figure 3.1a.

The sequence in Figure 3.1b shows how rules can be reused in longer rules. It is

formed by concatenating two copies of the sequence in Figure 3.1a. Since it

represents an exact repetition, compression can be achieved by forming the rule

A → abcdbc to replace both halves of the sequence. Further gains can be made by

forming rule B → bc to compress rule A. This demonstrates the advantage of treating

the sequence, rule S, as part of the grammar—rules may be formed in rule A in an

analogous way to rules formed from rule S. These rules within rules constitute the

grammar’s hierarchical structure.

52 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

The grammars in Figures 3.1a and 3.1b share two properties:

p1: no pair of adjacent symbols appears more than once in the grammar, and
p2: every rule is used more than once.

p1 can be restated as ‘every digram in the grammar is unique,’ and will be referred to

as digram uniqueness. p2 ensures that a rule is useful, so it will be called rule utility.

These two constraints exactly characterise the grammars that SEQUITUR generates.

For example, the sequence in Figure 3.1a contains the repeated digram bc. To

conform to property p1, rule A is created, so that bc occurs only within rule A. The

sequence in Figure 3.1b contains five repeated digrams: the creation of rule A

reduces this to one, and rule B takes care of the remaining repetition. p2 allows rules

longer than two symbols to be formed, as described in Section 3.1.2. To show what

happens when these properties are violated, Figure 3.1c gives two other grammars

that represent the sequence in Figure 3.1b, but lack one of the properties. The first

grammar contains two occurrences of bc, so p1 does not hold for this grammar. In

this case, there is redundancy because bc appears twice. In the second grammar, B is

used only once, so p2 does not hold. If B were removed, the grammar would shrink

by one rule and one symbol, forming a more concise grammar.

The grammars in Figures 3.1a and 3.1b are the only ones for which both properties

hold for each sequence. However, there is not always a unique grammar with these

properties. For example, the sequence in Figure 3.1d can be represented by both of

the grammars on its right, and they both obey p1 and p 2. They are both valid

grammars, but the topmost one has one fewer symbols, and by virtue of its

conciseness is preferred over the other. Chapter 4 discusses the issue of generating

and choosing between two such grammars.

SEQUITUR’s operation consists of ensuring that both properties hold. When

describing the algorithm, the properties will be referred to as constraints. The

algorithm operates by enforcing the constraints on a grammar: when the digram

uniqueness constraint is violated, a new rule is formed, and when the rule utility

constraint is violated, the useless rule is deleted. The next two sections describe in

detail how this is performed.

3.1 THE ALGORITHM 53

3.1.1 Digram uniqueness

When a new symbol is observed, it is appended to rule S. The last two symbols of

rule S—the new symbol and its predecessor—form a new digram. If this digram

occurs elsewhere in the grammar, the first constraint has been violated. To remedy

this, a new rule is formed with the digram on the right-hand side, headed by a new

non-terminal. The two original digrams are replaced by this non-terminal.

Figure 3.2 shows the grammar as new symbols are added in the sequence abcdbcabcd.

The left-most column states the action that has been taken to modify the

grammar—either observing a new symbol and appending it to rule S, or enforcing a

constraint. The next column shows the sequence observed so far. The third column

gives the grammar created from the sequence. The fourth column lists any duplicate

digrams, while the final column lists any underused rules.

When the final c is added in Figure 3.2a, the digram bc appears twice. The new rule

A is created, with bc as its right-hand side. The two occurrences of bc are replaced

by A. This illustrates the basic procedure for dealing with duplicate digrams.

The appearance of a duplicate digram does not always result in a new rule. If the

new digram exactly matches the right-hand side of a rule, then no new rule need be

created: the digram is replaced by the non-terminal that heads the existing rule.

Figure 3.2b demonstrates the changes that occur in the grammar when a third bc

digram appears. The existing non-terminal A is substituted for the third occurrence

of bc. This results in a new pair of repeating digrams, Aa, shown in the last line of

Figure 3.2b. In Figure 3.2c, a new rule B is formed accordingly, with aA as its right-

hand side, and the two occurrences of aA are replaced by B. The right-hand side of

this new rule not only contains terminals, but also non-terminals referring to other

rules.

54 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

new symbol
or action

the string so
far

resulting grammar duplicate
digrams

underused
rules

a a a S → a

b ab S → ab

c abc S → abc

d abcd S → abcd

b abcdb S → abcdb

c abcdbc S → abcdbc bc

enforce digram
uniqueness

S → aAdA
A → bc

b a abcdbca S → aAdAa
A → bc

b abcdbcab S → aAdAab
A → bc

c abcdbcabc S → aAdAabc
A → bc

bc

enforce digram
uniqueness

S → aAdAaA
A → bc

aA

c enforce digram
uniqueness

abcdbcabc S → BdAB
A → bc
B → aA

d d abcdbcabcd S → BdABd
A → bc
B → aA

Bd

enforce digram
uniqueness

S → CAC
A → bc
B → aA
C → Bd

B

enforce rule utility S → CAC
A → bc
C → aAd

Figure 3.2 Operation of the two grammar constraints
(a) Enforcing digram uniqueness by creating a new rule
(b) Re-using an existing rule
(c) Forming a hierarchical grammar
(d) Producing a longer rule by enforcing rule utility

The hierarchy is formed and maintained by an iterative process: the substitution of

A for bc resulted in the new digram aA, which was itself replaced by B. For larger

sequences, these changes ripple through the grammar, forming and matching longer

rules higher in the hierarchy. The details of this process are given in the section

below on efficiency.

3.1 THE ALGORITHM 55

1

2
3
4
5
6

7
8

As each new input symbol is observed, append it to rule S.

Whenever a duplicate digram appears,
if the other occurrence is a complete rule,

replace the new digram with the non-terminal that heads the other digram,
otherwise

form a new rule and replace both digrams with the new non-terminal

Whenever a rule is used only once,
remove the rule, substituting its contents in place of the non-terminal

Figure 3.3 The entire SEQUITUR algorithm.

3.1.2 Rule utility

Up until now, the right-hand sides of rules in the grammar have been only two

symbols long. Longer rules are formed by the effect of the rule utility constraint,

which ensures that every rule is used more than once. Figure 3.2d demonstrates the

formation of a longer rule. When d is appended to rule S, the new digram Bd causes

a new rule, C, to be formed. However, forming this rule leaves only one appearance

of rule B, violating the second constraint. For this reason, B is removed from the

grammar, and its right-hand side is substituted in the one place where it occurs.

Removing B means that rule C now contains three symbols. This is the mechanism

for forming long rules: form a short rule temporarily, and if subsequent symbols

continue the match, allow a new rule to supersede the shorter rule, and delete the

shorter rule. Section 3.2.4 discusses the merits of this apparent inefficiency.

Figure 3.3 summarises the algorithm. Line 1 deals with new observations in the

sequence. Lines 2 through 6 enforce the digram utility constraint. Line 3 determines

whether the new digram matches an existing rule, or whether a new rule is

necessary. Lines 7 and 8 enforce rule utility. Lines 2 and 7 should be triggered

whenever the constraints are violated. Section 3.2 demonstrates how this can be

performed efficiently.

3.2 Implementation issues

The SEQUITUR algorithm operates by enforcing the digram uniqueness and rule

utility constraints. It is essential that any violation of these constraints be efficiently

detected. One way to detect duplicate digrams is to scan the entire grammar after

each new symbol appears, and after each subsequent modification of the grammar.

This process would produce a quadratic time algorithm, as the grammar usually

56 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

grows in proportion to the size of the input sequence. This section first investigates

efficient data structures for storing the grammar to ensure that common operations

can be performed quickly. Next it describes efficient techniques for detecting

violations of the two constraints, by incorporating checks within low-level

operations on the grammar. Section 3.2.3 discusses one apparent inefficiency and

examines and rejects other approaches.

3.2.1 Storing and manipulating the grammar

The choice of an appropriate data structure depends on the kind of operations that

need to be performed to modify the grammar. The fundamental operations, along

with the corresponding line in Figure 3.3, are:

• appending a symbol to rule S (line 1),

• using an existing rule (line 4),

• creating a new rule (line 6), and

• deleting a rule (line 8).

Appending a symbol involves lengthening rule S. Using an existing rule involves

substituting a non-terminal for two symbols, thereby shortening the rules containing

the digrams. Creating a new rule involves creating a new non-terminal for the left-

hand side, as well as inserting two new symbols as the right-hand side. After

creating the rule, substitutions are made as for an existing rule, by replacing the two

digrams with the new non-terminal. Deleting a rule involves moving the contents

of a rule to replace a non-terminal, which lengthens the rule containing the non-

terminal. The left-hand side of the rule must then be deleted.

Figure 3.4 illustrates each of these functions. To ensure that the lengthening and

shortening of rules is performed efficiently, a doubly linked list structure was chosen.

Adding or removing elements in a data structure such as an array involves copying

all the elements that follow the modification, whereas deletion and insertion in

doubly linked lists both require only two and four pointer assignments respectively.

The start and end of the list are connected to a single guard node. The guard node

also serves as an attachment point for the left-hand side of the rule, because it

remains constant even when the rule contents change. Figure 3.4c illustrates this

arrangement. While the guard node is shown to the left of the rule contents, it

could equally be shown at the right. Each non-terminal points to the rule it heads,

3.2 IMPLEMENTATION ISSUES 57

before after pointer
operations

a Appending
a symbol

a... a... b 4

b Using an
existing rule

ba c d

b

a

c

dA

delete

4

c Creating a
new rule

b c

A 7

d Deleting a
rule

A a

B

B... d
A a

B

... d

B
delete

4

Figure 3.4 The four operations required to build the grammar
(a) appending a symbol,
(b) using an existing rule,
(c) creating a new rule, and
(d) deleting a rule

which is not shown in the figure. With these pointers, no arrays are necessary for

accessing rules or symbols, because operations only affect adjacent symbols, or rules

headed by a non-terminal symbol. The rules, however, are linked together so that

they can be traversed for printing.

Creating a new symbol involves allocating space in memory and initialising it

appropriately. Changing a link in the diagram involves one pointer operation.

Appending a symbol to a rule involves creating one symbol and making four pointer

assignments, as shown in Figure 3.4a, where the symbol b is appended to a rule

ending in a. The pointers that change are shown as grey arrows. Using an existing

rule involves deleting two symbols (the digram to be replaced), creating one symbol

for the new non-terminal, and making four pointer assignments. This takes the

sequence abcd, and creates the sequence aAd. Figure 3.4b shows the substitution of

A in place of bc, with the changed pointers highlighted. Creating a new rule

involves creating a new left-hand side for the rule, creating two symbols and a guard

58 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

CreateSymbol(symbol)

allocate space or reuse a previously deleted symbol

initialise symbol

if symbol is non-terminal then

increment frequency of rule headed by symbol

DeleteSymbol(symbol)

if symbol is non-terminal then

decrement frequency of symbol

if frequency of symbol is less than two then

delete the rule headed by symbol

move symbol to the list of spare symbols

Figure 3.5 Routines for creating and deleting symbols, incorporating maintenance of
rule utility constraint.

node, and making seven pointer assignments. This creates the rule A → bc.

Figure 3.4c shows the new elements in grey. Deleting a rule requires deleting the

left-hand side of the rule, deleting the guard node and the terminal symbol, as well

as making four pointer assignments to reposition the contents of the rule.

Figure 3.4d shows the new symbols, along with the deleted rule head and old non-

terminal. This transforms the sequence Bd and the rule B → Aa to the sequence

Aad. Note that the number of operations required to move the contents does not

depend on the length of the rule. As for garbage collection, because the grammar

always grows as more of the sequence appears, no symbol ever need be deallocated.

Instead, symbols are kept in a ‘spare’ rule, where they are inserted or extracted as

necessary. This adds a small overhead of a symbol insertion to destroying symbols,

and of a symbol removal to creating symbols, but these overheads are smaller than

the overhead of memory allocation on the heap.

3.2.2 Maintaining rule utility

The rule utility constraint demands that a rule is deleted if it is referred to only

once. One way to enforce this constraint is to scan the entire grammar at each step,

counting non-terminal frequencies. However, it is more efficient to record rule

frequencies and update them at the same time as symbols are created and deleted.

Every time a non-terminal symbol is created (either allocated on the heap or reused

from the list of spare symbols), the frequency for that rule is incremented, and every

time a non-terminal is deleted, the frequency is decremented. When the frequency

3.2 IMPLEMENTATION ISSUES 59

of a rule falls to one, the rule is automatically deleted. The frequency of the rule is

recorded within the rule data structure, to which the non-terminal symbol has a

pointer, obviating the need for an array to index the appropriate rule. The routines

for symbol creation and deletion are shown in Figure 3.5, incorporating

maintenance of the rule utility constraint.

3.2.3 Maintaining digram uniqueness

The second constraint is more difficult to enforce. When a new digram appears, the

grammar must be searched for any other occurrence of it. One simple solution would

be to scan the entire grammar each time looking for a match, but this is inefficient,

particularly as the grammar grows. A better solution requires an index that is

efficient to search, as well as a suitable strategy for checking the index.

The data structure for storing the digram index must permit fast access and efficient

addition and deletion of entries. A hash table provides constant-time access, and

adding and deleting entries requires little extra work. Because no digram appears

more than once, the hash table need only contain a pointer to the first symbol in

the single matching digram. The hash table consists of a simple array of pointers.

Collisions are handled by open addressing, to avoid the allocation of memory that

chaining requires. In open addressing, described by Knuth (1968), new entries that

collide with existing ones are stored in the next free position in the table. To avoid

clustering of entries in one region of the array, a second hash function calculates an

offset to jump to find a free position, rather than choosing the next one. This is

referred to as double hashing. If each symbol object records the table index of the

digram it starts, a digram can be deleted from the table by simply clearing that table

entry directly. Next, it is necessary to consider the efficiency of updating the index

when digrams are created and deleted.

Every time a new digram appears in the grammar, it should be added to the index. A

new digram appears as a result of two pointer assignments linking two symbols

together in the doubly-linked list (one forward pointer and one back pointer). Thus

updating the index can be incorporated into the low-level pointer assignments. A

digram also disappears from the grammar when a pointer assignment is made—the

pointer value that is overwritten by the assignment represents a digram that no

longer exists.

60 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

Action grammar change in digrams digram index

observe symbol ‘c’ S → abcdbc {ab, bc, cd, db}

make new rule A S → abcdbc
A → bc

bc updated {ab, bc, cd, db}

substitute A for bc S → aAdbc
A → bc

ab, cd removed,
aA, Ad added

{bc, db, aA, Ad}

substitute A for bc S → aAdA
A → bc

db removed,
dA added

{bc, dA, aA, Ad}

Figure 3.6 Updating the digram index as links are made and broken

For example, Figure 3.6 shows the example at the end of Figure 3.1a, with the

addition of the contents of the digram index. To demonstrate the mechanism for

updating the hash table when a new rule is created, the creation will be performed

in several steps.

When the second c is appended to rule S, the digram table shows that bc already

exists in the grammar, so the rule A → bc is created. Creating the link between

b and c in the right-hand side for rule A updates the entry in the index for bc to

point to its new location—the hash table now contains a pointer to the symbol b at

the start of rule A. Temporary pointers are kept to the two other occurrences of bc

in order to replace them. Next, the first bc is removed. This breaks the link between

the b in the digram and the preceding symbol a, so ab is removed from the index. It

also breaks the link between c and the following d, so cd is removed from the index.

Next, A is inserted in place of bc, creating links between a and A, as well as between

A and d, adding these digrams to the index. This process continues, resulting in a

correct index of digram pointers, but costing just one indexing operation per two

pointer operations.

Having an efficiently maintained index of digrams is of little use if it is checked

unnecessarily often. Rechecking the entire grammar whenever a symbol is added is

infeasible, and inefficient if large portions of the grammar are unchanged since the

last check. In fact, the only parts of the grammar that need checking are those

where links have been made or broken. That is, when any of the actions that affect

the maintenance of the digram table are performed, the newly created digrams

should be checked in the index. Of course, every time a link is created, the digram is

entered into the index, and this is the very time to check for a duplicate. So if while

attempting to add a new digram to the index, an entry is found to be already

present, then a duplicate digram has been detected, and the appropriate actions

3.2 IMPLEMENTATION ISSUES 61

1
2
3
4
5
6
7
8
9

LinkSymbols(left, right)
assign forward and back pointers in left and right to link the symbols
look up digram <left, right> in the digram hash table
if the hash table entry is blank,

assign it the location of this digram and record the table index within left
otherwise,

deal with the duplicate digram
if left contains a hash table index for the digram it previously began,

clear the hash table entry

Figure 3.7 Routines for updating the digram index when symbols are linked

action

1

2'
2a
3
4
5
6
6a
6b

7'
7a
8

As each new input symbol is observed, append it to rule S.

Each time a link is made between two symbols
if the new digram is repeated elsewhere,

if the other occurrence is a complete rule,
replace the new digram with the non-terminal that heads the rule,

otherwise,
form a new rule and replace both digrams with the new non-terminal

otherwise,
insert the digram into the index

Each time a digram is replaced by a non-terminal
if either symbol is a non-terminal that only occurs once elsewhere,

remove the rule, substituting its contents in place of the other non-terminal

1

2

3

4

5

Figure 3.8 Outline of the SEQUITUR algorithm

should be performed. This is the only time when it is necessary to consult the

digram index. For example, when a new symbol is appended to rule S, the digram

thus created must be entered in the table. If an entry already exists for this digram,

the digram uniqueness constraint has been violated, and the appropriate response is

triggered.

Figure 3.7 describes the entire procedure for using and maintaining the digram

index. Line 4 tests whether an entry already exists for the new digram. If it does not,

line 5 simply assigns the entry a pointer to the first symbol in the digram. If the

entry is not empty, line 7 calls a procedure with the locations of both digrams, so

that either a new rule can be created or an existing one reused. In line 8, if the

leftmost symbol has an index into the hash table for the previous digram in which it

participated, the hash table entry is cleared in line 9.

62 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

S → BBaAebc
A → bcd
B → aAeA

S → BBB
A → bcd
B → aAeA

S → BBECx
A → Cd
B → EA
C → bc
E → aAe

d x

Figure 3.9 Two outcomes for the rule creation postponement
approach, after seeing the string abcdebcdabcdebc
(a) the grammar with match bc awaiting a longer match
(b) the grammar if the awaited d occurs
(c) the grammar if d does not occur next

Figure 3.8 shows a more precise description of the SEQUITUR algorithm of

Figure 3.3. Line 2 in Figure 3.3, ‘whenever a duplicate digram appears,’ has been

replaced by line 2' in Figure 3.8, containing the specific test based on the formation

of a new link. Line 7, ‘whenever a rule is used only once,’ is replaced by line 7' that

tests whenever when a digram is replaced by a non-terminal. Line 2a has been added

to detect an existing entry in the digram table, while 6a and 6b record a new digram

in the table. Finally, line 7a has been added to explicitly check the frequency of a

rule headed by a non-terminal. The numbers at the right are used in the complexity

analysis in Section 3.3.

3.2.4 Transient rules

In Figure 3.2d, the rule B → aA is formed, but when the next symbol, d, appears, rule

B is subsumed into a longer rule, C → aAd. It seems inefficient to create a new rule

and then to destroy it when the next symbol is observed. One modification to

SEQUITUR could postpone the creation of a rule until it is clear that it is necessary.

Another possibility is to extend rules like B, rather than creating a new rule and

deleting the existing one. This section examines these two options and

demonstrates why they offer no improvement over the algorithm described so far.

First, let us examine the postponement of rule creation. The idea is to recognise

repetition in the grammar, but to put off creating a rule until it is clear that the

repetition cannot grow any longer. This occurs when a symbol is observed that does

3.2 IMPLEMENTATION ISSUES 63

not continue the match. At this point, the rule can be created knowing that it will

not be superseded by a longer rule. This means that every rule in the grammar is

permanent—there are no transient rules.

However, tracking partial matches is difficult. Figure 3.8 shows a situation where

two matches are in progress. There is a repeated subsequence aAe, which awaits

another A to complete rule B. There is also a repeated bc, which expects a d to

complete rule A. If the expected d arrives, A is exactly matched, which allows the

match with B to complete. This is illustrated on the left-hand side of Figure 3.8. If

some other symbol arrives, however, the match with A fails, and a rule C must be

created to account for the successful match so far. Because the match with A failed,

the match with B cannot succeed, so another rule E is created to account for the

matched portion. In a large grammar the tracking and recovery from partial matches

becomes even more complicated.

Transient rules can be seen as performing this tracking within the grammar. No

partial match recovery is necessary because the rules represent the worst case, while

allowing longer matches to succeed by disappearing if necessary. Furthermore, at any

point the grammar obeys the two constraints, so if the sequence were to end, no

further transformations would be necessary. This is useful when using the grammar

to predict or explain the sequence: all that is known about the sequence is

contained within the grammar, rather than in the partial match tracking data

structures. This is the essence of the incrementality of the algorithm. The fact that

the state information is completely contained in the grammar rather than in other

data structures, and that the grammar is efficiently indexed, means that the

algorithm is simple, and that it stores and indexes partial matches efficiently.

The second solution to transient rules is to extend rules instead of replacing them.

This introduces a new rule to the algorithm: ‘if a digram appears more than once,

and its first symbol is a non-terminal, and that symbol appears only twice in the

grammar, then append the second symbol in the digram to the rule headed by the

first symbol in the digram.’ For example, when the digram Bd appears, because B

only appears twice, d is appended to rule B.

The reason for the stipulation that the rule must appear only twice is this: if the rule

is extended, it affects all instances of that rule. For the transformation to preserve

the sequence, all instances of the rule must be followed by the same symbol. Because

64 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

all digrams are unique apart from the duplicate in question, then any other

occurrence of the non-terminal apart from the two in the duplicate digrams must be

followed by some other symbol. So if the non-terminal occurs more than twice, the

rule it heads cannot be extended. The introduction of this new case in the

algorithm does not result in the removal of the digram utility rule. Allowing rule

extension may increase efficiency by saving one rule creation, but it complicates the

algorithm rules unnecessarily—it is superfluous, because its effect is achieved by the

combination of the other rules.

3.3 Computational complexity

This section shows that the algorithm is linear in space and time. This fulfils the

requirement of the thesis that the detection technique be efficient. The complexity

proof is an amortised one—it does not put a bound on the time required to process

one symbol, but bounds the time taken for the whole sequence. The processing time

for one symbol can in fact be as large as O(n) where n is the number of input

symbols so far, as shown in Section 3.4. However, the pathological sequence that

produces this worst case requires that the preceding O(n) symbols involve no

formation or matching of rules.

The basic idea of the proof is this: the two constraints both have the effect of

reducing the number of symbols in the grammar, so the amount of work done

satisfying the constraints is bounded by the compression achieved on the sequence.

The saving cannot exceed the original size of the input sequence, so the algorithm is

linear in the number of input symbols.

In Figure 3.8, which summarises the SEQUITUR algorithm, the main parts are

numbered at the right for reference, and the proof will demonstrate bounds on the

number of times that each of them are executed. Action 1 appends symbols to rules

S, and is performed exactly n times, once for every symbol in the input. Action 2 is

performed when a link is created. Action 3 corresponds to using an existing rule,

action 4 to forming a new rule, and action 5 to removing a rule.

Figure 3.10 shows examples of actions 3, 4 and 5, and the savings in grammar size

associated with each one. The savings are calculated by counting the number of

symbols in the grammar before and after the action. The non-terminals that head

3.3 COMPUTATIONAL COMPLEXITY 65

action before after saving

Matching existing rule 3 ...ab...
A → ab

...A...
A → ab

1

Creating new rule 4 ...ab...ab... ...A...A...
A → ab

0

Deleting a rule 5 ...A...
A → ab

...ab... 1

Figure 3.10 Reductions in grammar size for the three grammar operations

rules are not counted, because they can be recreated based on the order in which

the rules occur. Actions 3 and 5 are the only actions performed on the grammar that

reduce the number of symbols. There are no actions that increase the size of the

grammar, so the difference between the size of the input and the size of the grammar

must equal the number of times that both these actions have been taken.

More formally, let

n be the size of the input string,
o be the size of the final grammar,
r be the number of rules in the final grammar,
a1 be the number of times new symbol is seen (action 1),
a2 be the number of times a new digram is seen (action 2),
a3 be the number of times an existing rule is used (action 3),
a4 be the number of times a new rule is formed (action 4), and
a5 be the number of times a rule is removed (action 5).

According to the reasoning above, the reduction in the size of the grammar is the

number of times actions 3 and 5 are executed. That is,

n – o = a3 + a5 (1)

Next, the number of times a new rule is created (action 4) must be bounded. The

two actions that affect the number of rules are 4, which creates rules, and 5, which

deletes them. The number of rules in the final grammar must be the difference

between the frequencies of these actions:

r = a4 – a5

In this equation, r is known, and a5 is bounded by equation (1), but a4 is unknown.

Noting that a1, the number of times a new symbol is seen, is equal to n, the total

work is

a1 + a2 + a3 + a4 + a5 = n + a2 + (n – o) + (r + a5) (2)

66 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

To bound this expression, note that the number of rules must be less than the

number of symbols in the final grammar, because each rule contains at least two

symbols, so

r < o

Also, from (1):

a5 = n – o – a3 < n

Consequently,

a1 + a2 + a3 + a4 + a5 = 2n + (r – o) + a5 + a2 < 3n +a2

The final operation to bound is action 2, which checks for duplicate digrams.

Searching the grammar is performed by hash table lookup. Assuming an occupancy

less than, say, 80% gives an average lookup time bounded by a constant (Knuth,

1967). This occupancy can be assured if the size of the sequence is known in

advance, or by enlarging the table and recreating the entries whenever occupancy

exceeds this amount. The number of entries in the table is just the number of

digrams in the grammar, which is the number of symbols in the grammar minus the

number of rules in the grammar, because symbols at the end of a rule do not form

the left hand side of any digram. So the size of the hash table is less than the size of

the grammar, which is bounded by the size of the input. This means that the

memory requirements of the algorithm are linear.

As for the number of times that action 2 is performed, a digram is only checked

when a new link is created. Links are only created by actions 1, 3, 4 and 5, which

have already been shown to bounded by 3n, so the time required for action 2 is also

O(n).

The sum of all the actions in the algorithm is therefore O(n).

3.4 Exploring the extremes

Having described SEQUITUR algorithmically, we now characterise its performance

on a variety of data. This section explores how large or small a grammar can be for a

given sequence length, as well as determining the minimum and maximum amount

of work the algorithm can perform, and the amount of work required to process one

symbol. Figure 3.11 summarises these extreme cases, giving part of an example

3.4 EXPLORING THE EXTREMES 67

bound example sequence example grammar
a deepest hierarchy O(n) ababcabcdabcdeabcdef S → ABCDDf

A → ab
B → Ac
C → Bd
D → Ce

b largest grammar;
shallowest hierarchy

n aabacadae...bbcbdbe... S → aabacadae...

c smallest grammar O(log n) aaaaaaaaaaaaaa... S → DD
A → aa
B → AA
C → BB
D → CC

d largest number of
rules

n/4 aaaaababacacadad... S → AABBCCDD
A → aa
B → ab
C → ac
D → ad

e maximum processing
for one symbol

O(n) yzxyzwxyzvwxy S → ABwBvwxy
A → yz
B → xA

f greatest number of
rule creations and
deletions

n new rules
n deleted rules

abcde abcde abcde... S → AAA...
A → abcde•

Figure 3.11 Some extreme cases for the algorithm

sequence and the grammar that results. Bounds are given in terms of n, the number

of symbols in the input.

The deepest hierarchy that can be formed has depth O(n), and an example of a

sequence that forms such a hierarchy is shown in Figure 3.11a. In the deepest

hierarchy, each rule (except the one at the lowest level) must contain a non-

terminal, so that the hierarchy deepens at each rule. Furthermore, it is unnecessary

for any rule to be longer than two symbols. Therefore, to produce a deep hierarchy

from a short string, each rule should be one terminal symbol longer than the one on

which it builds. In order to create these rules, the string represented must appear in

two different contexts, otherwise the rule will be incorporated into a longer rule.

One context is the tallest hierarchy, which it must participate in. The other context

should not be in any hierarchy, to reduce the size of the input string, so it should

appear in rule S. Note that every rule in Figure 3.11a appears both in the hierarchy

and in rule S. At each repetition of the sequence, one terminal symbol is appended,

68 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

producing a new level in the hierarchy. There is no point in including a repetition

of length one, so the mth repetition has length m + 1. This repetition gives rise to

the mth rule (counting rule S). The total length of the sequence for a hierarchy of

depth m is therefore

n = 2 + 3 + 4 + ... + (m + 1) =
m(m +1)

2
−1 = O(m2)

and the deepest hierarchy has depth m = O(n).

At the other end of the spectrum, the grammar with the shallowest hierarchy is

shown in Figure 3.11b. It has no rules apart from rule S. It is also the largest

grammar for a sequence of a given length, precisely because no rules can be formed

from it. The sequence that gives rise to it is one in which no digram ever recurs. Of
course, in a sequence with an alphabet of size Σ , there are only O(Σ 2) different

digrams, which bounds the length of such a sequence. This kind of sequence

produces the worst case compression: there are no repetitions, and therefore no

structure is detected by SEQUITUR.

Turning from the largest grammar to the smallest grammar, Figure 3.11c depicts the

grammar formed from the most ordered sequence possible—one consisting entirely

of the same symbol. When four contiguous symbols appear, such as aaaa, a rule

B → aa is formed. When another four as appear, rule S contains BBBB, forming a

new rule C → BB. Every time the number of symbols doubles, a new rule is created.

The hierarchy is thus O(log n) deep, and the grammar is O(log n) in size. This

represents the greatest data compression. It is not necessary to have a sequence of

only one symbol to achieve this logarithmic lower bound—any recursive structure

will do. Chapter 4 discusses a sequence generated by a recursive grammar that

produces similar compression. Furthermore, we will see how the grammar can be

generalised to the original recursive grammar, compressing a sequence of arbitrary

length to a grammar of constant size.

To produce the grammar with the largest number of rules, each rule should only

include terminal symbols, because building a hierarchy will reduce the number of

rules required to cover a sequence of a given size. Furthermore, no rule should be

longer than two symbols or occur more than twice. Therefore each rule requires
2 × 2 = 4 symbols for its creation, so the maximum number of rules for a sequence of

length n is n/4, as shown in Figure 3.11d.

3.4 EXPLORING THE EXTREMES 69

a

�

����

�����

�����

�����

�����

�����

�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

				

������������ ������������������������������������

���� ����
���� ����
����
����
				

����
����
���� ����

����
����
����
����

b

�

�����

�����

�����

�����

������

������

������

������

������

������

�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

				

������������ ������������������������������������

����
����
����
����
����
���� ����
����
				

����
����
���� ����

����
����
����
����

c

�

����

����

����

����

�����

�����

�����

�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

				

������������ ������������������������������������

����
����
����
����
����
����
���� ����

����
����

Figure 3.12 Growth rates on English text
(a) rules in the grammar
(b) symbols in the grammar
(c) vocabulary size in the input

Having discussed the size of grammars, we now move to the effort involved in

maintaining them. The upper bound for processing a sequence has been discussed,

and shown to be linear. However, it is still useful to characterise the amount of

processing involved for each new symbol. Figure 3.11e shows a sequence where the

repetition is built up as yz, then xyz, then wxyz, etc. Just before the second

occurrence of wxyz is completed, no matches have been possible for the w, x, and y.

When z appears, yz matches rule A, then xA matches rule B. Finally, wB forms a

new rule. This cascading effect can be arbitrarily large if the repetitions continue to

be built up in this right-to-left fashion. The amount of processing required to deal

with the last z is proportional to the depth of the deepest hierarchy, as the matching

cascades up the hierarchy. The maximum time to process one symbol is therefore

O(n). The fact that w, x, and y failed to match means that they required little

70 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

time to process, ensuring that the linear time bound overall is preserved.

While the linear bound has been given in order notation, sequences certainly differ

in the proportion of work to sequence length. This ratio is minimised by the

sequence in Figure 3.11b, where no repetitions exist and no grammar is formed. It is

maximised by the sequence in Figure 3.11f, which consists of multiple repetitions of

a multi-symbol sequence. Each time the repetition appears, there are several rule

deletions and creations as the match lengthens. In fact, every symbol except a incurs

a rule creation, and a subsequent deletion, so there are O(n) creations and deletions.

If m is the length of the repetition, the proportion of symbols that do not incur this

work is 1/m, which tends toward zero as the repetition length approaches infinity.

To give an idea of how SEQUITUR performs on realistic sequences, we turn from

extreme artificial cases to a sequence of English text. Figure 3.12a shows that the

number of rules in the grammar increases approximately linearly with the number of

input symbols, for a 760,000 character English novel. Figure 3.12b shows the linear

growth of the total number of symbols in the grammar. The growth of the number of

unique words in the text, shown in Figure 3.12c, is high at the start and slows

toward the end. It has been observed in much larger samples (Zobel, et al., 1995)

that new words continue to appear at a fairly constant rate. In this example, the

number of rules grows linearly because once words have been recognised, multi-

word phrases are constructed, and the number of such phrases is unbounded.

3.5 A unifying representation

The algorithm described in this chapter detects repetitions and represents them in a

hierarchy. There is often more than one way to perform this—Figure 3.1d shows a

sequence that can be represented by more than one grammar. In longer sequences,

the number of different grammars is potentially very large, and it is useful to be able

to enumerate the possibilities. We first show how this enumeration can be

performed, then sketch a technique that minimises the number of top level symbols.

The enumeration takes time quadratic in the size of the sequence, so this discussion

is of mainly theoretical interest: it is not proposed as a practical technique.

3.5 A UNIFYING REPRESENTATION 71

3.5.1 Enumerating repetitions

The first step is to identify all the repetitions in a sequence. This can be performed

as follows. The algorithm starts by making two copies of the sequence and aligning

them one above the other. The overlapping parts are scanned, and the matching

parts are recorded in a diagonal line. One of the copies is shifted one symbol to the

right, and again matches are recorded. This continues until the sequences fail to

overlap.

Figure 3.13 demonstrates this process. With no shift, all the symbols in the sequence

match, and the sequence under the horizontal line records the match. To the right

is the beginning of the matrix that will record all of the matches, which contains a

single diagonal reproducing the result of the match. With the bottom copy shifted

right by one symbol, none of the corresponding symbols match, indicated by a row

of periods, which is transferred to the matrix at the right. There are no matches after

a shift of two symbols. At three symbols, however, three repetitions of bc line up,

giving the collection of periods and symbols in the string below the line. Another

match occurs after the bottom copy has shifted six symbols. This time, the whole

overlapping portion matches, because the sequence is an exact repetition of abcdbc.

There is one last match between two bcs after shifting nine symbols. The resulting

matrix records matches in diagonal lines sloping from top left to bottom right. The

long match abcdbc after shifting six places contains the shorter match bc, which can

be seen by scanning either vertically or horizontally towards the main diagonal.

This technique is related to—indeed inspired by—the dynamic programming

approach to finding the least cost sequence of edits to transform one string into

another. In the case where the strings are identical, as is true here, the main

diagonal gives a zero-cost sequence. Ignoring this diagonal, however, forces the

dynamic programming technique to transform the string to itself by deleting and

inserting characters to align repeated subsequences within the string. Because the

strings can be interchanged without changing the problem, the matrix is symmetric

about the main diagonal, and only half need be shown.

72 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

0 ����������
����������

����������

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

6 ����������
����������������

�����������

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

1 ����������
�����������

�===========

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

7 ����������
���������������

�����=======

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

2 ����������
������������

��==========

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

8 ����������

�����������������

�������=====

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

3 ����������
�������������

���=��=��=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

9 ����������
�������������������

���������=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

4 ����������
��������������

����========

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

10 ����������

��������������������

����������==

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

5 ����������
���������������

�����=======

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

11 ����������

���������������������
�����������=

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

�

=��

=�=��

=�=�=�

=���=�=��

=�=���=�=��

��=�=�=�=�=��

=���=�=���=�=��

=�=���=�=���=�=��

=�=�=��=�=�=�=�=�

=���=�=���=�=���=�=��

=�=���=�=���=�=���=�=��

Figure 3.13 Forming a matrix of repetitions

3.5 A UNIFYING REPRESENTATION 73

In Figure 3.14, a match is related to the parts of the original sequence in the main

diagonal that give rise to it. The vertical part of the grey region indicates where the

leftmost instance of bc is located, while the horizontal part indicates the rightmost

instance. Figure 3.14b shows the longer match abcdbc. The distance of the diagonal

from the leading diagonal represents the distance from the start of one repetition to

the start of the next in the sequence. It is the number of symbols that the sequence

has been shifted to map the repetitions on top of each other. Figure 3.14c shows a

match between two bcs separated by nine symbols. Figure 3.14d shows a hierarchy of

matches created by the superposition of the smaller and longer matches. Note how

the larger match encompasses the smaller ones.

It is more costly to create a new rule in a grammar than to reuse an existing one. No

saving is made in the number of symbols when a rule is created, but when a rule is

used, one symbol is saved. Figure 3.14e shows what reuse of a rule means: once the

rule has been created, as it has in Figure 3.14a, the grey region is free to continue

‘bouncing’ between a match in the matrix and the main diagonal. In Figure 3.14e, it

does this twice after forming the rule.

3.5.2 Forming a hierarchy

To form a hierarchy from the sequence based on the matrix, rules are formed from

some of the diagonal runs. We ignore here the minimisation of the number of

distinct rules, which would take reuse of rules into account—that is, we give no

preference to covering part of a sequence with a rule that has already been used for

another repetition. Instead, the objective is to cover the original sequence with a

minimal number of rules, so that it can be re-expressed in the fewest symbols. In this

situation, the trade-offs that need to be made are those that involve overlapping. If

one repetition is properly contained within another, there is no conflict: this gives

rise to a hierarchy. Decisions only have to be made where two repetitions cover the

same symbols and cover other symbols as well—when the sets of symbols that they

cover intersect, but neither is a subset of the other.

74 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

a �
=��
=�=��
=�=�=�
=���=�=��
=�=���=�=��
��=�=�=�=�=��

=���=�=���=�=��
=�=���=�=���=�=��
=�=�=��=�=�=�=�=�
=���=�=���=�=���=�=��
=�=���=�=���=�=���=�=��

b

�
=��
=�=��
=�=�=�
=���=�=��
=�=���=�=��
��=�=�=�=�=��
=���=�=���=�=��
=�=���=�=���=�=��
=�=�=��=�=�=�=�=�
=���=�=���=�=���=�=��
=�=���=�=���=�=���=�=��

c �
=��
=�=��
=�=�=�
=���=�=��
=�=���=�=��
��=�=�=�=�=��

=���=�=���=�=��
=�=���=�=���=�=��
=�=�=��=�=�=�=�=�
=���=�=���=�=���=�=��
=�=���=�=���=�=���=�=��

d

�
=��
=�=��
=�=�=�
=���=�=��
=�=���=�=��
��=�=�=�=�=��

=���=�=���=�=��
=�=���=�=���=�=��
=�=�=��=�=�=�=�=�
=���=�=���=�=���=�=��
=�=���=�=���=�=���=�=��

e �
=��
=�=��
=�=�=�
=���=�=��
=�=���=�=��
��=�=�=�=�=��

=���=�=���=�=��
=�=���=�=���=�=��
=�=�=��=�=�=�=�=�
=���=�=���=�=���=�=��
=�=���=�=���=�=���=�=��

Figure 3.14 Illustration of possible rules
(a) a short repetition over a short distance
(b) a larger repetition
(c) a long-distance repetition
(d) a hierarchy of repetitions
(e) a rule used multiple times

There are two cases that need to be considered. First, if rules overlap so that they

cover more than two symbols outside the overlapping symbols, then either rule can

be used even though the other covers the intersection. In either case, all of the

3.5 A UNIFYING REPRESENTATION 75

a ���� b ��� c ���������

�����

�����

����

����

��������������

�������������

Figure 3.15 Effects of choosing between overlapping rules
(a) both repetitions survive: no advantage either way
(b) one repetition disappears: no advantage either way
(c) global considerations give advantage to using infrequent repetitions

symbols are covered by a rule. For example, in Figure 3.15a, the sequence abcde is to

be covered, where the sequences abc and cde appear elsewhere. Regardless of which

repetition, abc or cde, is chosen to cover the overlapping portion, c, the sequence is

covered by two rules, because each repetition persists even when shortened by one

symbol (bottom part of Figure 3.15a).

The second situation is where a repetition only extends one symbol outside the

overlap. In this case, if the other rule is used to cover the overlap, the first rule

disappears, because a rule must cover more than one symbol. However, the symbols

in question are still covered by two top-level symbols: one is the rule and the other

is the single non-terminal that was covered by the now defunct rule. Figure 3.15b

shows the sequence abc which can be covered by either ab or b c. If one rule is

chosen, the other disappears, but the sequence is still covered by two symbols.

Locally, then, choices between overlapping repetitions make no difference to the

number of top-level symbols that are necessary to describe a subsequence. However,

the choices have repercussions in other parts of the grammar. Figure 3.15c shows a

sequence abababcbc that contains the sequence abc from Figure 3.15b. As noted

previously, abc can be covered by either ab or bc. In the overall picture, however, ab

occurs three times, whereas bc occurs only twice. The impact of this is that if ab is

used, which obviates the need for bc, the other occurrence of bc cannot be covered,

because every rule must be used at least twice. This results in the entire sequence

being covered by six units. If, alternatively, bc is chosen to cover abc, bc is able to

cover the other occurrence of bc, and the ab rule still survives because it occurs

twice elsewhere. As a result the sequence is covered by only five units. The key to

the overlapping criterion is therefore frequency: if one repetition occurs only twice

while a competing one occurs more often, choose the least frequent. Using this

criterion to choose between overlapping rules results in an algorithm to form a rule

set from the matrix. This algorithm has not been implemented, because the

76 CHAPTER 3: FORMING A HIERARCHICAL GRAMMAR

quadratic time of the matrix formation rules this technique out for efficiency

reasons. It is likely to outperform SEQUITUR in terms of minimising the length of

rule S, but we are usually interested in the size of the entire grammar, including the

other rules.

The constraints on finding the best set of rules are more complicated when the

number of rules is required to be minimised. In fact, as discussed in Section 2.5, the

problem of minimising the total size of the grammar is NP-complete. The next

Chapter discusses two efficient heuristics for reducing the grammar size.

3.6 Summary

This chapter has introduced the SEQUITUR algorithm, which infers a hierarchy of

repetitions from a sequence. The algorithm can be specified in terms of two

constraints that encourage a reduction in the size of the hierarchy. We have shown

that the algorithm can be efficiently implemented, and enumerated some extreme

cases. Finally, a quadratic-time algorithm has been described that exhaustively

discovers repetitions in the sequence. The next chapter builds on the SEQUITUR

algorithm to improve parsing in certain structured situations.

4. Improving the grammar

The thesis requires an efficient algorithm that can be applied to explain and

compress a sequence. Chapter 3 has described such an algorithm, which performs

well in many situations. In some cases, however, other hierarchical grammars

explain and compress the sequence better than the one formed by SEQUITUR. One

of these cases will be described in this chapter to motivate two modifications to the

SEQUITUR algorithm that improve its explanatory and compressive facilities.

Figure 3.1d gives an example of alternative grammars for a sequence. SEQUITUR

produces the grammar at the bottom of Figure 3.1d. The one above it is smaller, and

more appealing as a description of the sequential structure. The reason that

SEQUITUR does not find it is its greedy parsing. If, instead of creating the rule

A → aa as soon as the first repetition of aa is seen, the rule creation were postponed

until seeing the second repetition of aa, the grammar at the top of Figure 3.1d would

have been formed. However, after seeing just the first repetition, there is no way of

knowing that postponement would lead to a better grammar.

One problem with improving SEQUITUR’s performance is determining when the

resulting grammar has improved—that is, evaluating one grammar relative to

another. This chapter uses three evaluation techniques in different situations to

determine how good a grammar is: comparison with the source structure, the size of

the grammar, and domain-specific evaluation. The case study that will be described

is a sequence that is produced by a grammar-like rewriting system called an

L-system. Because the original grammar is known, it is possible to evaluate

SEQUITUR’s output by comparing it directly with the source. However, the source

grammar is not always known, and other evaluation metrics are necessary in these

situations. The most compelling metric from the point of view of Occam’s razor is to

choose the smallest grammar that describes a sequence. In this chapter, the size of a

grammar will be determined by counting the rules and symbols in it. For now, this

symbol counting approach will be left unjustified, but Chapter 6 shows that the

number of symbols is proportional to the size of the grammar when encoded in a

principled way. The third evaluation method is to use some domain knowledge to

evaluate a grammar—for example, counting the correctly partitioned English words

in the rules of a grammar for a sequence of text. Whereas size is an objective

78 CHAPTER 4: IMPROVING THE GRAMMAR

measure, and is often useful, small grammars do not always correspond to an

intuitive notion of how the sequence should be parsed.

Equipped with an appropriate evaluation metric, it is possible to consider

modifications to the SEQUITUR algorithm to produce better grammars. The main

weakness of the algorithm is that it performs greedy parsing—that is, it forms rules

based on the sequence seen so far, rather than waiting until the end of the sequence

to see if a different parse would produce a better grammar. This approach is

consistent with incrementality—if the algorithm were to postpone making a

decision about rule formation, its predictions and the explanatory value of the

grammar would not improve during the postponement. This chapter presents two

solutions to the problem. The first employs domain-specific knowledge to substitute

for clairvoyance about the unseen sequence. If there are general rules about how the

sequence should be parsed, they can be employed to substitute for knowledge about

the overall sequence. The modified algorithm will be distinguished from the

SEQUITUR algorithm described in Chapter 3 by referring to it as SEQUITUR-K, for

knowledge-based. The second situation, when domain knowledge is unavailable,

acknowledges that there is insufficient information about how to parse the sequence

at the time of parsing. However, later in the sequence it may become clear that an

earlier parse was incorrect. Thus the second technique performs retrospective

reparsing when evidence appears for a different partitioning of the earlier sequence.

This modified algorithm will be called SEQUITUR-R, for reparsing.

This chapter is structured in the following way. Section 4.1 previews results from

the chapter. Section 4.2 gives an overview of L-systems, the example that will

motivate the developments in this chapter. Section 4.3 discusses the use of domain

knowledge to improve parsing, while the retrospective reparsing is discussed in

Section 4.4.

4.1 Preview of results

This chapter will be motivated with a sequence produced by a simple grammar.

Figure 4.1a shows an example of an L-system, a class of rewriting systems. A

sequence is produced from this L-system, and a grammar is formed from it using the

SEQUITUR algorithm, as shown in Figure 4.1b. The reconstructed grammar bears

little resemblance to the original. By employing knowledge specific to the L-system

4.1 PREVIEW OF RESULTS 79

domain, it is possible to influence SEQUITUR’s rule-building mechanism to produce

the grammar in Figure 4.1c from the same sequence. It is smaller than the grammar

in Figure 4.1b, and exhibits some similarities to the original grammar. Rules S, D, H

and L correspond to the rule f → f[+f]f[–f]f in the original grammar at different levels

of recursion. The size of the grammar grows logarithmically with the size of the

sequence. Even better results can be achieved by adjusting the initial parse of the

sequence as more of the sequence becomes available. In this example, the grammar

in Figure 4.1d is produced, which is as close to the original grammar as any grammar

from its class can be. Rules S, A, B, and C represent the original rule at different

levels of recursion, while rules D, E, F, and G compress the repeated f]f pattern in

the original rule. Inferring the original recursive, non-deterministic grammar from

the non-recursive version will be discussed in Section 5.1.

a ��→��
��→��� �!��"�!�

b � → C�DE�DFG-��HFH��
� → ��
$ → ��
C → �I
� → �!
� → $
I → $#
� → �J
� → C�
� → �
D → �G
J → �I
E → ��
G → I�
- → I�
F → �JEJ
H → -J

c ��→�E�J!EDJ!E
��→�� �
$�→��"�
C�→��!�$!�
��→��C
��→��C
I�→�$C
��→��!�I!�
��→���
��→���
D�→�I�
J�→��!�D!�
E�→��J

d ��→������
��→�$����
$�→�C�I�I
C�→������
��→��!�
��→�$!$
I�→��!�
��→��!�
��→��
��→��"

Figure 4.1 Summary of results for the chapter
(a) an L-system,
(b) the grammar formed from the output of (a) by SEQUITUR,
(c) the grammar formed with domain knowledge,
(c) the grammar formed by retrospective reparsing.

4.2 Inferring L-systems from example strings

In order to demonstrate first the problems and then some solutions to the greedy,

incremental aspects of the SEQUITUR algorithm, this section introduces a class of

rewriting systems called L-systems. L-systems are used in computational biology and

computer graphics to simulate natural objects. Because the source of the sequences

is well understood, it is straightforward to compare the grammars that SEQUITUR

produces to the real model. Furthermore, because L-systems have practical

applications, this chapter provides some demonstrations of SEQUITUR’s utility. We

80 CHAPTER 4: IMPROVING THE GRAMMAR

a f Move forward one unit, drawing a line

– Turn left

+ Turn right

[Remember position and orientation

] Recall former position and orientation

b f+f+f–f–f +

f

f

–

f
f

f

–

+ c [f+f]+[f+f]+f

f

f

f f

f

+

+ +
]

]

Figure 4.2 The LOGO language
(a) Five turtle commands and their interpretation
(b) interpretation of a turtle command sequence
(c) the effect of state save and restores shown in gray

first describe the characteristics of L-systems, and then discuss the issues involved in

comparing L-systems with the grammars that SEQUITUR generates.

4.2.1 L-systems

L-systems are a special class of grammars that can model the growth of living

organisms. They were devised by a biologist, Aristid Lindenmayer, after whom the

grammars were named (Lindenmayer, 1968). They produce sentences that can be

interpreted graphically to produce images of fractals or organisms. Prusinkiewicz and

Hanan (1989) describe how L-systems are interpreted, and distinguish them from

Chomsky grammars:

The essential difference between Chomsky grammars and L-systems lies in
the method of applying productions. In Chomsky grammars productions are
applied sequentially, one at a time, whereas in L-systems they are applied in
parallel and simultaneously replace all letters in a given word. This
difference has an essential impact on the properties of L-systems. For
example, there are languages which can be generated by context-free
L-systems (called 0L-systems) but can not be generated by context-free
Chomsky grammars.

One interesting feature of L-systems is that there is no distinction between terminal

and non-terminal symbols. All symbols that appear in the grammar are valid in the

final string, and any symbol in the alphabet can head a rule. The evaluation of

Chomsky grammars stops when only terminal symbols appear in the string. Because

this stopping criterion cannot be used with L-systems, a string is generated by

4.2 INFERRING L-SYSTEMS FROM EXAMPLE STRINGS 81

specifying a number of derivation steps, essentially the depth of the derivation tree.

L-systems may be context-free or context-sensitive, and either deterministic, non-

deterministic, or stochastic. They have been used in various ways to describe plant

development topologically (Hogeweg and Hesper, 1974; Smith, 1978; Smith, 1984;

Szilard and Quinton, 1979; Frijters and Lindenmayer, 1974). They have also been

used to describe plants graphically, where sentences produced by L-systems are

interpreted as instructions to a LOGO turtle, as described by Prusinkiewicz (1986).

The LOGO language, devised by Seymour Papert (Abelson and deSessa, 1982),

defines a set of instructions that direct a software turtle to draw graphical figures.

Figure 4.2a summarises them: f draws a line in the current direction, + and – turn

left and right respectively, and [and] save and restore the turtle’s state.2 For

example, Figure 4.2b shows the graphical interpretation of f+f+f–f–f. This pattern

consists of five line segments with left and right turns between them. Figure 4.2c

shows the effect of the save and restore instructions in the string [f+f]+[f+f]+f. The

initial orientation and position of the turtle are saved by the first [instruction. After

the first two line segments are drawn, the turtle returns to this state when it

executes the] instruction. The next two line segments start from this point, as does

the final one.

A simple L-system can produce complex figures. Figure 4.3a shows an L-system and

Figure 4.3b illustrates the sequence produced at each derivation step. Figure 4.3c

shows the corresponding graphical form—a tree-like picture (Figures 4.3d and 4.3e

will be referred to in Section 4.2.1). In this case, the angle through which the turtle

turns when executing – or + is set to 30˚. At step zero on the left, the string

contains just one move forward command.

After the first application of the rewriting rule for f, the sequence is f[+f]f[–f]f, which

is graphically interpreted as the prototypical plant form in the second column. The

scale has been reduced for the purposes of presentation: one line segment in the

second diagram is only one third as long as the line segment in the first diagram.

Subsequent applications of the rewriting rule produce more complex and realistic

images. A more complex L-system is shown in Figure 4.4.

2 Normally an uppercase F denotes moving forward and drawing a line, while f denotes moving
without drawing. The latter symbol is useful for drawing disconnected figures. To avoid confusion
of F with non-terminals in grammars, f is used to mean the drawing version, and f is used for the
non-drawing version.

82 CHAPTER 4: IMPROVING THE GRAMMAR

a �K→K�
�K→K�� �!��"�!�

0 1 2 3

b � �� �!��#�!� �� �!��#�!�� �� �!��#�!�
!�� �!��#�!��#�� �!��#�
!�!�� �!��#�!�

�� �!��#�!�� �� �!��#�!�
!�� �!��#�!��#�� �!��#�
!�!�� �!��#�!�� ��� �!�
�#�!�� �� �!��#�!�!�� �
!��#�!��#�� �!��#�!�!��
 �!��#�!�!�� �!��#�!��
�� �!��#�!�!�� �!��#�!��
#�� �!��#�!�!�� �!��#�!�
�#�� �!��#�!�� �� �!��#
�!�!�� �!��#�!��#�� �!��
#�!�!�� �!��#�!�!�� �!�
�#�!�� �� �!��#�!�!�� �
!��#�!��#�� �!��#�!�!��
 �!��#�!�

c

d � → � � →��� �!��"�!� � → �� �!��"�!�
� → �� �!��"�!�

� → �� �!��"�!�
$ → �� �!��"�!�
� → $� $!$�"$!$

e � → � � →��� '#'
' →��!�

� → $����
� → $!$
$ → ��C�C
C → �!�
� → �
� → �#

� → $I���
� → $!$
$ → �IC�C
C → �!�
� → �I���
� → �!�
I → �
� → �#

Figure 4.3 Derivation of an L-system
(a) the L-system
(b) the sequence produced at each derivation step
(c) the graphical representation
(d) the equivalent non-recursive grammar
(e) SEQUITUR’s constraints enforced on (d)

4.2 INFERRING L-SYSTEMS FROM EXAMPLE STRINGS 83

� → �
� → �� � �#�#�!#�"� � �!

Figure 4.4 Another plant image

4.2.2 Comparing L-systems with SEQUITUR’s output

L-systems produce a sequence of symbols, while SEQUITUR produces a grammar

from a sequence, so at a broad level SEQUITUR performs the inverse of L-system

evaluation. An interesting empirical question is whether SEQUITUR can exactly

reconstruct an L-system from its output. There are four fundamental difficulties that

stem from the mismatch of grammar classes between L-systems and the output of

SEQUITUR. First, SEQUITUR’s grammars are non-recursive, whereas most useful

L-systems are recursive. This means that SEQUITUR can only ever produce a non-

recursive approximation to the original grammar. Second, L-systems may violate the

two constraints on the grammars that SEQUITUR produces, which makes them

difficult to compare directly with SEQUITUR’s output. Third, L-systems may be

stochastic and context-sensitive, whereas SEQUITUR’s grammars are deterministic

and context-free. Finally, in L-systems, terminals may head rules.

The L-system in Figure 4.3a exhibits three of these problems. First, it is recursive:

the rule headed by f contains the symbol f. Second, it does not obey the constraints:

the strings f[f and f[both appear twice. Third, the terminal symbol (in Chomsky

terminology) f heads a rule.

84 CHAPTER 4: IMPROVING THE GRAMMAR

� → C�DE�DFG-��HFH��

� → ��
$ → ��
C → �I
� → �!
� → $
I → $#
� → �J
� → C�
� → �
D → �G
J → �I
E → ��
G → I�
- → I�
F → �JEJ
H → -J

��
�!��
�� �!��"
�!
�!��
�!��"
�� �!��"�!�!�� �!��"
�� �!��"�!
��
�� �!��"�!�!�� �!��"�!��"�� �!���!�!�� �!��"
�!�� �!��"
�!�� �� �!��"�!
�!��"�� �!��"�!�!�� �!��"
�!��"�� �!��"�!
�!�!�� �!��"�!�� �� �!��"�!�!�� �!��"
�!��"�� �!��"�!�!�� �!��"

Figure 4.5 The grammar produced by SEQUITUR from the sequence in Figure 4.3b,
step 3

The first step in remedying these problems is to restate the L-system in a non-

recursive way. Because it is recursive, and there is no distinction between terminal

and non-terminal symbols, it is necessary to specify the number of times the

rewriting rule is applied in order to generate a sequence. Choosing three steps results

in the right-most sequence in Figure 4.3b. A recursive L-system along with a

derivation length has an equivalent non-recursive version, which is shown for each

derivation step in Figure 4.3d. Each non-recursive grammar reproduces the same

sequence as the recursive version evaluated to that number of steps, and also

maintains a resemblance to the original grammar. In Section 6.1, this resemblance

will be exploited to form a recursive version from the non-recursive one, but for

now the aim will be for SEQUITUR just to reproduce the non-recursive version.

Producing a non-recursive version for a particular number of derivation steps solves

two of the three difficulties in the original grammar: as a by-product of producing a

non-recursive grammar, the grammar can now be interpreted as a Chomsky

grammar, treating f as a terminal symbol, as it no longer heads a rule. The third

difficulty is that the L-system does not obey the digram uniqueness constraint. This

can be remedied in two ways, by replacing either A[or A]A (or the equivalent

sequence in the other rules) with a rule. The result of the second, more compressive

replacement is shown in Figure 4.3e for each level of evaluation.

The grammars are now in a form compatible with SEQUITUR’s output, and the

question of SEQUITUR’s ability to reproduce such modified L-systems can now be

addressed. Figure 4.5 shows the grammar produced by SEQUITUR given the sequence

in Figure 4.3b at the third derivation step. The second column in Figure 4.5 gives

4.2 INFERRING L-SYSTEMS FROM EXAMPLE STRINGS 85

a �� �!��#�!�� �� �!��#�!�

b �� �!��#�!�� �� �!��#�!�

c �� �!��#�!�� �� �!��#�!�

Figure 4.6 The first part of the sequence from Figure 4.3b, step three
(a) parsed correctly
(b) parsed incorrectly
(c) an improved parsing using bracket nesting constraint

the substrings that the rules represent. This grammar bears little resemblance to the

grammar in 4.3e: it is much larger, and lacks a rule representing the fundamental

f[+f]f[–f]f building block. It appears that SEQUITUR is incapable of recognising the

structure in the sequence.

The cause of this poor performance is the greedy left-to-right processing. Once

SEQUITUR forms a rule, the two symbols in that rule are bound together for the rest

of the processing. The rule may be incorporated into a longer rule, but this longer

rule will still group the two symbols together. For example, the initial sequence

f[+f]f[–f]f should be in a single rule on its own. However, the [following this

sequence means that SEQUITUR takes advantage of the f]f[repetition and forms a

rule for it. Figure 4.6a shows the preferred parse and Figure 4.6b shows the actual

parse after SEQUITUR has seen the first 24 symbols. In the preferred parse, one rule

covers both instances of f[+f]f[–f]f (only the rules that appear in rule S are shown).

In Figure 4.6b the darker grey area denotes the incorrect rule covering f]f[, which

spans the end of one rule and the [from one level above.

The next two sections describe two distinct solutions to this problem: using domain

knowledge to aid SEQUITUR’s selection of phrases, and performing retrospective

reparsing in order to improve SEQUITUR’s performance.

4.3 Domain knowledge

One solution to the incorrect partitioning of the sequence into rules is to use

knowledge about the preferred form of rules to help SEQUITUR choose the correct

rules in the first place. In the simple example illustrated in Figure 3.1d, ignoring the

first repetition of aa would result in a better overall grammar. If an oracle were

86 CHAPTER 4: IMPROVING THE GRAMMAR

available to advise SEQUITUR whether or not to form a rule, better grammars could

be produced.

4.3.1 Restricting rules using domain knowledge

In L-systems that contain square brackets (save and restore state instructions), each

rule has correctly nested brackets. That is, for every restore instruction, there is a

corresponding save instruction earlier in the rule, ensuring that there is always a

state to restore. It is easier for SEQUITUR to recognise the structure of the source if

this constraint is taken into account. To ensure that every rule in SEQUITUR’s

grammar has correctly nested brackets, a further constraint is imposed on the

grammar: in the expansion of every rule,

1. either all brackets must match, or

2. all close brackets must have a matching open bracket, and

the rule must start with an open bracket.

The first part corresponds to the domain knowledge about the original L-system. In

the second part, the nesting constraint is relaxed to allow rules that have more open

that close brackets. This clause exists for the following reason. Because rules are

grown from left to right, rather than created in one action, they always start by

consisting of two symbols. The only rule containing brackets that would be able to

be created under this more stringent requirement would be []. Any other rules, such

as [+, would be disallowed, so in fact no rules at all would be formed for this

sequence. At the same time as the matching is relaxed, an additional constraint is

added: an unbalanced rule must begin with an open bracket. This is to provide a

starting point for a rule. In other words, whereas rule 1 and the first clause of rule 2

stop a rule from growing (when the next symbol is a close bracket with no matching

open bracket.), the second clause of rule 2 controls when one may be formed.

Enforcing this constraint on SEQUITUR’s rules results in an improved grammar

which includes the decomposition of Figure 4.6c. For example, the sequence

f[+f]f[-f]f in Figure 4.6a is well-formed, and can be evaluated on its own to produce a

graphical figure. The prefix f[+f]f[–, the first rule in Figure 4.6b, leaves a superfluous

state on the stack, but can nevertheless be drawn without raising an error. However,

the sequence f]f[, the second rule in Figure 4.6b, generates an error when it is

evaluated, because the first restore state command lacks a corresponding save state.

Rejecting this rule—specifically the initial f]—allows the first light gray rule to be

4.3 DOMAIN KNOWLEDGE 87

��→�E�J!EDJ!E

��→�� �
$�→��"�
C�→��!�$!�
��→��C
��→��C
I�→�$C
��→��!�I!�
��→���
��→���
D�→�I�
J�→��!�D!�
E�→��J

Figure 4.7 Grammar induced from Figure 4.3b using background knowledge

extended later to include f], resulting in the parse of Figure 4.6c. When this

constraint is applied at each stage of grammar formation, the grammar in Figure 4.7

is produced.

SEQUITUR can be modified to ensure that grammar rules always obey the

save/restore nesting constraint by checking at the very core of the algorithm, within

the digram-indexing procedure. Recall that every time a new digram appears, the

digram index is consulted for an identical digram elsewhere in the grammar. If one is

found, a new rule is created, or an existing one re-used. If none is found, no action is

taken. The modification to the algorithm is this: if the digram would produce a rule

which violates the nesting constraint, then the indexing procedure will return false,

even if a duplicate digram exists. This prevents the formation of rules that violate

the nesting constraints. This restriction relieves the digram uniqueness constraint,

because it allows duplicate digrams to remain in the grammar. Ignoring a duplicate

digram is dangerous—if the second symbol in the digram does not eventually

participate in another rule, then the final grammar will not obey the constraints. In

structured sequences, however, postponing rule creation will allow another digram

to match instead.

To illustrate the restriction, if the first and second symbols in the digram are [and]

respectively, the digram-finding routine will operate as normal, returning a

matching digram if one exists. However, if the digram consists of] followed by [, the

routine will return false, even if a match exists, so that the badly-nested rule will not

be created. In fact whenever the first symbol is], the rule cannot succeed. The

symbols involved could be non-terminals. If the first symbol is a non-terminal that

expands to [+f], and the second symbol is], then the rule will not succeed, because

the first symbol is exactly balanced, and the second symbol has no corresponding

88 CHAPTER 4: IMPROVING THE GRAMMAR

save instruction. However, if the first symbol expands to [+f, then the rule succeeds,

because the second symbol balances the [in the expansion of the first symbol.

4.3.2 Results of the knowledge based restriction

Rules C, G, and K in Figure 4.7 all begin with [and are perfectly balanced. Each

participates in another rule (D, H, and L respectively) which prefixes them with a

rule that does not start with [. It is these latter three rules that expand to the three

derivation steps in the L-system. Rules A, B, E, F, I and J are merely compressive:

they take care of the [+ and [– sequence at each level. The grammar in Figure 4.7 is

not identical to the grammar in Figure 4.3e. However, it captures the structure of

the L-system: the three derivation steps are clear from the three sets of rules. This

use of background knowledge has a dramatic effect on the size of the grammars that

SEQUITUR induces from L-system sequences. The grammar produced by SEQUITUR

in Figure 4.5 has 17 rules and 67 symbols. The grammar in Figure 4.7, which

explains the same sequence, has only 13 rules and 47 symbols. The length of rule

S reduces from 16 in Figure 4.5 to 9 in Figure 4.7. This indicates that the second set

of rules capture the structure of the original L-system much better than the first. For

more derivation steps, the difference is more marked: at four derivation steps, the

number of symbols drops from 88 to 59 and the number of rules from 31 to 16.

The additional computational requirements to enforce the bracket nesting

constraint are minimal if the number of surplus save instructions is stored along with

each rule. Each time a new rule is formed, the surplus can be computed from the

surpluses of each symbol in the digram, making it independent of the length of the

rule contents. In Section 7.3, this approach will be used to accelerate the rendering

of figures based on L-systems.

It is interesting to consider applications of this technique in other domains. For

example, for English text, SEQUITUR may benefit from constraining the rules to

respect the white-space boundaries that delimit words. The modification can be

made in exactly the same way, by adding a condition to the digram retrieval routine.

This possibility is examined in Section 7.1.2.

4.4 RETROSPECTIVE REPARSING 89

output from SEQUITUR S → AbAab
A → aa

expand rule A S → aabAab
A → aa

form rule for ab S → aBAB
A → aa
B → ab

remove useless rule A S → aBaaB
B → ab

extend rule B to the left S → BaB
B → aab

Figure 4.8 Transforming a good grammar to a better one

4.4 Retrospective reparsing

Where domain-specific knowledge is unavailable, for example when L-systems

contain no brackets, it is difficult to know when the formation of rules should be

postponed. The solution described here involves making greedy decisions about

parsing, but reviewing an initial parsing once it becomes clear that a better decision

could have been made. We first describe, in Section 4.4.1, a simple way of adjusting

a parse, but observe that it does not always improve the grammar. Section 4.4.2

discusses a criterion for deciding when to apply reparsing, which is intuitively

compelling but problematic. Section 4.4.3 describes a new criterion that is

somewhat surprising, but effective. Section 4.4.4 evaluates this solution on a range

of L-systems.

4.4.1 The reparsing technique

Returning to the problematic sequence introduced in Figure 3.1d, the grammar at

the bottom is the one produced by SEQUITUR. The grammar at the top represents

the same sequence, and obeys the constraints, but contains one less symbol.

According to Occam’s razor, the topmost grammar should be preferred, as it offers a

more compact explanation of the sequence. In the bottom grammar, the fact that

both bs are preceded by an aa is obscured by rule A. Removing rule A and extending

a match to the left of both bs would arrive at the grammar at the top. The crucial

part of this operation is recognising when such a transformation is possible.

The key is noticing that every symbol that precedes b, in this case both a and A,

have the suffix a. This means that a rule for ab can be formed by borrowing an a

90 CHAPTER 4: IMPROVING THE GRAMMAR

sequence initial grammar reparsed grammar

a baaaabaaa S → BABa
A → aa
B → bA

S → BaB

B → baaa

b baaaaaaaaba S → bBBba
A → aa
B → AA

S → CaAAAC
A → aa
C → ba

c abcabbc S → AcAbc
A → ab

S → aBabB
B → bc

Figure 4.9 Effects of reparsing
(a) A better grammar by extending B to the right
(b) Extending b to the right makes the grammar worse
(c) a and c fight over a neighbouring b

from the A that precedes b. Figure 4.8 demonstrates this process. First, the initial

occurrence of rule A is expanded to reveal its contents. Next, the rule B → ab can be

formed. Now rule A occurs only once, and can be removed. This exposes another a

to the left of both Bs, which is incorporated into rule B. The resulting grammar is

the same as the grammar at the top of Figure 3.1d (with relabelling).

This process can also operate in the opposite direction. Consider the sequence in

Figure 4.9a. A better grammar can be obtained by extending rule B to the right,

taking advantage of the common prefix a of all its successors. This results in the

disappearance of rule A and the shortening of rule S.

This technique of extending a rule to the left or the right by borrowing from

neighbouring symbols successfully produces a smaller grammar in these two

examples. However, it can also make the grammar worse. Figure 4.9b shows a

sequence for which SEQUITUR produces the grammar in the middle. Extending b to

the right to form B → ba increases the length of rule S, because it disturbs the

hierarchy formed by the eight consecutive as. It is therefore important to apply this

technique judiciously. The next two subsections discuss ways of deciding whether to

perform reparsing.

4.4.2 Reparsing based on local optimality

The first approach appeals to Occam’s razor and performs the reparsing only if doing

so would reduce the size of the grammar. That is, an action is only performed if it

results in a grammar with fewer symbols or rules. The expectation is that over a

4.4 RETROSPECTIVE REPARSING 91

large sequence, local improvements in the grammar will result in an overall

improvement. The difficulty with this technique is knowing in advance whether the

grammar will shrink, as the operation may have wide-ranging effects due to the

cascading updating that occurs when the constraints are imposed. In fact, the only

reliable way to tell what size a grammar will be after an action is to actually perform

the action. If the grammar shrinks, no further action is necessary. If the grammar

grows, the action must be undone. If the grammar remains the same size, it seems

sensible to leave the grammar in the new state, rather than perform additional work

to undo the action.

There are five problems with this approach:

• the difficulty of undoing,

• the problem of evaluation,

• efficient detection of opportunities for rule extension,

• infinite loops, and

• grammar quality.

First, undoing an action is difficult because the grammar may change significantly as

a result. In principle, undoing actions incurs a constant overhead if each change to

the grammar is recorded, and undoing is performed by reversing each action.

However, it is important to record the changes at a low level, and efficient

implementation is challenging. A brute-force solution is to copy the entire

grammar, and revert to the copy in the event of an undo. However, the time

required to perform this grows with the size of the grammar, and results in a

quadratic time algorithm overall.

Second, it is not clear how the size of grammars should be measured. So far we have

measured grammars by counting symbols and rules. This approach is valid on final

grammars that differ markedly, but when comparing two grammars that differ only

in one or two symbols, the exact metric is more crucial. If a grammar has fewer rules

and fewer symbols, it is most likely to smaller according to any measure. However, if

a grammar has one fewer rule but one more symbol, the decision is more difficult.

Additionally, since the object is to find structure in rule S, any reduction in the

length of rule S should carry greater weight than a reduction in other rules. It turns

out that the quality of the final grammar is sensitive to the exact choice of grammar

metric, and there seems to be no good way of justifying the choice theoretically.

92 CHAPTER 4: IMPROVING THE GRAMMAR

The third difficulty is efficiently detecting when it is possible to extend a rule. The

naive way is, after each new symbol appears and has been processed, to examine the

predecessors and successors of each unique symbol in the grammar. If they all have a

suffix or prefix in common, then perform the transformation. This naive algorithm

takes quadratic time, as all symbols in the grammar are examined after each new

symbol.

The fourth problem related to global scanning of the grammar is that the extension

of two different symbols may conflict. It is possible for two neighbouring non-

terminals to ‘fight’ over a symbol at their border. For example, in Figure 4.9c,

SEQUITUR produces the grammar in the centre. A new rule for bc can be formed by

borrowing the preceding b from rule A. This new rule is formed at the expense of

rule A, which disappears. The size of the grammar has not changed, so the grammar

is left in this state. In the new grammar, a new rule can be formed by extending a to

the right. Now the grammar has returned to its initial state, and the process

continues, looping forever. Checks can be implemented to prevent this happening,

but these are often difficult, because more than two operations may be necessary to

perform a complete loop in a larger grammar. Furthermore, the check seems

arbitrary and inelegant. This problem can also be avoided if operations that leave

the grammar the same size are undone, but this involves considerable extra work

since this situation occurs frequently.

The final problem is the quality of the grammars that are produced. Figure 4.10a

presents an L-system that draws the Koch curve in Figure 4.10e. Biological forms

generally require brackets because several parts may sprout from a single point

which must be saved on the state stack. The fractal here, however, is more artificial,

and brackets are unnecessary. Without brackets, SEQUITUR-K is equivalent to

SEQUITUR, and both produce the grammar in Figure 4.10d. Figure 4.10b shows the

non-recursive version of the L-system with a derivation length of three. This is the

grammar that we are attempting to reproduce.

Using a size metric that works well in practice, and using the brute force method for

undoing, along with a complex system for detecting looping in rule extension, the

grammar in Figure 4.10c is formed. Although the grammar exhibits a similar

structure to the ideal non-recursive version, rules B and F are slightly different from

rule J. This prevents the procedure described in Section 5.1 from inferring the

recursive version of the L-system.

4.4 RETROSPECTIVE REPARSING 93

a �K→K�#�#�#�K
�K→K� �#�#�� � �#�

b �K→K���$
�K→K$#
$K→K�CC��C
CK→K#I
�K→KI�
�K→K I
IK→K������
�K→K#D
�K→KD�
�K→K D
DK→KEJJEGJ
JK→K#�
EK→K�G
GK→K �

c �K→K���$
�K→K$#
$K→KC��C
CK→K�I�
�K→KI
�K→K#I
IK→K����
�K→K�D�
�K→K#D
�K→KD
DK→KEJJEGJ
JK→K#�
EK→K�G
GK→K �

d �K→KD�����DC
�K→KD$$
$K→KC�
CK→KI�
�K→KG��
�K→K�I-�
IK→K L
�K→K�E
�K→K��
�K→KMH
DK→KJ J
JK→KNF-E
EK→KNG
GK→K�-
-K→KF�
FK→KOH
HK→K OMP
MK→K#�
NK→KL�
�K→KPQ
LK→K'Q
QK→KOP
PK→K%'
OK→K&�
'K→K%&
&K→K�#
%K→K�

e

Figure 4.10 An L-system for drawing a Koch curve
(a) the original L-system
(b) the equivalent non-recursive L-system for three derivation steps
(c) the grammar induced by an Occam’s razor version of reparsing
(d) the grammar produced by SEQUITUR
(e) the graphical interpretation of the sequence

4.4.3 Oblivious reparsing

The solution to these problems is simple, but somewhat non-intuitive. An

explanation of the solution will be given first, followed by a discussion of the reason

for its efficacy. In the new scheme, extensions are only made if they are near the end

of rule S, and transformations are performed regardless of their effect on the

grammar. After each new symbol is observed and the constraints have been

enforced, the last symbol in rule S has an opportunity to extend to the left, and the

second last symbol has an opportunity to extend to the right. The same process is

94 CHAPTER 4: IMPROVING THE GRAMMAR

S → ...AB
A → ...
B → ...CD
C → ...
D → ab

Figure 4.11 Hierarchical parsing adjustment

then applied to the symbols at the end of the rule headed by the last symbol in rule

S, and continues in this way through the hierarchy. For example, for the grammar in

Figure 4.11, SEQUITUR-R examines the predecessors of B for a common suffix, and if

one exists, extends rule B to the left. If this is unsuccessful, it examines the prefixes

of A’s successors, and attempts to extend rule A to the right. Next, it examines the

contents of rule B, and attempts to extend D to the left and C to the right. Finally,

the contents of rule D are given the same opportunity: b to the left and a to the

right.

These operations are performed regardless of their effect on the grammar’s quality,

so this technique is called oblivious reparsing. It nevertheless works well on a wide

range of sequences. So how does it succeed in improving SEQUITUR’s operation?

The process is effective by virtue of two properties: the cancelling effect of

extension in one direction with respect to the other, and limited opportunity for

rules to be extended.

Consider the first property. Extending a rule in one direction serves to undo

extending the neighbouring rule in the other direction. Not only does one undo the

other locally, but by virtue of the constraints, it undoes the effect on the entire

grammar. The effect is demonstrated in Figure 4.9c, where two consecutive

extensions result in a return to the original grammar. In larger grammars, an

infelicitous extension will affect all of the neighbours of the extended symbol. To

completely undo the effects of the extension, each of those neighbouring symbols

must appear again later in the sequence, so that they have an opportunity to extend

in the other direction and recapture the symbol that was taken from them.

Now consider the second property. Each non-terminal gets one chance to extend

leftward when it is at the end of rule S, and once chance to extend rightward when

it is the second-last symbol. The problem of rules fighting over a symbol is solved by

the ‘one chance per symbol’ rule, as opposed to the previous scheme where a symbol

anywhere in the grammar had an opportunity for extension after each new symbol.

4.4 RETROSPECTIVE REPARSING 95

�� �!��"��!�� �� �!��"��!���� �� �!��"�!��� �� �!��"�!���

� → C�===
$ → ��
C → �I
� → $
� → C�
� → �
===

� → C�� ===
$ → ��
C → �I
� → $
� → C�
� → �
===

� → ��===
$ → ��
C → �I
� → $
� → C�
� → �
===

� → ��===
$ → ��

� → $
� → �I�
� → �
===

Figure 4.12 How retrospective reparsing corrects initial mistakes

It also makes reparsing more efficient: reparsing is performed at most once for each

symbol in the grammar, whereas before it could be invoked many times.

4.4.4 Evaluation

When this oblivious reparsing is applied to the sequence produced by the L-system

in Figure 4.10, the exact non-recursive version in Figure 4.10b is reproduced.

Section 4.4 showed that it is possible to use domain knowledge in a principled way

to improve induction of grammars from a known source. Now we demonstrate that

retrospective reparsing can achieve even better results than SEQUITUR-K, even

when brackets are present. Whereas the approach based on domain knowledge

attempts to form correct rules in the first place, reparsing initially forms bad rules,

but corrects them when evidence appears that the rules should have been different.

For example, Figure 4.12 reproduces part of the grammar in Figure 4.5, which is the

result of running the greedy version of SEQUITUR over the turtle command

sequence in Figure 4.3a. It was observed that the initial sequence f[+f]f[–f]f, which

corresponds to one rule in the L-system, is split over two rules: C and E.

Retrospective reparsing examines the successors to C, which are E in rule S and D

in rule H. Rule E begins with B, which in turn begins with D; so both occurrences of

rule C are followed by symbols that share a common prefix, D. Expanding rules E

and B results in the grammar in the second column. Next, the duplicate digram CD

matches rule H and the duplicate A+ is replaced by I, as shown in the third column.

Rule C is no longer used more than once, and is deleted in the fourth column. The

new rule S begins with rule H, which expands to f[+f]f[–f]. This is closer than the

original rule C was to the sequence f[+f]f[–f]f that would be expected as the first

rule. Of course, reparsing is performed incrementally, rather than after the entire

grammar has been formed, but this description captures the essence of the process of

revising rule boundaries as more of the sequence is observed.

96 CHAPTER 4: IMPROVING THE GRAMMAR

a � → � � �
� → �"� �"�

b � → �#�#�#�
� → �#� ��#�#��#��#���#�� � �� �� ���
� → ������

� → ����$C
� → $$
$ → C�
C → �II�
� → ��
� → �I
I → ���
� → �
� → �1
� → #�

� → HOGDJEDE'�����
� → �CC�#$$
$ → C�
C → �#
� → II����
� → G'�
I → -#�
===
& → �
% → �#

��→���$C
��→�$$
$�→�C�
C�→��#�
��→����
��→�I#I
I�→����
��→��#�
��→�

��→����$
��→�$#
$�→��#��I�CC�����
C�→�HI
��→�H�
��→���
I�→���
��→�#�
��→� �
��→��#J-G-DD�EFJ�
D�→��G
J�→��E
E�→�F�
G�→�-�
-�→�#�
F�→� �
H�→�MMM
M�→���

Figure 4.13 Identification of non-recursive L-systems
From top to bottom: original L-system, graphical interpretation, grammars
inferred by SEQUITUR and SEQUITUR-R
(a) snowflake (von Koch, 1905),
(b) combination of islands and lakes (Mandelbrot, 1982),

Using reparsing on the sequence in Figure 4.3a produces the non-recursive version

in Figure 4.3e. This grammar is even smaller than the one produced using domain

knowledge: 30 symbols and 6 rules versus 47 symbols and 13 rules.

Figure 4.13 shows two more L-systems. In Figure 4.13a, the grammar inferred by

SEQUITUR lacks a regular structure, whereas SEQUITUR-R captures the f–f structure

4.4 RETROSPECTIVE REPARSING 97

in rules C, E and G and the larger structure joined by ++ in rules F, D, and the

combination of rules S, A, and B. The L-system in Figure 4.13b has a much more

complex rule, and also makes use of non-drawing f characters to form ‘lakes’ in the

fractal. SEQUITUR forms a grammar that has 26 rules (not all are shown in the

Figure), and little structure. The grammar produced by SEQUITUR-R displays two

distinct rules, B and I, which correspond to the two derivation steps used to produce

the figure. Rules C through H and J through O compress the redundancy in the

original rule headed by f, while rules P and Q compress the rule headed by f in the

original.

4.5 Summary

This chapter has highlighted a deficiency of the basic SEQUITUR algorithm

described in Chapter 3: it fails to detect the source grammar of certain highly-

structured sequences. As argued in Section 2.5, no guarantees can be made about

source identification, but we have nevertheless presented two techniques that

improve the hierarchy inferred from L-system output. The first relies on knowledge

about the domain, and places additional constraints on SEQUITUR’s grammars. The

second uses hindsight to correct initial parsing, which works extremely well on a

range of L-systems. Both these techniques will be built upon in subsequent chapters:

the domain-knowledge constraints are applied to graphical rendering in Section 7.2,

and a constraint for natural language is used in Section 7.1. Section 5.1 describes

how the grammars produced by reparsing can be transformed into the original

recursive, non-deterministic L-system.

�

5. Generalising the grammar

The grammars produced by SEQUITUR can only generate one sequence. The real

power of a grammar, however, is its ability to produce a whole language of

sentences. This chapter examines ways of generalising the grammars produced by

Sequitur to make them more expressive.

The thesis proposes two kinds of structure. The first, exact repetition, has been

discussed in Chapters 3 and 4. Here we address the second kind of structure:

branching and looping. Inferring this kind of structure allows models to be produced

that can generate a variety of sequences, based on the contents of a single sequence.

This transformation from a single sequence to many sequences is a process of

generalisation. This chapter discusses four kinds of generalisation:

• Generalising a grammar produced by SEQUITUR to form a recursive L-system,

• Generalising a trace of a program executing on one input to a program that

can process other inputs,

• Generalising SEQUITUR’s rule S by recognising branches and loops, producing

non-deterministic rules for branching and recursive rules for looping,

• Generalising the sequence of tokens in a textual database to separate the

fixed structure of the database from the variable content.

Four case studies are presented to demonstrate these generalisations. The first

concerns inferring the original recursive L-system from the non-recursive version

found by reparsing in Chapter 4. This generalisation enables the grammar to

generate sequences with different numbers of derivation steps, based on the crucial

observation that the same rule, at different derivation levels, has the same form. In

fact, different instances of a rule unify. A Prolog program will be used to infer the

original L-system, with unification providing the generalisation technique.

The second study is the inference of a computer program from a trace of its

execution, which involves recognition of loops, branches and procedure calls. The

technique presented is an extension of the ingenuous model described by Witten

(1979), and performs remarkably well on an input sequence expressed in an

appropriate way. The effects of procedure calls and recursion are studied, and a

technique for inferring them is presented. An essential element of this analysis is a

method of extracting an acyclic version of the automaton.

100 CHAPTER 5: GENERALISING THE GRAMMAR

The third case study involves the sequential structure produced by grammars for

programming languages. This section combines SEQUITUR’s ability to recognise

repetitions with the automaton approach to recognising branching and looping

structure. The rationale for combining these approaches is based on the observation

that when SEQUITUR is invoked on a sequence such as the text of a computer

program, rule S in the final grammar is often very long, and accounts for about two

thirds of the symbols of the entire grammar. One way to interpret this is to say that

the rules apart from rule S capture the repetitive structure of the sequence, and S

contains the unstructured residue—all the digrams that only appear once in the

input sequence. To reduce the size of the grammar further, that is, to recognise more

structure in the sequence, the obvious point of attack is the size of rule S. The kind

of structure in rule S, if any, is of a more subtle nature than exact repetition. This

non-deterministic structure is exactly where the automaton modelling technique

excels.

It will be shown, however, that detection of non-deterministic structure is more

difficult than detection of exact repetition, because the space of possibilities is much

larger, and the potential for recognition of spurious patterns is greater. Even the

application of the minimum description length principle is unhelpful if the

examples are small. The fourth case study involves a much larger sequence: a 9 Mb

textual database. The size of the database is helpful in justifying certain

generalisations. Once these generalisations are made, SEQUITUR can compress the

database much more successfully than any other general-purpose or specialised

scheme.

5.1. Inferring recursion from self-similarity

Section 4.4 described how reparsing a sequence allows SEQUITUR to infer a non-

recursive version of a context-free L-system from its output. This section shows how

the non-recursive grammar can be generalised to the original recursive L-system.

The key to this process is that successive applications of an L-system rule appear as

separate rules in the non-recursive version, but have the same form. That is, self-

similarity in the fractal figure can be detected in the inferred rules The first

subsection describes how pattern matching can be used to identify rules in the non-

recursive grammar that stem from the same recursive rule in the L-system. The

5.1 INFERRING RECURSION FROM SELF-SIMILARITY 101

second subsection presents a Prolog program that performs unification to recreate

the recursive grammar.

5.1.1 Unification as generalisation

Recall from Chapter 4 that an L-system, evaluated to a particular number of

derivation steps, can be re-expressed as a non-recursive grammar. Figure 4.3d shows

the non-recursive L-system equivalent to Figure 4.3a. The non-terminals A in

Figure 4.3d represent the f symbols produced by the first application of the rewriting

rule to the start string of f. The non-terminals B represent the fs in the second

application of the rewriting rule to the string. To recreate the original L-system, it is

necessary to recognise the equivalence of rules S, A, and B. This recognition is based

on pattern matching. Each of the rules has the same form: if a terminal symbol (such

as f, [,], + or –) appears in one of the rules, the same symbol, or a non-terminal,

appears in the same position in all the other rules. If a non-terminal appears in two

places in one rule, the symbols at the corresponding positions in a different rule will

be the same. If non-terminals are read as variables, and terminals are read as literals,

this pattern matching corresponds to unification, so a language such as Prolog can

be used to identify corresponding rules.

The process of identifying the recursive L-system from Figure 4.3d after three

derivation steps proceeds as follows. The first two rules, S and A, unify: all of the

terminals occur in the same places, and A occurs in the same places within S as B

does in A. Unifying these two rules first binds the two heads together, unifying S

with A, then unifies A and B, because they occur in the same position in both rules.

The bindings so far are S ≡ A ≡ B . The equivalence of A and B has further

ramifications. Because each of A and B head rules, the contents of those rules are

unified, producing B ≡ f. There are no further effects of these bindings, so the final

bindings are S ≡ A ≡ B ≡ f. That is, the grammar can be re-expressed in terms of f

alone, by replacing all occurrences of A, B, and S by f. Now all rules are identical:

f → f[+f]f[–f]f. Deleting all but one of them and adding the fact that the start symbol

has become f gives the original grammar in Figure 4.3a.

Figure 5.1 shows the same process on the grammar that SEQUITUR-R produces from

the sequence in 4.3b after three derivation steps. The non-recursive grammar (the

same as that in Figure 4.3e) is shown in the first column. Unifying rules S and B

produces three bindings: S≡B, B≡D and A≡C, as shown in the second column. There

102 CHAPTER 5: GENERALISING THE GRAMMAR

original unify rules S and B match bodies of
two rule S

final expand A,F and G

�≡$
$≡�
�≡C

�≡�
�≡�

� → $I���
� → $!$
$ → �IC�C
C → �!�
� → �I���
� → �!�
I → �
� → �"

� → �I���
� → �!�
� → �I���
� → �!�
� → �I���
� → �!�
I → �
� → �"

� → �I���
� → �!�

� → �I���
� → �!
I → �
� → �"

� → �I���

� → �!�
I → �
� → �"

� → �� �!��"�!�

Figure 5.1 Unifying a rule to produce a recursive grammar

original unify rules S and D final
�≡�
$≡�
�≡�

� → $I���
� → $!$
$ → �IC�C
C → �!�
� → �I���
� → �!�
I → �"
� → �

� → �I���
� → �!�
� → �IC�C
C → �!�
� → �I���
� → �!�
I → �"
� → �

� → �I���
� → �!�
� → �IC�C
C → �!�

I → �"
� → �

Figure 5.2 The results of a different initial unification

are now two pairs of identical rules, so one of each is deleted. Next, there are two

rules headed by S. Unifying their bodies gives new bindings S≡f and A≡E, shown in

the third column. Deleting duplicate rules produces a grammar where all heads and

bodies of rules are unique, and the process stops. The final grammar is shown in the

fourth column. Expanding A, F and G produces the original L-system f → f[+f]f[–f]f.

Note that bindings are made in two ways. The first binding, of rules S and B, is

determined by unification of rule contents, and subsequent bindings are motivated

by equality of the head of two rules, such as the two rules headed by S. In more

complex grammars, the bodies of two rules may be identical, in which case the

heads should be unified. Once the first binding is made, the rest follow as a

consequence. Not all initial bindings are equally effective. Figure 5.2 shows the

result of binding rules S and D. This binding appears no less promising than S and B

at the outset, but the consequences are much less wide-ranging. The result is a

recursive grammar, but one with two more rules than the correct version in

Figure 5.1. Furthermore, this grammar is not capable of producing the sequence

produced by the original grammar after one derivation step. The solution, as

5.1 INFERRING RECURSION FROM SELF-SIMILARITY 103

original unify G and K unify B and J unify D and K

a � → ���$
� → $#
$ → �CC��C
C → #I
� → I�
� → I
I → ������
� → #D
� → D�
� → D
D → EJJEGJ
J → #�
E → �G
G → �

b � → ����
� → �#

� → EJJEGJ
J → #�
E → �G
G → �

c � → ���$
� → $#
$ → ECCE�C

� → ������
� → #$
� → $�
� → $

J → #�
E → �G
G → �

d � → ���$
� → $#
$ → �CC��C
C → ##
� → #�
� → #
 → ������
� → #D
� → D�
� → D
D → E��EG�

E → ��
G → �

Figure 5.3 Consequences of initial unifications on a more complex grammar
(a) the non-recursive Koch grammar
(b) an effective unification
(c) a less effective but correct unification
(d) an incorrect unification

explained below, is to try all possible unifications, and pick the smallest grammar

that results.

To demonstrate two further problems, Figure 5.3 shows three unifications of the

inferred non-recursive form of the Koch L-system from Figure 4.10. Figure 5.3a gives

the original L-system, and Figure 5.3b shows the result of a successful unification.

Figure 5.3c provides an example of a sub-optimal but correct grammar. Initial

bindings can produce consequences that conflict with each other. In Figure 5.3a,

rules D → FE and G → –J unify, even though their form does not suggest that they

are necessarily related. This unification implies E ≡ J. However, the body of rule E is

two symbols long, whereas the body of rule J is six symbols long. Their bodies

therefore prevent them from unifying, contradicting the initial unification. This is

an important constraint in cases where many there are many possible bindings

between rules in the grammar.

The worst possible case is where an initial binding does not produce incompatible

consequences, but gives rise to an grammar that is incapable of reproducing the

original sequence. Figure 5.3d shows the result of unifying D and K. None of the

consequences are incompatible, but the unification produces rules such as C → – –

and f → +–, although neither – – nor +– appear in the original sequence.

104 CHAPTER 5: GENERALISING THE GRAMMAR

�����4�����(����>��Q�
�5)�R#
������(��1SL1!�����-1)�

������(��>SL>!�����->)� pick two rules
-1�2�->� if they’re different
(

Q�
�5,5��� if this is a top-level call
��1SL1!,��>SL>!+ unify the rules

L1,,L>��7���1,�>+� otherwise, if the heads are identical unify the bodies
�1,,�>��7��L1,L> otherwise, if the bodies are identical unify the heads

)�

�����(��1SL1!������1)� remove one of the identical rules
�����4�����(�1���>����)= and keep going

�����4�����(������4)= stop when there are no identical heads or bodies

������('���'S4!��1)= pick a rule from the grammar
������('���4SL!��-)�R#

������('��L��-1)��-�
��-1� �1=

�����('���&SL�
�!��L�
�)�R#

'�,,�&� careful not to unify X and Y
7= we don’t care which matching rule is deleted

�����('���&SL�
�!���&SL�
�1!)�R#������('��L�
���L�
�1)=

Figure 5.4 Prolog code for transforming a non-recursive grammar to a recursive one

5.1.2 Implementation of the generalisation

To find the correct recursive grammar, a system should try all possible initial

bindings, detect incompatible consequences, and choose the smallest final grammar

to avoid the larger incorrect ones. This subsections presents such a system, and it

infers the correct L-system for all of the L-systems discussed in Chapter 4, as shown

in Figures 4.3, 4.4 and 4.13. The program was written in Prolog because of its in-

built unification and backtracking capabilities. The code is shown in Figure 5.4.

The input is the non-recursive grammar, represented as in Figure 5.5. A grammar is

a list of rules, a rule is a two-element list of the head and the body, and the body is

also a list. Non-terminals are represented as variables, and terminals as literals. The

predicate match-rules is called with G bound to the non-recursive grammar, and

Unify set to yes. This means that at the top level, two rules will be unified, and at

every recursive call after that, the consequences of the unification will simply be

propagated.

The two calls to member retrieve successive rules from the grammar. N1 and N2

contain the indexes of the rules in the grammar. So that a rule is never compared to

itself, N1 is required not to be equal to N2, and to ensure that rules are only

compared to each other once, N1 must be less than N2. Next, if Unify is yes, the

5.1 INFERRING RECURSION FROM SELF-SIMILARITY 105

T#������#�����(������$��������!!�

���������������������$�<!<�$!!�

�����������������$�������C���C!!�

�����������������C�����<!<��!!�

���������������������I��������!!�

���������������������I�<!<�I!!�

�����������������I������������!!�

���������������������:�:�#!!�

�����������������������<!<��!!�

���������������������:�:� !!!�

�����������������)=

��,���������������!!�����:�:�#!!�������<!<��!!�����:�:� !!!

��,������I��������!!�����I�<!<�I!!��I�����������!!�����:�:�#!!�������<!<��!!�����:�:� !!!

��,�===

Figure 5.5 Generating recursive grammars

two rules are unified. If this fails, the Prolog interpreter backtracks to find a new pair

of rules. If the unification succeeds, one of the rules is deleted, because they are now

identical, and match-rules is called recursively with Unify set to no.

In each recursive call, two rules are chosen as before, and their bodies are examined

for equality. The == operator is used to test for exact equality rather than

unification. If they match, the heads are unified, one of the rules is deleted, and

match-rules is called again. If the bodies match but the heads do not unify, this

indicates that some consequences are incompatible. In this case, the program should

not backtrack to find another matching pair: any incompatibility should nullify the

initial unification. For this reason, a cut is inserted just after this test, so that as soon

as the incompatibility is found, the goal fails. If the bodies are not equal, the heads

are tested for equality. If they are equal, the bodies are unified. Again, backtracking

is prevented if == succeeds but the unification does not.

One final point should be made about handling the grammar, which contains

unbound variables. The delete predicate is intended to delete a rule from the

grammar that exactly matches the one passed in. The straightforward stopping

condition for delete is delete(X, [X|Tail], Tail). Unfortunately, this attempts to unify

the rule passed in with the rule at the head of the list, the two X variables. If this

succeeds, it deletes a rule that unifies with the rule passed in, rather than one that

exactly matches it. To correct this, different variables, X and Y, are used for the Xs,

106 CHAPTER 5: GENERALISING THE GRAMMAR

and literal equality is used instead of unification. Furthermore, there are always at

least two different rules that can be deleted from the grammar, since the deletion is

to get rid of duplicates. It is not important which one is deleted, so to prevent

identical alternate grammars produced by backtracking in the delete predicate, a cut

is inserted.

Match-rules returns successive solutions; picking the one with fewest rules gives the

correct recursive grammar. Figure 5.5 shows the first two solutions produced by the

program for the bracketed L-system discussed earlier, the first of which is the correct

grammar.

This process is inefficient, because many combinations of rules are checked for

matching heads or bodies, even if they have not changed since the last check.

Indeed, because the space of matching rules is searched in this way, the process is

exponential in the number of rules. At the top level, there are O(r2) pairs of rules,

where r is the number of rules. Unifying a pair reduces the number of rules by one,

so there are O((r – 1)2) pairs to compare. Proceeding in this way gives a total time

complexity of O(r!2). Assuming that the sequence is derived from a recursive L-

system, the size of the non-recursive grammar produced by SEQUITUR is

proportional to the logarithm of the size of the sequence, i.e. r ∝ logn, where n is the

size of the sequence. The complexity of the inference procedure is therefore

O((logn)!2), which, applying Stirling’s approximation for factorials, approximates

O(n).

The Prolog implementation is useful for illustrative purposes. However, a more

efficient procedure would efficiently build and maintain a table of matching heads

and tails, so that after the quadratic process of finding unifying pairs at the top level,

following the consequences of the unification would be linear in the number of

rules. This would lead to an overall complexity of O(r2), or O(log2n).

5.2 Reconstructing a program from an execution trace

Procedural programming languages such as C provide flow of control constructs

including branches, loops, and procedure calls. This section considers how a

program might be reconstructed from a trace of its execution—that is, how flow of

control statements can be inferred from a sequence that they create. These

5.2 RECONSTRUCTING A PROGRAM FROM AN EXECUTION TRACE 107

branching and looping structures occur in a wide variety of sequences, some of

which will be seen in Section 5.3, and this situation represents a well-understood,

controllable environment in which to construct inference techniques. In this

section, SEQUITUR’s ability to form grammars will be temporarily ignored in order

to concentrate on this non-deterministic structure. In Section 5.3, however, the

grammatical techniques and the automaton techniques described here will be

combined.

Gaines (1976) proposed a straightforward algorithm for inferring a program from a

trace and demonstrated it on a trace of bubblesort. The idea is to construct a finite-

state automaton to represent the program, where each state corresponds to a unique

instruction in the trace, and transitions indicate adjacent instructions. That is, for

each instruction in the trace, a transition is created between the current node and

the node representing the newly observed instruction. If the instruction is novel, a

new node is created for it.

For example, the bubblesort program in Figure 5.6a executes the sequence of

instructions partially shown in Figure 5.6b. This sequence consists of one C

expression per line. Figure 5.6c is the finite-state automaton derived from the trace.

The resulting automaton is non-deterministic, because it is not clear which branch

to take based on the conditional statements. To transform this automaton into an

executable program, the branches following conditions such as if (i >= 0), the

shaded node in Figure 5.6c, must be labelled true or false. This can be performed by

extending Gaines’ technique to run the original data through the automaton and

follow the trace. For example, the first time that i >= 0 is evaluated, N is equal to

10, and the comparison is 10 >= 0. This is true, so the next statement, j = 1, must

represent the true branch of the condition. Similarly the appropriate branches for

true and false results of the other conditions can be reconstructed. The resulting

finite state automaton, shown in Figure 5.6d, represents a correct bubblesort

program, and can be translated back to the executable program in Figure 5.6a.

The success of this technique is due to two simplifications. First, the instructions do

not include the specific data that they operate on—rather, they are stated in terms

of the variables in the code. Second, the program does not make any calls to

procedures. The first simplification is difficult to remove. If the sequence consisted

of lines such as if (10 > 0) instead of if (i > 0), it would be necessary to find the

correct substitution of variables, and expressions including variables, before

108 CHAPTER 5: GENERALISING THE GRAMMAR

a
�����!�,�*>�?@�>?�A�B�@?�A�1�A�@6+

��
�()�*
������(
�,�1/+�
�.,�/+�
�##)
��������(0�,�1+�0�2�
+�0�)
������
��(��0�#�1!�.���0!)�*
����������,���0�#�1!+
����������0�#�1!�,���0!+
����������0!�,��+
������6
6

b
�,�-

��(
�.,�/)
0�,�1

��(0�2�
)

��(��0�#�1!�.���0!)
0�

��(0�2�
)

��(��0�#�1!�.���0!)
��,���0�#�1!+
��0�#�1!�,���0!+
��0!�,��+
===

c

i = 10

j = 1

if (i >= 0)

if (j < i)

i --
if (a[j - 1] > a[j])

j ++
t = a[j - 1]
a[j - 1] = a[j]
a[j] = t

d

i = 10

j = 1

if (i >= 0)

t

if (j < i)

i --

f

if (a[j - 1] > a[j])

t

j ++

f

t = a[j - 1]
a[j - 1] = a[j]
a[j] = t

t

f

Figure 5.6 Inferring a program from an execution trace (after Gaines, 1976)
(a) bubblesort program
(b) part of the trace produced by (a)
(c) finite state automaton produced from the bubblesort trace
(d) labels added to the conditional branches in (c)

attempting to infer an automaton. This is beyond the scope of this thesis, which is

concerned with individually meaningless symbols.

The second problem, which occurs when programs include procedure calls, is more

relevant. Figure 5.7a shows a bubblesort program where the array is printed before

and after one of the assignments. Executing it and forming an automaton from the

trace results in the automaton in Figure 5.7b. In the automaton, the starred state,

containing the instruction putchar(‘\n’), has branches to two different instructions

with no accompanying condition. With no basis for deciding which branch to take,

the program cannot be executed: the automaton is non-deterministic. The next

5.2 RECONSTRUCTING A PROGRAM FROM AN EXECUTION TRACE 109

subsection describes how this situation can be remedied to produce a deterministic

automaton.

5.2.1 Identifying procedures

The two transitions from the starred state in Figure 5.7b correspond to the return

from the print_array procedure. The next state is not determined by information

contained in the trace, but rather by the return address pushed on the program stack

at the start of the procedure. If the start of the procedure can be identified, then

each transition from the return state can be associated with the corresponding

transition into the start state. That is, the procedure call associated with the

procedure return can be identified. Using this information, and separating the states

in the procedure from the rest of the graph, the deterministic automaton can be

reconstructed. The new automaton will be a push-down automaton, because a stack

is necessary to remember the return states.

The automaton can be made deterministic in the following way:

For each state with non-deterministic transitions leading from it:

1. Replace the transitions with a procedure return,

2. Find the start of the procedure,

3. Remove the subgraph beginning at the start of the procedure and ending

at the procedure return and label it a procedure,

4. Pair the states before the start of the procedure with the states following

the return by examining the original trace,

5. Connect each pair by inserting a procedure call between them.

When all procedures have been identified, no non-deterministic states will remain,

and the set of graphs will form an executable program. Figure 5.7c shows the final

form of the automaton derived from the trace of the program in Figure 5.7a. The

procedure is shaded in Figure 5.7b, and has been separated in Figure 5.7c. The non-

deterministic branches have been replaced by the word return, and the two branches

into the procedure have been replaced by call procedure. This subsection examines

the problem of identifying the procedure (step 2) in more detail.

110 CHAPTER 5: GENERALISING THE GRAMMAR

a ��
�()
*
��
���
+
������(
�,�-+�
�.,�/+�
�##)
��������(0�,�1+�0�2�
+�0�)
������
��(��0�#�1!�.���0!)�*
����������,���0�#�1!+
����������0�#�1!�,���0!+
��������3�
��4����5(�)+
����������0!�,��+
��������3�
��4����5(�)+
������6
6

3�
��4����5(����5)

�������5�!+
*
��
���
+

������(
�,�/+�����5�
!�7,�#1+�
�)
����3�
���(89�8������5�
!)+
��3������(:;�<)+
6

b
i = 10

j = 1

if (i >= 0)

t

if (j < i)

i --

f

if (a[j - 1] > a[j])

t

j ++

f

t = a[j - 1]
a[j - 1] = a[j]

t

f

a[j] = t

i = 0

if (array[i]
!= -1)

putchar(’\n’)
printf("%d ", array[i])

i ++

f t

*

c
i = 10

j = 1

t

if (j < i)

i --

f

if (a[j - 1] > a[j])

t

j ++

f
t = a[j - 1]
a[j - 1] = a[j]
call procedure
a[j] = t
call procedure

t

f

i = 0

if (array[i]
!= -1)

putchar(’\n’)
printf("%d ", array[i])

i ++

f t

procedure

return

if (i >= 0)

Figure 5.7 Inferring procedures from an execution trace
(a) bubblesort program with procedure calls,
(b) automaton derived from trace of (a),
(c) the effect of extracting a procedure from (b)

5.2 RECONSTRUCTING A PROGRAM FROM AN EXECUTION TRACE 111

In the automaton, a procedure appears as a group of states which can all be reached

from one ‘source’ state (the first expression in the procedure), and from which a

unique ‘sink’ state (followed by a return as determined in step one above) is

reachable. Furthermore, the only states in the procedure that may branch to or from

states outside the group are the source and sink sates. That is, a procedure is defined

as a set of nodes which all have a common ancestor, and a common descendant

which is followed by a return. The source node may only be connected to the rest of

the graph by incoming edges, and the sink only by outgoing edges. For example, in

Figure 5.7b, the only transitions entering the grey area go to the start of the

procedure, i = 0, and the only transitions leaving the area emanate from the end of

the procedure, the starred node. Given this definition, detecting the start of the

procedure is tantamount to identifying the whole procedure. Once the start is

known, all the paths leading from the start state to the end state are followed. All of

the nodes traversed belong to the procedure. In Figure 5.7b, the procedure could not

include the node directly above the grey area, because the transition from a[j] = t to

i = 0 would then lead from outside the procedure to a state that is not the first state

in the procedure. The state directly below the procedure, labelled a[j] = t, could not

be incorporated, because the transition from it is deterministic, and only states with

non-deterministic transitions may be the last state in the procedure.

The terms ancestor and descendant were used above to denote nodes that precede or

follow other nodes in the graph. These terms only make sense in an acyclic graph,

because a cycle allows a node to be its own ancestor and descendant. For example,

the presence of a single transition from the final state in the automaton to the first

state makes every state an ancestor of every other state. Because we are interested in

programs that contain iteration, the automaton is usually cyclic. To allow ancestor

and descendant to be defined, an acyclic structure must be imposed on the graph for

the purposes of detecting a procedure.

The acyclic structure is computed in the following way. The graph is traversed

depth-first, as if it were already acyclic. If a transition leads from the current state to

a state on the path from the root to the current state, it is marked as a loop. Loops

are not followed by the traversal procedure. When the traversal is completed,

ignoring the loops allows the graph to be laid out as a tree, where the branching

structure defines the layout and the loops are incidental.

112 CHAPTER 5: GENERALISING THE GRAMMAR

1

2

3

while there are non-deterministic branches,
find-procedure(root)

global start, success, end

4

5

6

7

8

9

10

11

12

find-procedure(node)
let start = node
let success = false
find-procedure-end(node)
if success,

remove the subgraph beginning at start and ending at end
otherwise

for each non-loop transition from node
find-procedure(descendant of node)

13

14

15

16

17

18

19

20

21

22

23

find-procedure-end(node)
if node has non-deterministic branches,

if another end has already been found,
let success = false

otherwise,
let end = node, let success = true

otherwise, if node has a loop to an ancestor of start
let success = false

otherwise,
for each non-loop transition from node
find-procedure-end(descendant of node)

Figure 5.8 Algorithm for identifying a procedure in an automaton

The definitions above can now be transformed into an algorithm, which is shown in

Figure 5.8. Find-procedure is called with a candidate procedure start, initially the root

node (line 2). When it returns to the top level, a procedure has been identified and

removed from the main graph. Find-procedure is called repeatedly until all

procedures have been identified—that is, until there are no non-deterministic

branches remaining (line 1).

For each candidate start (line 5), find-procedure-end (line 13) is called to identify the

end of the procedure (line 7). If this is successful—that is, a unique end node is

found, and the intervening nodes have no transitions going out of the procedure—

then the subgraph starting at start and ending at end is removed and made into a

new procedure (line 9). If it is unsuccessful, find-procedure calls itself recursively on

all of the current node’s descendants, looking for other possible procedure starts (line

11-12).

5.2 RECONSTRUCTING A PROGRAM FROM AN EXECUTION TRACE 113

Find-procedure-end (line 13) is called with a candidate start node, and calls itself

recursively to descend down the graph. If it encounters a node that is a procedure

return—a node with non-deterministic branches—it checks to see whether a return

has already been identified. If one has, the procedure sets success to false and returns.

Thus a procedure must have a single return point. If it is the first return to be

identified, it sets success to true, and records the state in end. If the node does not

have non-deterministic branches, all of the loops out of that node are examined to

see if they lead to ancestors of the start node. If they do, the constraint forbidding

transitions out of the procedure has been violated, and success is set to false. If the

node is not a return node, and loops lead back into the procedure, find-procedure-end

is called recursively on the non-loop transitions to continue its search for the end of

the procedure.

Once the start has been identified, all of the nodes visited are removed from the

graph, made into a separate subgraph, and labelled as a procedure. All of the parent

nodes of the start node are joined to a node that calls the procedure, and this new

node is joined to the appropriate child node of the end node of the procedure. This

matching can be performed based on the order in which transitions are added—

transitions coming into the start node are added in the same order as the

corresponding transitions out of the end node.

5.2.2 Comments on the procedure identification algorithm

This procedure potentially examines all nodes in the graph as candidate procedure

starts. For each of these, it traverses a potentially large space of the graph looking for

the end. For this reason, the process is quadratic in the number of nodes in the

graph, i.e. in the number of unique instructions in the trace. By traversing the graph

from the root looking for a procedure start, the largest procedure possible will be

identified. This avoids a problem with a simpler and more efficient scheme that

would operate as follows. Since the last node in a procedure is known, it should be

possible to traverse the graph in the reverse direction until all paths came together.

This would avoid the expensive search through the whole tree, evaluating each

node as a potential procedure beginning.

Consider, however, the graph in Figure 5.9. The correct procedure is the larger box,

containing six nodes. This would be identified by the algorithm in Figure 5.8, but

the more efficient algorithm would identify the smaller procedure containing three

114 CHAPTER 5: GENERALISING THE GRAMMAR

t = a[j - 1]
a[j - 1] = a[j]

a[j] = t

i = 0

if (array[i]
!= -1)

putchar(’\n’)
printf("%d ", array[i])

i ++

f t

if (j < 0)

i = 2i = 1

Figure 5.9 A case where a simpler algorithm identifies the wrong procedure

nodes. This is because starting at the return node and working back identifies the

node where the two branches rejoin as the start node: it has two transitions into it

that appear to match the two branches out of the procedure.

In some cases, the algorithm for identifying loops depends on the graph traversal

order. The sequences in Figure 5.10a and Figure 5.10b produce the same automaton.

Consider a traversal algorithm that iterates over branches in the order in which they

were added. When the automaton is built using the sequence in Figure 5.10a, the

sequence ed appears before de, so the traversal algorithm infers that the de transition

is a loop, as marked in the automaton with the symbol . In the sequence in

Figure 5.10b, however, de appears before ed, so the transition from e to d is labelled a

loop. Because the procedure-finding algorithm utilises the acyclic version of the

graph, and because the transitions included in the acyclic graph depend on the

traversal order of the graph, the algorithm for identifying loops is sensitive to the

presentation order of the sequence, whereas the rest of the automaton inference

algorithm is not.

The problem does not in fact lie with the identification algorithm but with the

automaton. The situation for which the procedure identification method is designed

is one where the sequence is the output of a procedural program, and branches are

the result of conditionals. Nodes b and e are the result of a condition at a. Node d is

5.2 RECONSTRUCTING A PROGRAM FROM AN EXECUTION TRACE 115

a abcaedabdef b abcabdedaef

c a

b

c

e

fd

d a

b

c

e

f

d

Figure 5.10 Sensitivity of loop-finding algorithm to sequence order
(a) & (b): two sequences that produce the same automaton
(c) identifying loops based on the automaton produced from (a)
(d) identifying loops based on the automaton produced from (b)

a result of conditions at b and e. It is impossible to construct a conditional in a high-

level language that would give rise to a construction where a branch of one

condition is also a branch of another condition, and where the both branches can

lead back to one of the conditions. In traces of actual programs, loops only go to

ancestors that are determined by both paths up from a node. That is, a loop could go

to a because it is an ancestor via b as well as via e. Thus, the procedure finding

algorithm is only claimed to operate correctly on sequences produced by a program

trace, not on arbitrary sequences.

5.2.3 The effect of recursion

To study the effect of recursion, consider the prototypical doubly recursive program

in Figure 5.11a. This program, while it does not perform a useful function, illustrates

how the recursive program appears when a non-recursive automaton is inferred from

a trace. The beginning of the procedure is marked by an instruction enter recursion,

and the condition that terminates recursion is marked no more recursion. The

program makes two recursive calls, before which the instruction before recursion has

been inserted, along with between recursion and after recursion in appropriate places.

Figure 5.11b shows the automaton produced from a trace of Figure 5.11a. There are

two states with non-deterministic branches, which are shaded grey. Replacing the

non-deterministic transitions out of these states with returns leaves two states with

116 CHAPTER 5: GENERALISING THE GRAMMAR

no incoming transitions: between recursion and after recursion, as shown in

Figure 5.11c. Because the transitions to these states were non-deterministic,

corresponding to procedure returns, the states must represent instructions that

follow procedure calls. This information will be used when the procedure calls are

inserted.

The beginning of the procedure can then be identified described above. This finds

the state that begins with enter recursion. The procedure is isolated in Figure 5.11d,

and marked by a grey rectangle. The two transitions to the start state must be

procedure calls, so they are removed, and the instruction call procedure is inserted in

their place. Finally, by re-examining the trace, the order of the calls and the states

following calls can be determined, and the automaton can be reconstructed in

Figure 5.11e. This involves matching the two states mentioned earlier with the

appropriate procedure calls.

Section 5.1 also discussed recursion. Recursion in L-systems is, however, somewhat

different to recursion in programs: the examples in Chapter 4 all produce a very

regular pattern, giving rise to similar rules at different levels of recursion. In

programs, branches are dictated by data outside the context of the sequence, so the

rules that would be formed are much less regular. That is, whereas a rule in an L-

system will give rise to a fixed number of symbols that can head rules and thus

continue the recursion, the execution of a recursive program such as quicksort will

recurse to a depth dictated by the number of items that it is required to sort. This

leads to the different approach for inferring each kind of recursion.

5.2 RECONSTRUCTING A PROGRAM FROM AN EXECUTION TRACE 117

a
����������(
����)�*
��������������
��+

��
��(��,,�/)�*
������������������
��+
����������+
��6
�������*
�����������������
��+
�����������(��#�1)+
�������U����������
��+
�����������(��#�1)+
����������������
��+
����������+
��6
6

b
enter

recursion

before
recursion

if (n == 0)

f

no more
recursion

t

after
recursion

between
recursion

c
enter

recursion

before
recursion

if (n == 0)

f

no more
recursion

t

after
recursion

between
recursion

return

return

enter
recursion

before recursion
call procedure

if (n == 0)

f

no more
recursion

t

after
recursion

between recursion
call procedure

returnreturn

call procedure

procedure
enter

recursion

before recursion
call procedure

if (n == 0)

f

no more
recursion

t

after
recursion

between recursion
call procedure

return return

call procedure

procedure

Figure 5.11 The effect of recursion
(a) prototypical doubly-recursive program
(b) automaton produced from trace of (a),
(c) the effect of treating non-determinism as function returns in (b),
(d) part (c) with the procedure identified, and procedure calls inserted
(e) part (d) with states before and after calls matched up.

118 CHAPTER 5: GENERALISING THE GRAMMAR

5.2.4 Summary of procedure identification

It has been shown that programs that contain only iteration can be easily

reconstructed from a trace of their execution. Furthermore, it is also possible to infer

programs that contain procedure calls and recursion from traces by constructing a

push-down automaton. This second operation takes quadratic time in the number of

unique instructions. Applications of these techniques to actual situations where

program traces are available has not been investigated. Rather, the principles will be

applied, in the next section, to sequences that originate from sources other than

programs. The branching and looping structures that exist in programs also present

themselves in sequences such as those generated by context-free grammars, and the

same structure detection techniques turn out to be useful. The recognition of

procedure calls and recursion, however, will not be built on.

5.3 Constructing automata from other sequences

So far in this chapter, sequences have been generalised in two ways. Section 5.1

showed how to transform a non-recursive grammar into its recursive original.

Section 5.2 showed how branching and looping structure can be identified using a

simple automaton induction procedure. SEQUITUR, as described in Sections 3 and 4,

excels at recognising exact repetition, but has no way of capturing non-determinism:

any non-determinism ends up as a residue in rule S. On the other hand, the

automaton inference technique easily captures non-deterministic structure but, as

will be shown in this section, is ineffective when the sequence is not presented at

the appropriate level of granularity.

This section shows how SEQUITUR’s ability to identify significant segments in a

sequence can be combined with the automaton identification technique’s prowess at

recognising branching and looping structures. The case studies come from sequences

that are generated by non-deterministic grammars. A ready source of these is found

in program source code. Although this section deals with program code, it does so in

a way that is completely unrelated to that in Section 5.2—instead of analysing the

order in which the lines are executed, it is concerned with the text of the programs

at a character level.

The section starts by providing a motivating example, where the automaton

technique discussed in Section 5.2 is ineffective in detecting structure but, in

5.3 CONSTRUCTING AUTOMATA FROM OTHER SEQUENCES 119

cooperation with SEQUITUR, captures structure perfectly. Section 5.3.2, however,

demonstrates that slight variations on a sequence make detecting branching

structure much more difficult. Section 5.3.3 shows that even the minimum

description length principle is of little use in justifying intuitive notions of structure,

at least in small sequences. Despite the gloomy prognosis for non-deterministic

structure detection, Section 5.4 will present a success story, where a larger sequence

allows MDL to be usefully applied.

5.3.1 Inferring branches and loops

Figure 5.12a shows part of a C program—a switch statement.3 Visually, the structure

of the statement is clear: the keyword switch and a pair of curly braces enclosing a

list of case labels with colons and line breaks in well-defined places. However, some

of this clarity is due to the layout of the sequence—the special symbols that

represent white space and vertical delimiters—as well as, potentially, the reader’s

familiarity with the grammar of the C programming language. The aim of this

subsection is to detect this structure automatically, without specialist knowledge.

Given that the sequence consists of a fixed skeleton interspersed with variable parts

such as the case labels, it seems reasonable to apply the automaton modelling

technique in order to capture the branching structure. Doing this at a character

level results in the automaton in Figure 5.12c. The messy graph reveals little about

the structure of the sequence. The problem is that the branching and looping

structure does not apply to the individual symbols, but to groups of symbols. For

example, there is one node for the symbol s, regardless of whether it is used in the

word switch or the word case.

At the other extreme, applying SEQUITUR to the sequence results in the grammar in

Figure 5.12b. Rule S is long, and only exact repetitions in the sequence have been

detected. For example, the words case and value are each represented by a single

non-terminal in rule S.

3 The absence of semicolons and a break statement at the ends of the lines will be explained later.

120 CHAPTER 5: GENERALISING THE GRAMMAR

a switch (c) {
 case 1: value = 2
 case 2: value = 3
 case 3: value = 4
 case 4: value = 5
}

b S → switch (c) {A1B2A2B3A3B4A4B5↵}
A → ↵case
B → : value =

c
s

w

i

t

c

h

•

(

)

{

↵

a

e

1

:

v l

u

=

23

4 5 }

d

switch (c)

↵case

: value =

1 2 3 4

52 3 4

↵}

e S → switch (c) {AAAA↵}
A → ↵case B: value = C
B → 1|2|3|4
C → 2|3|4|5

f S → switch (c) {D↵}
A → ↵case B: value = C
B → 1|2|3|4
C → 2|3|4|5
D → DA|A

Figure 5.12 Detecting the structure of a C switch statement
(a) the switch statement
(b) an automaton formed from the individual characters in (a)
(c) SEQUITUR’s grammar for (a)
(d) an automaton formed from the contents of rule S
(d) inference of two non-deterministic rules from the branch in (d)
(e) inference of a recursive rule to account for looping in (e)

Neither technique on its own is capable of capturing the whole structure of the

sequence. However, a combination of the techniques—SEQUITUR for identifying

significant segments like case and value, and the automaton technique for capturing

branching and looping, is more successful. Presenting rule S as a sequence to the

automaton technique results in the automaton in Figure 5.12d, which describes the

structure well. The various possibilities, 1, 2, 3, and 4, between the case node and

the ‘: value =’ node suggest a kind of branch structure. This can be implemented in

5.3 CONSTRUCTING AUTOMATA FROM OTHER SEQUENCES 121

a S → ...AAAA... AAA represents two overlapping AAs

b S → ...AAAA...
D → AA

A rule is formed for AA

c S → ...DAA...
D → AA

The second AA has become DA...

d S → ...DAA...
D → AA
D → DA

so a disjunctive rule is formed for D...

e S → ...DA...
D → AA
D → DA

and D replaces DA.

f S → ...D...
D → AA
D → DA

D replaces DA for the fourth A

g S → ...D...
D → DA|A

The rules are rearranged for conciseness

Figure 5.13 Forming a recursive rule for a loop

the grammar by forming a new disjunctive rule B → 1|2|3|4 that can take any of

the values in the branch as its right hand side. The grammar with this modification,

along with a similar one for the branch between the ‘: value =’ and ‘;↵’ nodes, is

shown in Figure 5.12e. The generalised grammar requires extra information to

recreate the original sequence. Each time the rule B occurs, two bits are required to

distinguish between the four possibilities, and similarly for rule C. This totals 4×2 +

4×2 = 16 bits extra.

Having inferred a branch, the next structure in the automaton is a loop, to cover

the sequence AAAA in rule S of Figure 5.12e. In a grammar, loops are produced by

recursion, as in Figure 5.12f. AAAA has been replaced by rule D, which expands

either to DA or simply to A. Applying the recursive rule D → DA many times results

in the production of a D followed by a string of As. Applying the second rule D → A

terminates the recursion.

This rule can be inferred by a simple modification to the original SEQUITUR

algorithm. AAA consists of a pair of overlapping A A digrams, shown in

Figure 5.13a. In the original algorithm that produces deterministic grammars,

overlapping digrams are prevented, because a rule covering AA can only be used

once. However, if this restriction is lifted, the rules are formed in the following way.

First, the rule D → AA is formed as usual, as shown in Figure 5.13b. Next, the first

AA is replaced by D , so the AAA becomes DA, as in Figure 5.13c. In the non-

122 CHAPTER 5: GENERALISING THE GRAMMAR

a switch (c) {
 case 1: value = 2; break;
 case 2: value = 3; break;
 case 3: value = 4; break;
 case 4: value = 5; break;
}

b S → switch (c) {A1B2C2B3C3B4C4B5D↵}
A→ ↵ case
B → : value =
C → DA
D →; break;

c
switch (c)

↵case

: value =

1

52 3 4

; break;↵}

; break;↵case

2 3 4

Figure 5.14 A switch statement with break statements
(a) the text of the switch statement
(b) SEQUITUR’s grammar for (a)
(c) the automaton for rule S of (b)

overlapping case, there would still be AA to be replaced by D, but here the digram is

DA, so a new version of rule D is created: D → DA, as in Figure 5.13d, and DA is

replaced by D in 5.12e. This forms the recursive structure necessary for producing

loops. The fourth A is part of a digram D A, so can be replaced by D , as in

Figure 5.13f. In this case, the original can be reproduced by expanding D to DA, DA

to DAA, and then DAA to AAAA. By removing one of the As from the right-hand

side of D → AA, the rules produce the same set of sequences, along with a new

sequence AA. This is a more concise statement of the loop. Applying this process to

Figure 5.12e produces Figure 5.12f, a recursive, non-deterministic grammar.

These techniques are further discussed in Nevill-Manning et al. (1994a), Nevill-

Manning (1995) and Nevill-Manning and Witten (1995).

5.3 CONSTRUCTING AUTOMATA FROM OTHER SEQUENCES 123

5.3.2 Problems with inferring non-deterministic structure

Unfortunately, this example is idealised. Figure 5.14a is identical to Figure 5.12a

apart from the addition of ‘; break;’ at the end of each case line. This is correct for a

C switch statement, but it presents a problem. The rule A → ↵ case is formed as

before, as shown in Figure 5.14b, but after the third line, a longer rule, C → DA is

created, which prepends the break statement of the previous line to the last three

case lines. In rule S, then, the first line starts with A, whereas the others start with

C. This disrupts the A...B structure in Figure 5.12d, and produces the automaton in

Figure 5.14c. The problem is that in the last three case clauses, rule A has

‘submerged’ beneath the visible level of rule S, and is hidden within rule C.

In this particular example, a process similar to reparsing provides a solution.

Retrospective reparsing, as described in Section 4.4, looks at the suffixes of the

symbols that precede a particular symbol. If the process were to look two symbols

back instead of just one, it would notice that both C and A end with A, expand C,

and form the better branch. However, this solution only works if both C and A are

both two symbols back in the sequence from B. If the case labels were of different

lengths, as they often are, the submerged As would be missed. Generalising the

procedure to cope with this possibility results in a traversal of the tree moving back

along transitions from B, examining the contents of every node and finding a set of

nodes with common suffixes. Removing the fixed number of transitions means that

many solutions may be found, some of them spurious. Furthermore, the search is

now linear in the number of nodes in the graph, and this process must be performed

starting at each node in the tree in order to recognise all similar correspondences, so

the search is O(n2). This process is nevertheless feasible for some applications, and

section 6.3 develops it further. The rest of this section describes a different

approach—detecting branches incrementally.

Can branches be recognised during the processing of the sequence? The example

starts with a case label that is not preceded by a break, and when the second case

appears, rule S contains the sequence ‘switch (c) {A1B2break;A2B’. An incremental

recognition procedure would infer a branch from the A...B...A...B structure.

Having formed this branch, the third and fourth case statements will match the

branch rather than forming a longer rule with the preceding break. Performing

branch recognition incrementally has two advantages over a traversal of the graph

at the end. First, in an interactive context, predictions and inferences are available

124 CHAPTER 5: GENERALISING THE GRAMMAR

immediately to the system for feedback to the user. Second, if analysis is performed

on the fly, branches like the case...value branch can be captured before rule C is

formed.

There are, however, two significant problems with this approach. First, it will not

always be successful, because it relies on the order in which examples appear. If the

case statement without the break appeared last, the incremental technique would

form the three-way branch with rule C, and the final case statement would be left

on its own. It is difficult to justify not forming a rule before the negative example

has been seen. Of course, this is just the situation that reparsing was intended to fix,

by revising decisions later on in the sequence. Unfortunately, as mentioned above,

the change from inspecting the symbol immediately previous to inspecting one an

arbitrary number of symbols previous makes the search much more expensive.

The second and more fundamental problem is the issue of justification for making

such an inference. There are potentially many apparent relationships that are the

result of random chance, and do not result from actual structure in the source. In

particular, there are many more branching structures that it is possible to infer than

there are duplicate digrams. Consider a string of length n over a binary alphabet

{a, b}. The number of digrams in the string is n – 1. There are four unique digrams:

aa, ab , ba and bb, so the expected number of each digram in the sequence is

(n - 1)/4. Each pair of duplicate digrams could give rise to a rule. There are

1
2

n −1
4

n −1
4

−1

such pairs, for each unique digram, so there are four times as many,

n −1
2

n −1
4

−1

possible rules in total. This expression is quadratic in n.

As for branching structures, these can be of two forms:

...a...b...a...b... or

...b...a...b...a...

An ellipsis represents any intervening symbols, i.e. {a, b}*. The second and fourth

set of ellipses are the two different paths of the branch. There are sixteen forms in

5.3 CONSTRUCTING AUTOMATA FROM OTHER SEQUENCES 125

a value = 1 + 2;

switch (c) {
 case 1: value = 2;

b S → A1 + Bswitch (c) { case 1 : AB
A → value =
B → 2;

c

switch (c) {↵case 1:

1

: value =

2;

+

d S → ABswitch (c) { case B
A → value =
B → 1C2;
C → + | : A

Figure 5.15 A spurious branch
(a) the text of the program fragment
(b) SEQUITUR’s grammar for (a)
(c) the automaton for rule S of (b)

total, from aaaa (omitting the ellipses) through aabb to bbbb. In a sequence of length
n, there are nC4 ways of selecting one of the sixteen forms, so the expected number

of branches as above is

1
8

nC4.

This is O(n4). The absolute numbers will decrease for larger alphabets with the same

n, but the effect remains. The comparatively large number of branches versus

repetitions—O(n4) vs O(n2)—is one reason for the increased difficulty of inferring

correct branches over inferring correct repetitions.

Inferring a branch on this basis could be disastrous. For example, Figure 5.15 shows

the start of the case statement preceded by the assignment value = 1 + 2. A branch

can be inferred from the resulting grammar, because of the pattern 1...B...1...B. In

this case, however, the parts between 1 and B have little in common: they are + and

‘: value =.’ These are made into a new rule, which in this case bears no relation to

intuition about the sequence’s structure. Furthermore, it is now impossible for the

first case line to take part in a branch.

5.3.3 Justifying inferences by the MDL principle

It is therefore necessary to devise a test for choosing the case...value branch over the

1...2; branch. One way of doing this is to examine whether inferring a branch

126 CHAPTER 5: GENERALISING THE GRAMMAR

allows the sequence to be encoded more concisely: to justify the inference using the

minimum description length principle. The number of symbols in each grammar

will serve as a rough estimate of the size of a grammar. The result is surprising and

disconcerting: the original grammar in Figure 5.12b has 43 symbols. The grammar

with the branch inferred in Figure 5.12e has 50 symbols: seven more symbols than

the explicit grammar. Even worse, sixteen bits are required to reproduce the original

sequence from the second grammar, whereas no extra information is required for the

first grammar. There is little point comparing the size of the 1...2 branch if even the

preferred grammar cannot be justified using MDL.

This situation is counter-intuitive, and in some ways misleading (it was certainly

not clear at the outset of this research). The case statement looks structured, but the

branching structure is not so intrinsic in the sequence as to be unquestionable. The

gap between intuition and mathematics is partly caused by the rule-forming process.

Looking at the correspondence between case and value suggests a useful prediction:

the whole element value can be predicted by conditioning on the previous case.

However, value is reduced to a single non-terminal symbol by SEQUITUR. This

implies that much of the token value is predicted better by previous occurrences of

the word value: once v appears, the rest of the sequence suggests the continuation

alue. The apparent usefulness of predictive branches is greatly reduced when simple

repetitive structure is recognised.

There is an important difference between forming the hierarchical phrases discussed

in Section 3 and the branching structures described here. In the first case, retracting

a parse can be easily performed by expanding a rule. Also, examining the sequence

in the absence of a rule can be performed by examining the contents of a rule rather

than looking at the non-terminal on the surface. When a branch has been inferred,

the non-terminal that is created to stand for the intervening symbols may group

together sequences that have no relationship to each other, whereas the basic

algorithm at least knows that symbols are adjacent to each other.

The fundamental problem is that inferences can never be completely justified, so

there is always potential for generalising the grammar incorrectly by acting on one.

The next section uses an MDL justification, but acts at the end, and orders

inferences based on the amount of information they save. In this way, the most

justified inferences are made first.

5.4 DETECTING STRUCTURE IN SEMI-STRUCTURED TEXT 127

5.4 Detecting structure in semi-structured text

This section approaches the problem of generalising a grammar in a different way

from the previous section. Here the generalisation is performed on a grammar that is

many orders of magnitude larger than the grammars discussed in the last section.

Whereas the switch statement occupies 91 bytes, the sequence treated here is 9 Mb

in size—100,000 times larger. The inference process, then, is a lot less ambiguous,

because the effect of a useful generalisation in the model is marked. The choice of

generalisation is made based on a calculation of the ability of one symbol to predict

another. The effect of these generalisations on compression performance will be

discussed in Section 6.4. The sequence discussed in this section is a textual database

containing genealogical information about 38,000 individuals.

5.4.1 The genealogical database

The Church of Jesus Christ of Latter Day Saints, for various reasons, maintains the

most comprehensive collection of on-line genealogical information in the world.

The two largest of these databases are the International Genealogical Index, which

contains birth, death and marriage records, and the Ancestral File, which contains

linked pedigrees for families all over the world. The former contains the records of

over 265 million people while the latter contains records for over 21 million; they

are growing at a rate of 10% to 20% per year.

The database is expressed in a semi-structured textual form that is specifically

designed to represent genealogical information. Figure 5.16 shows an example of an

individual record, a family record, and the beginning of another individual record.

The first gives name, gender, birth date, birthplace, and a pointer to the individual’s

family. The family record, which follows directly, gives pointers to four individuals:

husband, wife, and two children—one of which is the individual himself. This

example, however, gives an impression of regularity which is slightly misleading. For

most of the information-bearing fields such as NAME, DATE, and PLACE, there are

records that contain free text rather than structured information. For example, the

last line of Figure 5.16 shows a name given with an alternative. The DATE field

might be ‘Abt 1767’ or ‘Will dated 14 Sep 1803.’ There is a NOTE field (with a

continuation line code) that frequently contains a brief essay on family history.

128 CHAPTER 5: GENERALISING THE GRAMMAR

...
0 @26DS-KX@ INDI
1 AFN 26DS-KX
1 NAME Dan Reed /OLSEN/
1 SEX M
1 BIRT
2 DATE 22 JUN 1953
2 PLAC Idaho Falls,Bonneville,Idaho
1 FAMC @00206642@
0 @00206642@ FAM
1 HUSB @NO48-3F@
1 WIFE @93GB-DD@
1 CHIL @26DS-KX@
1 CHIL @21B7-WR@
0 @26DN-7N@ INDI
1 NAME Mary Ann /BERNARD (OR BARNETT)/
...

Figure 5.16 An excerpt from the GEDCOM genealogical database

There is great variability in the kinds of genealogical information that must be

stored. Genealogical evidence comes from a wide variety of source records from a

variety of cultural norms. This creates a strong requirement for flexibility. Despite

this there is a high degree of structure. Places, dates and significant events all occur

with great regularity and where similar information occurs, a similar representation

is used. The GEDCOM standard for exchanging genealogical information stores

information as textually encoded trees. Each node has a tag which identifies its type

and some textual content. The content of a node is highly stylised depending on the

node’s type. Any node can have child nodes that provide additional information.

This form is very flexible, easily transmitted and yet amenable to automatic

processing because of its tree structure. Its variability, however, makes it more suited

to full-text retrieval than to traditional database queries.

The records are variable-length, and may have any combination of fields. Each

record is a line of text with a level number, tag and textual contents. The level

numbers provide a hierarchy within a record in a scheme reminiscent of COBOL

data declarations. Lines at the zero level can have labels that are used elsewhere in

the file to refer to the entire record. These records are generally individuals (INDI)

or families (FAM).

5.4.2 Learning the structure of the genealogical database

The data was presented to SEQUITUR as a sequence of words. Virtually all words

were separated by single spaces, and so it was not necessary to have a separate

5.4 DETECTING STRUCTURE IN SEMI-STRUCTURED TEXT 129

sequence of non-words. Instead, a single space was defined as the word delimiter.

On the rare occasions where extra spaces occurred they were prepended to the next

word—this generally happened only with single-digit dates. Other punctuation was

appended to the preceding word; again, this decision did not materially increase the

dictionary size. The dictionary was encoded separately from the word sequence,

which was represented as a sequence of numeric dictionary indexes.

The input comprised 1.8 million words, and the dictionary contained 148,000

unique entries. The grammar that SEQUITUR formed had 71,000 rules and 648,000

symbols, 443,000 of which were in the top-level rule. The average length of a rule

(excluding the top-level one) was nearly 3 words.

Examination of SEQUITUR’s output reveals that significant improvements could be

made quite easily by making small changes to the organisation of the input file. We

first describe how this was done manually, by using human insight to detect

regularities in SEQUITUR’s output; next, we show how the grammar can be

interpreted and finally, we show how the process of identifying such situations can

be automated.

Manual generalisation

Of the dictionary entries, 94% were codes used to relate records together for various

familial relationships. Two types of codes are used in the database: individual

identifiers such as @26DS-KX@, and family identifiers such as @00206642@. These

codes obscure template structures in the database—the uniqueness of each code

means that no phrases can be formed that involve them. For example, the line

0 @26DS-KX@ INDI in Figure 5.16 occurs only once, as do all other INDI lines in the

file, and so the fact that 0 and INDI always occur together is obscured: SEQUITUR

cannot take advantage of it. In fact, the token INDI occurs 33,000 times in the rules

of the grammar, and in every case it could have been predicted with 100% accuracy

by noting that 0 occurs two symbols previously, and that the code is in the

individual identifier format.

This prediction can be implemented by replacing each code with the generic token

family or individual, and specifying the actual codes that occur in a separate stream.

Replacing the code in the example above with the token individual yields the

sequence 0 individual INDI, which recurs many thousands of times in the file and

therefore causes a grammar rule to be created. In this grammar, INDI occurs in a rule

130 CHAPTER 5: GENERALISING THE GRAMMAR

a � → ��
� → ��
� → �individual INDI�AFN individual�NAME
� → � F
� → �	
� → 1 SEX
� → ↵1
	 → FAMS family
� → ↵0

b

1 SEX F ↵ 1 FAMS fam ↵ 0 indi INDI ↵ 1 AFN indi ↵ 1 NAME

�
�

�� �
� � �� �

c ... � Sybil Louise /MCGHIE/ (� Eliza) Jane /LOSEE/ (� Margaret) /SIMMONS/
(� Marie) Elizabeth /BERREY/ � Athena Augusta /ROGERS/ (� William) Henry /WINN/ ...

Figure 5.17 A phrase from the genealogical database
(a) hierarchical decomposition
(b) graphical representation
(c) examples of use

that covers the phrase ↵0 individual INDI↵1 AFN individual↵1 NAME. This is now the

only place that INDI occurs in the grammar.

Overall, the number of rules in the grammar halves, as does the length of the top-

level rule, and the total number of symbols.

Interpreting the grammar

Figure 5.17a shows nine of the 71,000 rules in SEQUITUR’s original grammar, with

ungeneralised codes, renumbered for clarity. Rule � is the second most widely used

rule in the grammar: it appears in 261 other rules.4 The other eight rules are all

those that are referred to, directly or indirectly, by rule �: Figure 5.17b shows the

hierarchy graphically. The topmost line in Figure 5.17b represents rule �. The two

branches are rules � and �, the contents of rule �. The hierarchy continues in this

way until all of the rules have been expanded.

Rule � represents the end of one record and the beginning of the next. Rule � is

effectively a record separator (recall that each new record starts with a line at level

4 The most widely used rule is 2 PLAC, which occurs 358 times, indicating that the text
surrounding the place tag is highly variable. However, the structure of the rule itself is
uninteresting.

5.4 DETECTING STRUCTURE IN SEMI-STRUCTURED TEXT 131

0), and this occurs in the middle of rule �. Although grouping parts of two records

together achieves compression, it violates the structure of the database, in which

records are integral. However, the two parts are split apart at the second level of the

rule hierarchy, with one rule, �, for the end of one record, and another, �, for the

start of the next. The short rules � and � capture the fact that every line begins

with a nesting level number. There is also a rule for the entire SEX field indicating

the person is female, which decomposes into the fixed part: 1 SEX, and the value F

on the end, so that the first part can also combine with M to form the other version

of the SEX field. There is a similar hierarchy for the end of a male record, which

occurs 259 times.

As for the usage of this rule, Figure 5.17c shows part of rule S. Here, rules have been

expanded for clarity: parentheses are used to indicate a string which is generated by

a rule. This part of the sequence consists mainly of rule � in combination with

different names. Separate rules have been formed for rule � in combination with

common first names.

Automatic generalisation

In order to automate the process of identifying situations where generalisation is

beneficial, it is first necessary to define the precise conditions that give rise to

possible savings. In the case described above, the rule INDI ↵1 AFN occurred many

times in the grammar, and accounted for a significant portion of the compressed file.

Conditioning this phrase on a prior occurrence of ↵0 greatly increases its

predictability. The problem is that other symbols may be interposed between the

two. One heuristic for identifying potential savings is to scan the grammar for pairs

of phrases where the cost of specifying the distances of the second relative to the

first (predictive coding) is less than the cost of coding the second phrase by itself

(explicit coding).

Figure 5.18 gives two illustrations of the tradeoff. In the top half of Figure 5.18,

using normal coding, the cost of coding the Bs is three times the cost of coding an

individual B: log2(frequency of B / total symbols in grammar) bits. For predictive

coding, the statement ‘A predicts B’ must be encoded once at the beginning of the

sequence. Reducing this statement to a pair of symbols, AB, the cost is just the sum

of encoding A and B independently. Each time that A occurs, it is necessary to

specify the number of intervening symbols before B occurs. In the example, A<3>

132 CHAPTER 5: GENERALISING THE GRAMMAR

explicit predictive

to encode the Bs in encode ...B...B...B... ‘A predicts B’, A<3>...A<4>...A<4>

AabcB...AdefgB...AhijkB cost 3 × cost(B) cost(A) + cost(B) + cost(3, 4, 4)

explicit predictive

to encode the Bs in encode ...B...B...B ‘A predicts B’, A<3>...A<∞>...A<4>...B

AabcB...A...AhijkB...B cost 3 × cost(B) cost(A) + cost(B) + cost(3, ∞, 4) + cost(B)

Figure 5.18 Examples of two ways of coding symbol B

signifies that the next B occurs after three intervening symbols. These distances are

encoded using an adaptive order-0 model with escapes to introduce new distances.

The bottom half of Figure 5.18 shows a more complex example, where two As

appear with no intervening B , and a B occurs with no preceding A. The first

situation is flagged by a distance of ∞, and the second is handled by encoding B

using explicit coding.

The algorithm for identifying useful generalisations as follows. For each terminal

and non-terminal symbol, a list is made of all the positions where that symbol occurs

in the original sequence. If the symbol appears within a rule other than rule S, it

inherits all the positions of that rule. Next, for each pair of unique symbols, one

symbol is chosen as the predictor, and one as the predicted symbol. The gaps

between the predicting symbol and the predicted symbol are calculated as in

Figure 5.18, and the total number of bits required to encode the predicted symbol

using both explicit and predictive coding is calculated. For each pair, the

predictive/predicted roles are reversed, and the savings are recorded in the

corresponding cell in the matrix. At the end of this process, which is quadratic in

the number of unique terminals and non-terminals, the predictions are ranked, and

the most effective ones turned into generalisations.

Table 5.1 shows the top ranking pairs of phrases, the number of bits required for the

predicted symbol with the explicit coding, the number of bits required using

predictive coding, and the total savings. The ellipsis between the two phrases in the

first column represents the variable content between the keywords. At the top of

the list is the prediction ↵0...INDI ↵1 AFN, which is the relationship that we

exploited by hand—the intervening symbol between ↵0 and INDI ↵1 AFN is an

individual code. Predictions 2, 3 and 6 indicate that the codes should be generalised

after the AFN, FAMS and FAMC tags respectively. Predictions 5, 7 and 9 indicate that

5.4 DETECTING STRUCTURE IN SEMI-STRUCTURED TEXT 133

Prediction Normal

(bits/symbol)

Predicted

(bits/symbol)

Saving

(total bits)

1 ↵ 0...INDI ↵ 1 AFN 3.12 0.01 2298

2 INDI ↵ 1 AFN...↵ 1 NAME 3.12 0.01 2298

3 FAMS...↵ 0 2.25 0.81 638

4 ↵ 1 SEX...↵ 2 0.96 0.06 656

5 BAPL...↵ 1 ENDL 1.57 0.76 509

6 FAMC...↵ 1 FAMS 2.57 1.47 427

7 ↵ 1 BIRT↵ 2 DATE...↵ 2 PLAC 1.88 1.11 382

8 ↵ 1 NAME...↵ 1 SEX 1.25 0.82 315

9 ENDL...↵ 1 SLGC 2.15 1.58 266

Table 5.1 Predictions based on part of the GEDCOM database

0 @26DS-KX@ INDI
1 AFN 26DS-KX
1 NAME Dan Reed /OLSEN/
1 SEX M
1 BIRT
2 DATE 22 JUN 1953
2 PLAC Idaho Falls,Bonneville,Idaho
1 FAMC @00206642@
0 @00206642@ FAM
1 HUSB @NO48-3F@
1 WIFE @93GB-DD@
1 CHIL @26DS-KX@
1 CHIL @21B7-WR@
0 @26DN-7N@ INDI
1 NAME Mary Ann /BERNARD

Figure 5.19 The text in Figure 5.16, with structure and content distinguished

dates should be generalised. Prediction 4 indicates that the SEX field can be

generalised by replacing the two possible tags, F and M . Finally, prediction 8

indicates that names should be generalised. The generic tokens are equivalent to

non-terminals that can have all possible codes, etc. as their bodies.

Figure 5.19 shows Figure 5.16 with the content in grey and the identified structure

in black. This shows that the structure and content have been successfully

distinguished. By identifying significant phrases and predictive relationships

between them, the database template structure has been discovered. This is possible

because of the reliable statistics that a large sample provides. In Section 6.4, we will

see that these inferences significantly increase compression performance.

134 CHAPTER 5: GENERALISING THE GRAMMAR

5.5 Summary

This chapter has taken the techniques for finding exact repetitions described in

Chapters 3 and 4, and explored ways of generalising their output to model non-

determinism. In other words, the grammars produced by SEQUITUR that are only

capable of producing a single sequence have been transformed into more general

descriptions that describe a family of sequences. We have shown that recursive L-

systems can be inferred from their non-recursive equivalent, that programs can be

recreated from traces of their execution, and that the structure of text such as

programming code and textual databases can be inferred. We have also explored the

difficulty of justifying inferences with small samples, and shown how a larger sample

can reduce ambiguity.

6. Data Compression

By removing redundancy, data can be stored and transmitted more efficiently,

providing a highly practical application of techniques for structure detection. Not

only do the techniques described in this thesis detect structure, and hence

redundancy, but the very core of the algorithm is motivated by compression. The

two constraints—digram uniqueness and rule utility—ensure that redundancy due

to repetition is eliminated from a sequence. Digram uniqueness eliminates a

repetition of two symbols by forming a rule that both occurrences can reference.

Rule utility eliminates superfluous rules when repetitions continue for longer than

two symbols.

Detection of repetition is not, however, sufficient for effective data compression.

Other regularities, especially the unequal frequencies of the symbols and repetitions

in the sequence, must also be accounted for in order to rival other compression

techniques. Furthermore, it is inefficient to simply transmit SEQUITUR’s grammar in

the same way as it is printed. Instead, it is possible to transmit the sequence

incrementally and allow the decoder to build the grammar itself. This not only

maintains the incremental behaviour of the basic algorithm, but also increases

compression. Apart from its practical application, the encoding scheme described

here allows SEQUITUR to be compared, in terms of compression effectiveness, to the

context-based prediction schemes and the dictionary compression schemes

described in Chapter 1, thereby offering a concrete assessment of the predictive

abilities of each approach.

Section 6.1 shows how SEQUITUR’s grammars can be used to encode a sequence

very concisely, and provides rationales for the design decisions that were made to

arrive at this encoding scheme. Section 6.2 compares SEQUITUR’s performance

against other data compression schemes and identifies its advantages and

disadvantages relative to them. Section 6.3 discusses the claim made in Chapter 4

that the number of symbols in a grammar is a good measure of its information

content. Section 6.4 returns to the genealogical database discussed in Chapter 5,

and shows how generalisation improves compression performance.

136 CHAPTER 6: DATA COMPRESSION

encoding sequence size of
book1

size relative
to original

a original abcdbcabcdbc 768 771 100%

b textual grammar S → BB
A → bc
B → aAdA

– –

c numbered rules S → #2#2↵
1 → bc↵
2 → a#1d#1↵

1 201 189 156%

d without rule heads #2#2↵
bc↵
a#1d#1↵

965 955 126%

e frequency-based
codes

��↵
bc↵
a�d�↵

335 420 44%

f implicit rules abcd(1,2)(0,4) 271 303 35%

Figure 6.1 Alternative encodings for a sequence

6.1 Encoding sequences using SEQUITUR

The encoding scheme for SEQUITUR will be explained by successive refinement, in

order to demonstrate the advantages of each design decision. The stages are:

• sending the grammar in textual form;

• sending symbols using variable-length codes;

• sending rules implicitly;

• sending the sequence incrementally.

Figure 6.1 illustrates the effect of each encoding scheme in two ways. The first

column describes the encoding scheme, while the second illustrates the encoding in

detail on the sequence abcdbcabcdbc. The third and fourth columns show the effect

of the coding scheme on a much longer sequence, Far from the Madding Crowd. This

novel by Thomas Hardy is 768,771 characters in length. It is part of the Calgary

corpus for evaluation of data compression, and so provides a useful comparison for

other techniques. The third column of Figure 6.1 shows the size of the novel when

encoded using each scheme, while the fourth column gives the size as a percentage

of the original sequence length.

6.1 ENCODING SEQUENCES USING SEQUITUR 137

6.1.1 Sending the grammar textually

The simplest way of transmitting the sequence to take advantage of SEQUITUR’s

compressive abilities is to send the textual form of the grammar, as shown in

Figure 6.1b. However, when the sequence includes uppercase letters, or when there

are more than 26 rules, capital letters cannot be used for non-terminals. For

example, in the grammar for Far from the Madding Crowd there are 27365 rules, and

the sequence contains many uppercase letters. To solve this problem, non-terminals

are numbered and preceded by a special character, as shown in Figure 6.1c. Also, an

end-of-rule marker is necessary, and this is denoted by the symbol ↵. This

representation requires eight bits per character, and multiple digits to encode one

non-terminal. The book1 sequence can be unambiguously decoded when stored in

this way, resulting in a size of 1,201,189 symbols (rule S alone contains 673,977

symbols). This represents an expansion of 56%—it would be better to transmit the

original sequence than use SEQUITUR’s grammar in this form. In some cases, such as

the highly structured L-systems described in Chapter 4, this representation does

provide compression, but generally it does not.

If the rules are sent in order, rule S first, then rules 1, 2, 3 and so on, there is no

need to send the symbols that head rules, because their ordering can be reproduced

by the receiver. Furthermore, no → symbol is necessary—it can be implicit at the

start of each line. Figure 6.1d shows the short sequence encoded in this way. This

reduces the encoded size of book1 to 965,955: better than the 1,201,189 characters

of the full textual representation, but still not compressive.

6.1.2 Sending symbols based on frequency

There are two problems with the textual representation of the grammar. First, non-

terminals are represented by several digits. Second, there is no allowance for

different length codes for symbols with different probabilities. Both these problems

are solved by encoding each symbol based on its probability. That is, instead of

transmitting, say, the letter a or the five characters #, 1, 3, 3 and 7 to represent the

non-terminal #1337, a code is used whose length is related to the probability of that

symbol occurring in the grammar. The decoder needs to know the symbol codes, so

the probability of a symbol is approximated by its frequency in the sequence as a

proportion of all symbols sent so far. Because the decoder can calculate the same

frequency, it can recreate the same set of codes as the encoder is using to send the

138 CHAPTER 6: DATA COMPRESSION

scheme compressed
size

fraction of
original size

SEQUITUR-0 335 420 44%

compress 332 056 43%

gzip 312 275 41%

SEQUITUR-I 271 303 35%

ppm 242 558 32%

Table 6.1 Compression of book1 by several schemes

message. The symbols can be encoded using an arithmetic coder, as described in

Section 2.4. Moffat et al. (1995) provide an exemplary implementation of

arithmetic coding, along with routines for coping with a large alphabet, maintaining

frequencies, and allowing for the introduction of new symbols. This solves the

problem of encoding non-terminals—instead of expressing them in terms of the

128-symbol ASCII character set, arithmetic coding treats them as another symbol in

a much larger alphabet. Encoding the grammar in this way yields a file size of

335,420 bytes, 44% of the original size.

While this is a distinct improvement over the textual version, it nevertheless falls

short of most data compression schemes. Table 6.1 summarises the performance of

some notable techniques. UNIX compress (Thomas, et al., 1985), which is based on

LZ78 (Ziv and Lempel, 1978), popularised the use of Ziv-Lempel coding. It has

remained unchanged for over a decade, and performs poorly relative to more recent

schemes. It slightly outperforms the simple grammar encoding, SEQUITUR-0,

reducing book1 to 332,056 bytes, 43% of the original. A more recent

implementation of LZ77, gzip, outperforms compress, resulting in a compressed size of

312275 bytes, 41% of the original. The best general purpose compression scheme,

PPM (Cleary and Witten, 1984), described in Section 2.4, compressed the novel to

242558 bytes, 32% of the original.

6.1.3 Sending rules implicitly

SEQUITUR should be able to rival the best dictionary schemes, because forming rules

is similar to forming a dictionary. Furthermore, SEQUITUR stores its dictionary as a

hierarchy, so it should be capable of outperforming other dictionary techniques.

This can be achieved if the grammar is sent implicitly. Rather than sending a list of

rules, this algorithm sends the sequence, and whenever a rule is used, it transmits

6.1 ENCODING SEQUENCES USING SEQUITUR 139

sufficient information to the decoder so that it can construct the rule. Because rule S

represents the entire sequence, this is tantamount to sending rule S and transmitting

other rules as they appear.

When a non-terminal is encountered in rule S, it is treated in three different ways

depending on how many times it has been seen. The first time it occurs, its contents

are sent. At this point, the decoder is unaware that the symbols will eventually

become a rule. The second time that a non-terminal occurs, a pointer is sent that

identifies the contents of the rule that was sent earlier. The pointer consists of an

offset from the beginning of rule S and the length of the match, similar to the

pointers used in LZ77. At the decoding end, this pointer is interpreted as an

instruction to form a new rule, with the target of the pointer as the contents of the

rule. The decoder numbers rules in the order in which they are received, and the

encoder keeps track of this numbering. When the third and subsequent occurrences

of the non-terminal appears, this number is used instead of the number of the non-

terminal.

The main advantage of this approach is that the first two times a rule is used, the

non-terminal that heads the rule need not be sent. For example, under the previous

scheme, a rule that is used twice is transmitted by sending two non-terminals, the

rule contents, and an end-of-rule marker. Under the new scheme, only the contents

and a pointer are necessary. Furthermore, rules are sent only when they are needed.

Sending the grammar rule by rule, starting with rule S, usually sends rules before

they are referenced, which reserves a code unnecessarily, or references them before

they are sent, which delays the decoder’s ability to reconstruct the sequence.

Sending the grammar for book1 implicitly produces a compressed output of 271,303

bytes, for compression to 35%, shown as SEQUITUR-I in Table 6.1. This is better

than the other dictionary techniques, and only 12% worse than PPM’s 32%.

Figure 6.1f shows how the short sequence is transmitted. Because both rules only

appear twice, no non-terminals appear in the encoding. The sequence is transmitted

by transmitting rule S, which consists of two instances of rule 2. The first time rule 2

appears, its contents are transmitted. This consists of a�d�. The first symbol, a, is

encoded normally. The first time rule 1 appears, its contents, bc, are sent. The next

symbol, d, is sent as normal. Now rule 1 appears for the second time, and the pointer

(1,2) is sent. The first element of the pointer is the distance from the start of the

sequence to the start of the first occurrence of bc, in this case 1. The second element

140 CHAPTER 6: DATA COMPRESSION

of the pointer is the length of the repetition: 2. Now the decoder forms a rule

1 → bc, and replaces both instances of b c in the sequence with �. Having

transmitted the first instance of rule 2 in its entirety, the encoder returns to rule S to

transmit the second occurrence of rule 2. The repetition starts at the beginning of

the sequence, at distance 0, and continues for 4 symbols. The length refers to the 4-

symbol compressed sequence, rather than the uncompressed repetition, which is 6

symbols long.

The phrases that are discovered improve on the dictionaries of the other schemes in

four ways. First, the dictionary is stored hierarchically, using shorter dictionary

entries as part of longer ones. Second, there is no window to reduce searching time

and memory usage at the expense of forgetting useful repetitions. Third, the length

of dictionary entries is not limited. Fourth, there are no unnecessary phrases no the

dictionary. Each of these advantages is expanded below.

Using a hierarchical representation for the dictionary means that rules can be

transmitted more efficiently. The saving comes from the smaller pointer needed to

specify both the start of the repetition and its length. Because rules properly contain

other symbols—i.e. they do not overlap other non-terminals, the number of places a

rule can start is reduced to the number of symbols currently in the grammar.

Furthermore, the length of the repetition is expressed in terms of the number of

terminal and non-terminal symbols that it spans, rather than the number of original

terminals. This means that the length will usually be shorter than the corresponding

length specified relative to the original sequence. This corresponds to Storer’s

(1982) compressed pointer macro classification.

The lack of a finite window for pointer targets has several ramifications. First, it

undoes some of the improvement achieved by using a hierarchical dictionary,

because it allows a greater number of targets for pointers. Second, the lack of

windowing usually means that memory usage and search time grows. Memory usage

is unavoidable given the basic design of SEQUITUR—efficient memory use was not

one of the required qualities. However, SEQUITUR’s compressed in-memory

representation and efficient indexing procedures mean that the average search time

is bounded as shown in Section 3.3. The advantage of the lack of a window is that

all repetitions can be detected, no matter how far they are separated.

6.1 ENCODING SEQUENCES USING SEQUITUR 141

LZ78 techniques add items to the dictionary speculatively—a particular entry is not

guaranteed to be used. This saves the cost of specifying which phrases should be

included in the dictionary, but means that the codes assigned to unused entries are

wasted. SEQUITUR only forms a rule when repetitions occur, combining the LZ77

policy of specifying a repetition only when needed with the LZ78 technique of

maintaining a dictionary. Furthermore, LZ78 techniques grow the dictionary slowly,

whereas SEQUITUR can send a rule of any length in one step. This does not always

result in superior compression: Table 6.2 shows that although SEQUITUR beats gzip

on average, it is worse on 8 out of the 14 individual files. The encoding presented up

to this point is also described in Nevill-Manning (1994b).

6.1.4 Sending the sequence incrementally

One final problem remains: how to send the sequence incrementally. Incrementality

is paramount in on-line situations such as the compression of communications

traffic. The grammar is formed incrementally, so the material for transmission is

available. The problem with incremental transmission is one that has been discussed

briefly in Chapter 3: at many points in the sequence, it is possible that a longer

match will result when subsequent symbols are seen. For example, Figure 3.11e

shows a sequence that builds up repetitions from right to left, so that rules are only

formed when the final symbol in the repetition appears. It would be wasteful to

transmit the wxy of the last repetition, in case the last symbol was z, and the whole

subsequence could be replaced by a pointer to wB. Unfortunately, it is possible to

construct a situation, such as the one in Figure 3.11e, in which transmission could

be postponed for an arbitrarily long period. Of course, such sequences are unlikely to

occur in practice, so in most cases points will occur regularly when the sequence can

be transmitted without danger of wasting symbols. Indeed, from the discussion of

Figure 3.11e in Section 3.4, the longest postponement of transmission is O(n)

symbols, where n is the total number of symbols seen so far. The problem is in

detecting situations in which a match can be ruled out.

Let α and β stand for the second to last and last symbols in rule S respectively. If β
only occurs once in the grammar, it can be safely transmitted, because it cannot

match any existing sequence in the grammar. Similarly, if the only other places that
β occurs are at the end of rules, so that it does not appear as the left symbol in any

digrams, no digram consisting of β and the next symbol to appear can match. Apart

from these two situations (which are exceptional), it is impossible to determine

142 CHAPTER 6: DATA COMPRESSION

when β can be safely transmitted: whatever follows β elsewhere in the grammar

might occur next.

Therefore, a decision can only be made about transmitting a symbol when it is the
second-last symbol in rule S. If β is terminal, αβ evidently does not occur elsewhere

in the grammar, or it would have been replaced by a non-terminal. However, it is
necessary to check that β is not the start of a non-terminal that follows α elsewhere

in the grammar. This can be checked by examining the prefixes of all non-terminals
that follow the other occurrences of α. If none of the non-terminals start with β, it

is safe to transmit α. For example, in Figure 3.11e, when the final xy has been seen,

x is followed by B elsewhere in the grammar, and rule B begins with y. This

indicates that y could be the beginning of rule B, and so sending x may eliminate

the possibility of simply sending a pointer later on.

There is one further constraint on when a symbol can start eventually become part

of a longer rule. Consider the sequence AAa, where A → ab. The rule just described

indicates that the second A cannot be transmitted, because elsewhere in the

grammar A is followed by a non-terminal that starts with a. However, extending A

in this way would mean that rules overlap, which is prohibited. Because the second

A cannot be extended, it can safely be sent.

The criterion for deciding when another chunk of rule S can be transmitted, where
S ends with αβ is therefore: β is terminal, and no instance of α is followed by a non-

terminal whose contents start with β, unless that non-terminal is another α. This is

guaranteed to happen within an interval of length O(n), where n is the length of

the sequence. In book1, encoding can be performed on average every 14 symbols:

the minimum interval is one, which is guaranteed to be the case after the first

symbol has been received, and the maximum interval is 161.

6.2 Compression performance

Section 2.4 discussed the established methodology for evaluating compression

schemes. The most popular compression schemes are those that perform well on a

range of data. For this reason, the Calgary corpus includes a wide range of sequence

types, listed in Table 6.2. The files include fiction and non-fiction text, an image, a

transcript of computer interaction, binary geophysical data, computer object files

6.2 COMPRESSION PERFORMANCE 143

name description size compress gzip SEQUITUR ppm

bib bibliography 111261 3.35 2.51 2.48 2.12

book1 fiction book 768771 3.46 3.25 2.82 2.52

book2 non-fiction book 610856 3.28 2.70 2.46 2.28

geo geophysical data 102400 6.08 5.34 4.74 5.01

news USENET 377109 3.86 3.06 2.85 2.77

obj1 object code 21504 5.23 3.84 3.88 3.68

obj2 object code 246814 4.17 2.63 2.68 2.59

paper1 technical paper 53161 3.77 2.79 2.89 2.48

paper2 technical paper 82199 3.52 2.89 2.87 2.46

pic bilevel image 513216 0.97 0.82 0.90 0.98

progc C program 39611 3.87 2.68 2.83 2.49

progl Lisp program 71646 3.03 1.80 1.95 1.87

progp Pascal program 49379 3.11 1.81 1.87 1.82

trans shell transcript 93695 3.27 1.61 1.69 1.75

average 3.64 2.69 2.64 2.49

Bible King James version 4047392 2.77 2.32 1.84 1.92

Table 6.2 Performance of various compression schemes (bits per character)

and source files. To avoid biasing evaluation toward performance on the larger files,

comparison is based on the average compression rate rather than the total

compressed size of the corpus. Rates are quoted in bits per symbol, where a symbol is

an eight-bit byte in the original file. Typical rates differ between different types of

file: figures for text are similar to each other, while the rate for the picture is lower

and the rate for the geophysical data higher.

The results for four compression methods, compress, gzip, PPM and SEQUITUR, are

shown in Table 6.2. The best figures for each row are highlighted. Overall,

SEQUITUR outperforms all the schemes other than PPM, which is 6% better. It beats

PPM on the geophysical data, the picture, and the transcript. The reason for this is

that although PPM is good at capturing subtle probabilistic relationships between

symbols that typically appear in highly variable sequences such as text, SEQUITUR

excels at capturing exact, long repetitions that occur in highly structured files.

While SEQUITUR does not perform as well as PPM on text such as book1 and book2,

it outperforms PPM on longer text such as the King James version of the Bible,

shown in the last row of Table 6.2.

144 CHAPTER 6: DATA COMPRESSION

graphical interpretation

sequence length 908 670 140 842
PPM 37 037 (4.0%) 7436 (5.2%)

gzip 8 395 (0.9%) 2697 (1.9%)

SEQUITUR textual 3 179 (0.3%) 8572 (6.0%)

SEQUITUR 658 (0.07%) 1732 (1.2%)

Table 6.3 Compression of context-sensitive L-system output (after Prusinkiewicz
and Lindenmayer, 1990)

For highly structured sequences such as the output from L-systems, SEQUITUR

performs very well indeed. Table 6.3 shows compression performance of various

schemes on the output of context-sensitive, stochastic L-systems. PPM performs the

worst, because it fails to capitalise on the very long repetitions that exist. Gzip

performs two to four times better than PPM. Surprisingly, the textual version of

SEQUITUR’s grammar is 13 times smaller than PPM’s output and 3 times smaller than

gzip’s output on one sequence, and only slightly worse than PPM on the other. The

encoded version of SEQUITUR’s grammar is 1300 times smaller than the original in

one case, and 80 times smaller in the other.

6.3 Compression and grammar size

In the introduction to Chapter 4, it was claimed that the number of symbols in the

grammar is a good measure of the grammar’s information content. It is now possible

to substantiate this claim. The information content of a sequence can be measured

by its Kolmogorov complexity (Li and Vitanyi, 1993), which is the size of the

smallest universal Turing machine capable of reproducing the sequence. Since this

quantity is not computable, it is necessary to devise other metrics that approximate

it. One way of performing this approximation is to allow competition between

6.3 COMPRESSION AND GRAMMAR SIZE 145

a

�

�����

������

������

������

������

������

� ����� ������ ������ ������

�������������������������������� 				

���� ����������������������������

����
����
����
����
���� ����

����
����
����
����
����
����
				 ����
����

b

�

�����

������

������

������

������

� ����� ������ ������ ������

�������������������������������� 				

���� ����������������������������

����
����
����
����
���� �
���
����
����
����
����
����
����
				 ����
����

Figure 6.2 Encoded size versus number of symbols in grammar
(a) Size of compressed sequence from SEQUITUR (correlation 0.9989)
(b) Size of compressed sequence from PPM (correlation 0.9993)

different encoding schemes on a standard corpus and pick the best performing

technique as the most likely approximation to the Kolmogorov complexity. This is

exactly what occurs in the data compression community. The best approximation

currently available, therefore, is the size of PPM’s output given a sequence. As

SEQUITUR performs only 6% worse than PPM on average, it is also a reasonable

indicator of information content.

The goal of this section is to show that comparing grammars based on the number of

symbols they contain is equivalent to comparing them based on the amount of

information that they contain. This can be achieved by showing that information,

which we will approximate by compressed size, is an approximately linear function

of the number of symbols in a grammar. Figure 6.2 shows graphs relating the number

of symbols in a grammar to the size of their compressed representation. The

horizontal axis is the number of symbols in the grammar—the independent variable.

The vertical axis is the compressed file size—the dependent variable. Figure 6.2a

indicates the size when compressed using SEQUITUR. Each point represents one of

the fourteen files in the Calgary corpus. The points appear to lie along a line. Linear

regression bears this out: the correlation between the two quantities is 0.9989. The

least-squares line has with a slope of 1.47 bytes (about 12 bits) per symbol, which

indicates the encoded size of an average symbol in a grammar. Figure 6.2b shows an

analogous graph for the file sizes when compressed using PPM. The horizontal axis

remains the number of symbols in SEQUITUR’s grammar—PPM is invoked because of

its superior compression performance. The relationship is similarly linear, with an

146 CHAPTER 6: DATA COMPRESSION

�

�

��

��

��

����� ������ �������

��������������������������������				

��������������������������������

����
				
����

����
����
����
����
����
����

Figure 6.3 Bits per symbol in grammar as a function of grammar size

even higher correlation of 0.9993. The slope is lower—1.34 bytes (11 bits) per

symbol—which follows from PPM’s superior compression.

A closer analysis of the data show a slight non-linear trend: the slope of the line

increases for larger grammars. That is, plotting the average number of bits per

symbol for each file against the number of symbols in the file yields graph that

increases. Making the scale for the horizontal axis logarithmic produces the graph in

Figure 6.3. The points lie roughly on a line—the two quantities have a correlation

coefficient of 0.974. This indicates that the number of bits required to code a

symbol is proportional to the logarithm of the number of symbols, which makes

sense: symbol size is related to alphabet size, and because the alphabet includes non-

terminals, the alphabet is larger for larger grammars. This is borne out by the higher

correlation between symbol size and the logarithm of the number of rules in a

grammar: it is higher, at 0.985. The least-squares regression line for Figure 6.2a gives

an average error rate of 9% when used to predict the size of SEQUITUR’s output, due

mainly to errors on the very small files. When a line is fitted to Figure 6.3 the

average error falls to 1%. The size of a compressed file is therefore nlog(0.68n –

0.48), where n is the size of the grammar. Because comparisons are usually made

between grammars whose sizes are well within an order of magnitude, the

logarithmic effect is minimal, and linearity can be assumed.

6.4 Compressing semi-structured text

Section 5.4 discussed the automatic detection of structure in the GEDCOM

genealogical database. Structure detection has twin benefits: one is the discovery of

patterns, a process of learning, and the other is efficiency: the ability to express the

6.4 COMPRESSING SEMI-STRUCTURED TEXT 147

scheme dictionary code
indexes

word
indexes

total size
(Mb)

compression

original – 9.18 100.0%

byte-oriented compress 2.55 27.8%

gzip 1.77 19.3%
PPM 1.42 15.5%

word-oriented WORD-0 – – – 3.20 34.8%

WORD-1 – – – 2.21 24.1%
MG 0.14 – 2.87 3.01 32.8%

SEQUITUR 0.11 – 1.07 1.18 12.9%

SEQUITUR with codes 0.11 0.40 0.60 1.11 12.1%

generalisation of dates 0.11 0.64 0.31 1.06 11.5%

gender 0.11 0.64 0.30 1.05 11.4%

names 0.11 0.76 0.17 1.04 11.3%

Table 6.4 Compression rates of various schemes on the genealogical data

data more concisely. This section applies the encoding scheme developed in this

chapter to compressing the database. SEQUITUR is compared to other state of the art

compression schemes on the 9 MB sample used in Section 5.4.

The LDS genealogical databases are currently stored in a system called AIM which

performs special-purpose compression designed specifically for the GEDCOM format.

This begins by assembling a dictionary of the most frequently occurring one-, two-

and three-symbol fragments. Any fragments that do not occur at least three times

are dropped. This dictionary then is encoded with the 63 most frequent entries in

one byte and the remaining entries in two bytes. In addition to this there are special

encodings for dates and other types. This first-level approach provides about 40%

compression, which is considerably worse than any of the other schemes we tested.

However, the files so produced are then compressed using the standard STACKER

compression product. This provides a further 40% compression, for a total

compression in AIM of 16%.

Table 6.4 shows the results of several compression programs on the 9 MB sample.

The standard compression programs (except MG) do not support random access to

148 CHAPTER 6: DATA COMPRESSION

records of the database, so they are not suitable for use in practice because random

access is always a sine qua non for information collections of this size.

The first block of Table 6.4 summarises the performance of the byte-oriented

schemes discussed in Section 6.2. UNIX compress provides a benchmark lower bound

on the possible compression, while gzip achieves substantially better compression.

PPM performs extremely well on the data, giving a compression rate of over six to

one. For all these schemes, compression rates are about twice as great as they are on

book1 from the Calgary corpus, which indicates the high regularity of this database

relative to normal English text.

The next block of Table 6.4 summarises the performance of some word-oriented

compression schemes. These schemes split the input into an alternating sequence of

words and non-words—the latter comprising white space and punctuation. WORD

uses a Markov model that predicts words based on the previous word and non-words

based on the previous non-word, resorting to character-level coding whenever a

new word or non-word is encountered (Moffat, 1987). We used both a zero-order

context (WORD-0) and a first-order one (WORD-1). MG is a designed for full-text

retrieval and uses a semi-static zero-order word-based model, along with a separate

dictionary (Witten et al., 1994). In this scheme, as in WORD-0, the code for a word

is determined solely by its frequency, and does not depend on any preceding words.

This proves rather ineffective on the genealogical database, indicating the

importance of inter-word relationships. WORD-1 achieves a compression rate that

falls between that of compress and gzip. The relatively poor performance of this

scheme is rather surprising, indicating the importance of sequences of two or more

words as well perhaps as the need to condition inter-word gaps on the preceding

word and vice versa. None of these standard compression programs perform as well as

the ad hoc scheme used in AIM, except, marginally, PPM.

As described in Section 5.4, the words were presented to SEQUITUR as if they were

symbols drawn from a large alphabet. The encoding scheme was that described in

Section 6.1. The dictionary was compressed in two stages: front coding followed by

compression by PPM. Front coding (Gottlieb et al., 1975) involves sorting the

dictionary, and whenever an entry shares a prefix with the preceding entry,

replacing the prefix by its length. For example, the word baptized would be encoded

as 7d if it were preceded by baptize, since the two have a prefix of length 7 in

6.4 COMPRESSING SEMI-STRUCTURED TEXT 149

common. A more principled dictionary encoding was also implemented, but failed

to outperform this simple approach.

The grammar, when encoded using the method described above, was 1.07 Mb in

size. The dictionary compressed to 0.11 Mb, giving a total size for the whole text of

1.18 Mb, as recorded at the top of the bottom block of Table 6.4. This represents

almost eight to one compression, some 20% improvement over the nearest rival,

PPM.

Generalising the codes, as described in Section 5.4, halves the number of rules in

the grammar, the length of the top-level rule, and the total number of symbols. The

compressed size of the grammar falls from 1.07 Mb to 0.60 Mb. However, the codes

need to be encoded separately. To do this, a dictionary of codes is constructed and

compressed in the same way as the dictionary for the main text. Each code can be

transmitted in a number of bits given by the logarithm of the number of entries in

the code dictionary. The total size of the two files specifying the individual and

family codes in this way is 0.40 Mb, bringing the total for the word indexes to

1.0 Mb, a 7% reduction over the version with codes contained in the text.

Including the dictionaries gives a total of 1.11 Mb to recreate the original file.

Separating the dictionaries represents the use of some domain knowledge to aid

compression, so comparisons with general-purpose compression schemes is unfair.

For this reason, PPM was applied to the same parts as SEQUITUR, to determine what

real advantage SEQUITUR provides. PPM was first applied in a byte-oriented manner

to the sequence of word indexes. It compressed these to 1.07 Mb, far worse than

SEQUITUR’s 0.60 Mb. In an attempt to improve the result, PPM was run on the

original file with generic tokens for codes, yielding a file size of 0.85 Mb—still much

worse than SEQUITUR’s result. Note that this approach does outperform running

PPM on the unmodified file. Finally, the WORD-1 scheme was applied to the

sequence of generalised codes, but the result was worse still.

Table 5.1 ranks possible generalisations in order of their usefulness. Predictions 1, 2,

3 and 6 encourage generalisation of codes, which has been performed. Predictions 5,

7 and 9 indicate that dates should be generalised. Extracting dates in a way

analogous to the extraction of codes from the main text reduces the grammar from

0.60 Mb to 0.31 Mb, and adds 0.24 Mb to specify the dates separately. This

represents a net gain of 0.05 Mb, or 5%. Prediction 4 indicates that the SEX field

150 CHAPTER 6: DATA COMPRESSION

can be generalised by replacing the two possible tags, F and M. Acting on this

reduces the size by a further 1%. Finally, prediction 8 indicates that names should be

generalised, resulting in a final compressed size of 1.04 Mb, or a ratio of almost nine

to one. The final block of Table 6.4 summarises these improvements. Another

description of this application can be found in Nevill-Manning and Witten (1996).

6.5 Summary

The encoding scheme that this chapter has described transforms the SEQUITUR

algorithm into a compression scheme. Its average performance over the Calgary

corpus is greater than any other dictionary compression scheme, and on sequences

such as long tracts of text, DNA sequences, and L-system output, it betters the state

of the art technique, PPM. Compression is the most practical of applications—it

allows efficient use to be made of storage and transmission resources. The next

chapter evaluates the learning abilities of SEQUITUR.

7. Applications

The thesis claims in Chapter 1 that a variety of sources manifest their structure as

regularities in their output. This chapter evaluates that hypothesis empirically by

applying the techniques described so far to a range of sequences. Some

demonstrations of structural inference have already been provided as motivation for

techniques in previous chapters: they include L-system inference, data compression,

inference of programs from an execution trace, and identification of structure in

semi-structured text and computer programs. Here we present five more domains

where the techniques work well.

Section 7.1 investigates the structure of a familiar sequence: human language. First,

we show that SEQUITUR is capable of inferring structure from text in three different

languages, and that accuracy improves if knowledge about textual structure is

available. Next, its performance is compared to other inference techniques designed

specifically for structure recognition in text. Finally, SEQUITUR is applied to a

sequence of word classes to allow grammatical constructions to be inferred. Section

7.2 returns to the L-system domain discussed in previous chapters, and shows how

SEQUITUR-K can be applied to speed graphical rendering by several orders of

magnitude. The basic idea is to identify identical parts of a scene that can be

rendered once and reused. The identical parts correspond to rules that SEQUITUR

forms from the sequence of graphical commands. Section 7.3 examines structure in

music, focussing on J.S. Bach’s chorales, and identifies similar chorales, hierarchies

of musical sequences, and common constructions such as imperfect and perfect

cadences. Section 7.4 looks at the identification of interesting phrases in large

textual corpora. The syntactic hierarchies that SEQUITUR builds correspond to

conceptual hierarchies, which allow efficient access to the contents of a corpus by

successive extension of a phrase to specialise a concept. Finally, Section 7.5 presents

promising results in the identification of structure in macromolecular sequences

such as DNA sequences and amino acid sequences. SEQUITUR compresses these

sequences much better than other compression schemes, which indicates that it is

recognising structure that other schemes cannot.

152 CHAPTER 7: APPLICATIONS

language characters words vocabulary

English 4 047 392 766 111 13 745

French 4 214 991 759 391 24 824

German 4 598 677 781 718 27 544

Table 7.1 Statistics on the text of the Bible in three languages

7.1 Natural language

Language is a familiar sequence—this very sentence is an example of a sequence

that we must interpret. This section describes the application of SEQUITUR and its

variants to linguistic sequences. We first consider, in Section 7.1.1, the performance

of SEQUITUR on long texts in three different languages. Its success in recognising

structure emphasises the even-handedness of the two constraints that drive the

algorithm—there is no bias toward any particular language. In Section 7.1.2 we

compare SEQUITUR to the MK10 system introduced in Section 2.5. For this purpose

we use a reconstruction of MK10 and the data that Wolff (1975) used to test its

operation. The two systems are also evaluated on natural English. Finally, Section

7.1.3 examines SEQUITUR’s ability to infer grammatical constructs from sequences

of word classes, rather than from the words themselves.

7.1.1 Structure identification in large text sequences

For the full capabilities of the structural detection techniques to emerge, a text must

be large and consistent. SEQUITUR’s performance improves as more of a sequence is

observed, because more repetitions occur in a longer sequence. Furthermore, if the

sequence is relatively homogeneous—written in a similar way with a consistent

vocabulary throughout—more similarities will be recognised. Many examples of

such text exist in electronic form, for example collections of articles from the Wall

Street Journal, or encyclopaedic works such as Le trésor de la langue française. For

these experiments the Bible was chosen, because in addition to being lengthy (over

750,000 words) and consistent (most versions are the work of a single team of

translators who aim for consistency of style and vocabulary) it also exists in several

languages. This allows SEQUITUR’s language independence to be illustrated.

We were able to find electronic versions of the Bible in many languages, including

Swedish, Italian, Spanish and Danish, but decided to use versions in English, French

7.1 NATURAL LANGUAGE 153

language rules symbols rule S most popular rules

English 84 000 576 000 399 000 and, the, of, to, not, that, of the

French 98 000 652 000 441 000 les, et, de, des, le, la, en, à, vous

German 106 000 764 000 542 000 und, die, der, sie, den, das

Table 7.2 Statistics for grammars inferred from the Bible

and German. Table 7.1 presents several characteristics of each sequence. All three

sequences contain between four and five million characters. They contain a similar

number of words: between 766,000 and 781,000, but their vocabulary sizes vary

considerably more: from 14,000 for English to nearly double that for German.

Forming a hierarchy from the Bible takes several minutes, and the resulting

grammar for the English version has 576,000 symbols and 84,000 rules. Table 7.2

summarises the statistics for all three languages. More rules are formed for the

French and German versions, and the grammars are larger overall. The length of

rule S, which provides an indication of the amount of the structure detected in a

sequence, is smallest in the English version, indicating a greater amount of structure

in the sequence. This is partly a consequence of the smaller vocabulary: a random

sequence will contain more repetitions if its alphabet is smaller. The most popular

rules, shown in the rightmost column of Table 7.2, correspond to common function

words in the respective languages.

Figure 7.1 shows the hierarchies for Genesis 1:1. Each branch in the tree structure

corresponds to a rule in the grammar. The topmost level of each tree represents the

non-terminal that occurs in rule S. Spaces are made explicit as bullets. Figure 7.1a

shows the hierarchy for the English version. At the top level, rule S, the verse is

parsed into six subsequences: In the, beginning, God, created, the heaven and the, and

earth. Four of the subsequences are words, and the other two are groups of words. In

the is broken up, at the next level down, into In and the. The other phrase, the

heaven and the is broken into the heaven and and the. At the next level, the heaven is

incorrectly split into the he and aven. The words beginning and created consist of root

words and affixes: beginning is split into begin and ning, while created is split into creat

and ed. The root of beginning is begin, but the normal form of the suffix is ing, rather

than ning. SEQUITUR has no way of learning the consonant doubling rule that

English follows to create suffixes, so other occurrences of words ending in ning cause

this rule to be formed. Similarly, whereas create is the present tense of the verb, ed is

154 CHAPTER 7: APPLICATIONS

a

������������������	�
�����
���	���

b

������������������	��������������������������
�������
�������������������
������������

c

��������������������������������������
���������������������������
������������������������������

d

��↵�������������������	�
�����
���	���V�������������������������

e

������������������	��������������������������
�������
�������������������
�����������

f

��������������������������������������
���������������������������
������������������������������

Figure 7.1 Hierarchies for Genesis 1:1
produced by SEQUITUR: (a) English, (b) German and (c) French
produced by SEQUITUR-K: (c) English, (d) German and (e) French

usually the affix for past tense, so the division makes sense. For the most part, then,

SEQUITUR segments English correctly.

SEQUITUR is language independent—the two constraints on the grammar are not

designed to favour English. Figure 7.1b shows the German version of the same

verse—incidentally somewhat more compact than the English sentence. The verse

is split into Im, Anfang, shuf, Gott, die Himmel und die, and Erde. The word group is

split into die Himmel and und die. die Himmel is split correctly into words, as is und

die. The word schuf is split into sch and uf, because of the common sch consonant

group in German.

7.1 NATURAL LANGUAGE 155

The French version is illustrated in Figure 7.1c. The verse is split into Au,

commencement, Dieu, cré, a les, cieux et la terre.5 The phrase cieux et la terre is split

into cieux et and la terre. The incorrect splitting of créa is due to greedy parsing, and

along with the split of la terre into la t and erre will be corrected by the techniques

described in Chapter 4, as discussed in the next subsection.

7.1.2 Domain knowledge and reparsing

Now consider the improvements that can be made by using the two variants

discussed in Chapter 4, SEQUITUR-K and SEQUITUR-R, which make use of domain

knowledge and perform reparsing respectively. To employ SEQUITUR-K, constraints

must be formulated to guide the formation of rules, analogous to the bracketing

constraints developed for text. The most prominent aspect of written language is the

use of spaces, and adding a constraint that forces rules to respect word boundaries

should improve SEQUITUR’s grammar.

This means that a rule should not be formed that begins in the middle of one word

and ends in the middle of another. A rule can only cross a word boundary if it

contains an integral word, i.e. if it begins with a space. This is asymmetric: it

requires a multi-word rule to contain a space on the left of a word but does not insist

on one at the right. This is because words are usually separated by a single space,

and requiring a space at both ends of a multi-word rule would create a conflict

between adjacent rules. Furthermore, rules are created from left to right, and

requiring a space at both ends of a rule would often mean that no rule could be

created. The constraint that was added was: a rule starting with a space cannot be

the second symbol in a digram unless the first symbol also starts with a space.

SEQUITUR-K with this constraint produces the hierarchies in Figures 7.1d, 7.1e and

7.1f. These rules are less appealing: much of the hierarchy consists of rules building

up from left to right, rather than isolating parts of words. For example, in

Figure 7.1d, the word created is split into creat, but the e and d are added on in two

further rules, rather than being a rule on their own. The phrase und die lacks a

component rule that just covers die in Figure 7.1e. The French version in Figure 7.1f

fares somewhat better: the word créa is split correctly from the following les.

5 Accented letters such as à, á, â and ä are represented as a single symbol in the French and German
sequences.

156 CHAPTER 7: APPLICATIONS

language SEQUITUR
modification

percent
correct

total
words

total
rules

symbols
in rule S

total
symbols

English none 93% 247 000 84 000 399 000 576 000

knowledge 95% 300 000 84 000 392 000 570 000

reparsing 90% 280 000 87 000 449 000 640 000

French none 90% 272 000 98 000 441 000 652 000

knowledge 94% 320 000 93 000 416 000 620 000

reparsing 86% 299 000 102 000 506 000 737 000

German none 90% 241 000 106 000 542 000 764 000

knowledge 93% 289 000 103 000 530 000 745 000

reparsing 90% 268 000 110 000 608 000 849 000

Table 7.3 Application of domain knowledge and reparsing to text

In order to evaluate the success of SEQUITUR-K more objectively, it is necessary to

develop a metric to compare the new grammar against the grammar formed by the

unmodified SEQUITUR algorithm. The metric we propose is to check the spelling of

the rules in the grammar, and to prefer the grammar with larger number of correctly

spelled words in the expansions of the rules (apart from rule S). Rules contain both

whole words and fragments of words. For example, Figure 7.1d contains the rules the

b and and th. The fragments b and th are not valid words, so these rules fail to

capture the word structure of the text. Some of this is inevitable: fragments are

necessary to build up a hierarchy within words. However, in other cases, the

fragments are avoidable. Some fragments, such as eat in created and he in heaven will

be incorrectly identified as valid words, but for the comparative study performed

here, this effect is small.

To perform a spelling check, an appropriate dictionary is required. Dictionaries for

generic spell checking will penalise the grammars for any words unique to the source

document, such as proper nouns. The best dictionary is the vocabulary of the source

document itself. The methodology is therefore as follows: extract all of the unique

words in the source document, then for every word fragment in each rule of a

grammar, check that fragment against the vocabulary and output the proportion of

correctly spelled words. The results of this experiment are summarised in Table 7.3.

Using the space delimiting constraint, there is an improvement in the proportion of

correct words in the grammar rules: in English from 93% to 95%, in French from

90% to 94% and in German from 90% to 93%. These figures are notable for two

reasons. First, the baseline accuracy for SEQUITUR is quite high—at least 90% in all

7.1 NATURAL LANGUAGE 157

cases. This indicates that the algorithm works well for detecting word boundaries.

Second, the figures are relatively consistent over all the languages, demonstrating

SEQUITUR’s lack of bias towards particular sequences, and the similarity of the

linguistic structure of the languages.

When domain knowledge is employed, not only does the proportion of correct

words increase, but the size of the grammars decreases—by 1.2% for English, 4.9%

for French and 2.4% for German. This is consistent with Occam’s razor: a better

explanation is also a smaller one. Counting the number of symbols in rule S alone

indicates the amount of structure that has been extracted from the sequence,

regardless of the size of the rule set. Here the English grammar improves by 1.8%,

the French by 5.7% and the German by 2.2%. In English and French, the reduction

in the length of rule S is even greater than the overall reduction in grammar size.

The number of rules decreases for French and German, and stays the same for

English. The average rule length rises from 2.11 to 2.12 for the English grammar,

rises from 2.15 to 2.19 for the French grammar, and stays constant at 2.09 for the

German grammar. The number of words covered by the rules rises substantially for

all three languages: 21% for English, 18% for French, and 20% for German. This

indicates that the rule hierarchy covers the text with more efficiency: fewer rules,

which are only slightly longer, cover many more words.

The reparsing mechanism of SEQUITUR-R results in poorer grammars in all respects.

The reparsing rows of Table 7.3 show that the spelling check measure decreases for

English and French, and remains the same for German. Furthermore, all the

grammars expand when reparsing is used. This poor performance underscores the

weakness of reparsing in sequences that are not highly structured. For example,

reparsing should correct the mis-parsing of the heaven into the he and aven. However,

for this to happen, the rule covering aven must be preceded in every occasion by he.

In text, the variability of words means that this will very rarely be the case.

7.1.3 Segmentation of language

The process, described in the previous subsection, of identifying meaningful units in

a linguistic sequence is not merely a peculiar side-effect of a sequence modelling

technique—it is an active area of investigation in linguistics. People’s ability to

partition a stream of sound into segments is a phenomenon that has been recognised

158 CHAPTER 7: APPLICATIONS

and studied by many linguists. In this subsection, we compare the generic

techniques described in this thesis with a system built expressly to account for the

cognitive processes involved in human segmentation.

The universal phenomenon of segmentation into words was observed and recorded

in the early part of this century. In arguing for the psychological plausibility of

words, Edward Sapir (1921), based on his study of native American languages, said

that:

‘Linguistic experience, both as expressed in standardised, written form and as
tested in daily usage, indicates overwhelmingly that there is not, as a rule,
the slightest difficulty in bringing the word to consciousness as a
psychological reality. No more convincing test could be desired than this,
that the naive Indian [sic], quite unaccustomed to the concept of the written
word, has nevertheless no serious difficulty in dictating a text to a linguistic
student word by word; he tends, of course, to run his words together as in
actual speech, but if he is called to a halt and is made to understand what is
desired, he can readily isolate the words as such, repeating them as units. He
regularly refuses, on the other hand, to isolate the radical or grammatical
element, on the ground that it “makes no sense.”’

In an attempt to determine the basis for this division into words, Hayes and Clark

(1970) performed an experiment involving an artificially produced speech analogue

containing repeated ‘words’ without any intervening pauses. Their theory was that

words are distinctive because the strength of association between phonemes within

words is greater than the association between word boundaries. Human subjects

were able to distinguish the words without cues such as intonation and pauses,

validating their theory. The techniques described in this thesis are able to make the

same distinction, to delimit words from a stream of symbols in which no explicit

delimiters are present.

Wolff (1975) proposed an algorithm, MK10, for performing this segmentation on

text, and suggested that its success made it a candidate for the psychological process

that gives rise to the ability in humans. His technique either required many passes

over the same text, or threw away much information as it moved through a long

stream of text. Although this is plausible in the context of explaining mechanisms

for human acquisition, it is wasteful when perfect memory is available (as it is in a

computer system). SEQUITUR makes much more efficient use of text without

making several passes, and conserves statistics after inferences are made. This

section explores what SEQUITUR learns from various texts.

7.1 NATURAL LANGUAGE 159

a misses,
watches

it, tom,
jane,
joan

you,
men,
we, they

miss,
watch

birds, liz,
them, it

b youwatchthemyoumissbi
rdsitmissesliztomwatche
sthemwemissityoumissli
zjoanwatchesliztheymiss
itwemissthemtommisses
ittomwatchesbirdsjoanw
atchesliztheymissbirdsjo
anmi...

Figure 7.2 Reconstruction of Wolff’s (1975) segmentation experiment
(a) automaton for generating test data
(b) an example of the output of (a)

The first experiment that Wolff performed using MK10 was to detect word and

sentence boundaries in a sequence produced by the automaton in Figure 7.2a. The

comma-separated lists are the various symbols on which the transition can occur.

Wolff produced a 48,000 character sample by randomly traversing the automaton,

which results in a sequence like that in Figure 7.2b. The object of his experiment

was to show that word and sentence boundaries could be inferred computationally

by virtue of the greater co-occurrence of symbols within words than symbols at the

boundaries of words.

MK10 forms new elements (rules, in SEQUITUR’s terminology) when it has seen a

pair of elements ten times. Once this occurs, it replaces all pairs with the new

element and starts again from the beginning of the text. It forms the first element,

mi, after seeing 126 characters, and has formed all the words after seeing 1579

characters. After 3488 characters, it forms only complete sentences. The advantage

of Wolff’s threshold of ten repetitions is that it avoids any coincidental pairs—it

only forms words or parts of words in the first phase, then only parts of sentences,

then only whole sentences. There are no elements that cover parts of two words, or

parts of two sentences. The disadvantages of this approach are the arbitrariness of

the threshold of ten repetitions, and the slow rate of learning. SEQUITUR is

somewhat analogous to MK10 with a threshold of two: repetitions are made into

rules as soon as they occur.

An experiment was constructed by replicating Wolff’s automaton and producing

another corpus of 48,000 characters. Because the sentences are produced randomly,

they are not identical to Wolff’s corpus. For the purposes of comparison and

experimentation, a version of MK10 was written based on the description in the

paper. It reproduced Wolff’s published results closely enough to indicate that the

160 CHAPTER 7: APPLICATIONS

implementations were similar.6 Wolff’s version created its first full sentence at entry

77 after 3488 characters, whereas the reconstruction reached this point at entry 76

after 3128 characters.

After 1579 characters, when MK10 has formed all of the words, SEQUITUR-R has

also formed all of the words, along with many other rules. When the rules are

ranked by their frequency of use in the grammar, thirteen of the top sixteen rules are

integral words. As well as the words, SEQUITUR has also formed nine complete

sentences, whereas it will take MK10 over twice as many symbols to form the first

sentence, and more than three times as many symbols to form nine sentences. Of

course, this comes at a cost: in SEQUITUR’s grammar, there are 26 rules that cross

sentence boundaries out of the 80 rules in total. At this point, there is not yet

sufficient evidence for SEQUITUR to shift the boundaries of these rules to conform

to sentence boundaries.

When MK10 forms its first sentence at 3488 characters, SEQUITUR has formed 23

sentences. It has also formed 76 rules that cross sentence boundaries. Disregarding

the rules that only occur twice, which is somewhat analogous to increasing Wolff’s

repetition threshold, SEQUITUR has formed fourteen sentences and nineteen

spurious rules. It seems that for this example SEQUITUR outperforms MK10 in the

speed of acquiring phrases, but is much poorer at distinguishing good phrases from

bad.

MK10’s threshold of ten merits investigation. Raising the threshold to twenty results

in the same accuracy as a threshold of ten in terms of distinguishing the correct

entries from spurious ones. However, the technique requires about twice as many

characters, 2785 rather than 1664, to identify all the words. It takes 24025 rather

than 12890 characters to identify all of the sentences. Reducing the threshold to

five increases the learning rate for the words: all the words are identified after 825

rather than 1664 characters. However, the accuracy goes down. Although all

sentences are identified, 64 non-sentences are also recognised, and it takes until

character 25220 to identify all the sentences.

6 Written two decades ago, the original program used a complicated trie-like structure and merited
a page of explanation, while the 1995 reconstruction took two hours to write and consists of forty
lines of PERL code.

7.1 NATURAL LANGUAGE 161

Reducing the threshold still further, to two, makes MK10 similar to SEQUITUR in

this respect—the digram uniqueness constraint means that rules are formed when a

digram occurs twice. MK10 now identifies all the words after 381 characters, but

includes 138 non-sentences in the dictionary. SEQUITUR fares worse in terms of

accuracy: it forms 905 rules, of which 653 are non-sentences. SEQUITUR-R performs

better, reducing the number of non-sentences to 453. The reason for this difference

in accuracy is the way in which MK10 parses the input sequence. Whereas

SEQUITUR forms a rule as soon as a duplicate digram appears, MK10 first tries to

parse the sequence relative to the current entries in the dictionary. For example,

consider the sequence it misses liz tom watches them ... joan watches liz they miss it

produced by the automaton in Figure 7.2a (spaces have been added for clarity).

Assuming that the entry the is already in the dictionary, MK10 will parse the word

they in the last sentence into the and y. SEQUITUR, on the other hand, will form a

new rule using the non-terminal for liz and appending the t from they. It will do this

before the word they appears, which would have matched the earlier the in them.

This is an issue of greedy parsing. SEQUITUR could emulate MK10’s look-ahead

parsing at the expense of incrementality: waiting for a possible match to an existing

rule means that the sequence is partially unparsed, and if a matching rule does not

appear, the unparsed portion must be reprocessed to form new rules. This is a

feasible approach, and will be advantageous with structured sources where rules

formed initially are guaranteed to be useful throughout. In this case, there are only

sixteen different words, so making entries for them at the start and parsing the

whole sequence using them produces a good parse. On real text, however, this

advantage is reduced, as discussed below.

Because M K10 performs a slightly less greedy parsing than SEQUITUR, it is

interesting to investigate its performance on the L-system sequences. On the

example in Figure 4.3, after 4 derivation steps, MK10 has 44 elements in its

dictionary, which describe the original sequence in 16 symbols. Without reparsing,

SEQUITUR produces 32 rules and 21 symbols in rule S. With reparsing, SEQUITUR

produces 11 rules and 6 symbols in rule S. It seems that MK10 is slightly better than

SEQUITUR without reparsing, but worse than SEQUITUR-R.

There is, however, something troubling about the automaton. MK10 is based on the

theory that there is more variability across sentence boundaries than within

sentences. The automaton is perfectly designed to produce a stream that has these

162 CHAPTER 7: APPLICATIONS

properties. The key is that for each path through the automaton there are only two

verbs. This means that there are only 16 possible subject-verb combinations, and 16

verb-object combinations, whereas there are 32 object-subject cross-boundary

combinations. It is hardly surprising that M K10 performs well under these

conditions. Adding two more verbs, say like and visit, means that each pair—subject-

verb, verb-object, and object-subject—have the same number of possibilities. This

produces 128 valid sentences.

Now MK10, with the default threshold of ten, identifies 65 complete sentences

amongst 209 spurious entries. A threshold of twenty produces 15 valid sentences out

of 90 entries; a threshold of 5 produces 28 valid sentences out of 232 entries; and a

threshold of two identifies all 128 sentences out of 585 entries. Evidently, the new

automaton removes the cues by which M K10 identifies sentences. SEQUITUR

identifies 36 sentences out of 653 rules, and with reparsing this rises to 60 out of 774

rules.

Moving from the artificial sequence to a real text, running both SEQUITUR and

MK10 on the first 100,000 characters of book1 results in a set of phrases inferred by

each technique. With the original threshold of ten, MK10 identifies only 1021

entries, of which 52% are correct words. SEQUITUR forms 7000 rules, while MK10

with a threshold of two produces 7443 entries. Checking the phrases against the

vocabulary of the text shows that 64% of the fragments are words for both

techniques. This indicates that the techniques have comparable performance on

actual text. Real, variable text favours a lower threshold for MK10.

7.1.4 Sentence structure

A hierarchical grammar inferred from natural language text describes the lexical

structure of the text: how words and phrases are composed. Linguists, however, are

often interested in the non-deterministic structure of language: the various

combinations in which words can be used. These structures are described in terms of

word classes—collections of words that fulfil a similar grammatical role, such as

nouns, verbs, adjectives, adverbs and prepositions. If a text is expressed not as a

sequence of the words themselves but as a sequence of word classes to which the

words belong, exact repetitions can be interpreted as grammatical structures. That

is, by generalising the text before the application of a technique such as SEQUITUR,

the resulting hierarchy describes the interaction of word classes rather than words,

7.1 NATURAL LANGUAGE 163

and therefore represents a description of the text at the level of a natural language

grammar.

Wolff (1980) describes an experiment in which he took a text, in this case a small

novel, manually assigned tags to each word, and presented the sequence to MK10.

The result was a hierarchy of phrases for each sentence, which he compared to a

manual parse performed by a linguist. He found that the automatically-generated

hierarchy was better than random, and that about half the time it parsed the

sequence correctly. However, many of the ‘correct’ parses were simply determiner-

noun, and adjective-noun combinations.

A similar experiment was performed using SEQUITUR on a large corpus, the

London-Oslo/Bergen (LOB) corpus (Johansson et al., 1978). The LOB corpus is a

British English counterpart of the Brown Corpus (Francis and Kucera, 1979) and

contains 500 text samples selected from texts printed in Great Britain in 1961. Each

word in the corpus has been tagged with its part of speech. The tagging was

performed using a combination of automatic techniques and manual post-

processing. The corpus consists of 1.2 million words, and there are 140 different

tags. Applying SEQUITUR to the sequence of tags—effectively an alphabet of 140

symbols—produces a grammar with 32,000 rules, 261,000 symbols in rule S and

325,000 symbols overall. It is difficult to evaluate a set of rules that represent

grammatical structures in the same way as the rules representing words and phrases.

The white space boundaries of a word are computationally simple to recognise,

while recognising a correct grouping of word classes requires a parser for English. For

this reason, one parse will be evaluated in detail.

Figure 7.3 shows a sentence from the LOB corpus: Most Labour sentiment would still

favour the abolition of the House of Lords. Figure 7.4a shows a manual parse that

breaks the sentence into two parts: a noun-phrase subject—Most Labour sentiment—

and a verb phrase—would still favour the abolition of the House of Lords. The subject is

subdivided into the determiner Most and the adjective-noun group Labour sentiment.

The verb phrase is divided into a verb phrase would still favour and a noun phrase the

abolition of the House of Lords. The smaller verb phrase is split into three words, as

the adverb still is between the auxiliary would and the participle favour. The object is

split into the article and noun, the abolition, and the adjectival phrase of the House of

Lords. This is further split into the preposition of, the noun the House and the phrase

of Lords.

164 CHAPTER 7: APPLICATIONS

Most post-determiner determiner

Labour noun noun

sentiment noun noun

would modal auxiliary auxiliary

still adverb adverb

favour verb verb

the plural/singular article article

abolition noun noun

of preposition preposition

the plural/singular article article

House locative noun noun

of preposition preposition

Lords plural titular noun noun

Figure 7.3 A sentence from the London-Oslo/Bergen corpus with assigned word
classes and generalised word classes

The centre column of Figure 7.3 shows the tags assigned to each of the words in the

sentence. When given the sequence of 1.2 million such tags, SEQUITUR forms rules

that cross sentence boundaries, and such hierarchies have no chance of being

correct parses for a sentence. For this reason, background knowledge similar to the

word boundary constraint used for character-based analysis of text is used, in this

case using the end of sentence markers in an analogous way to spaces.

Figure 7.4b shows the hierarchy that SEQUITUR generates for this segment of the

sequence, showing the actual words rather than the tags. The determiner and the

adjective Most Labour are grouped together, as are the noun and auxiliary. Next, the

phrase still favour the abolition of is grouped together, and at the next level splits into

the verb part and the object part. The final segment is the House of Lords, which is

then split into the, and House of Lords. This parse is different from the manual parse,

but still associates most of the verb part together, and groups this with the main part

of the object, while leaving the noun phrase the House of Lords separate.

The hierarchy is shallow compared to other sequences studied in this thesis. This

seems to be partly due to the large number of very specific tags that make up the

sequence. There are 140 unique tags in the sequence, whereas text contains

between 60 and 70 unique symbols, counting numbers and punctuation. In order to

produce deeper hierarchies, the alphabet was reduced by combining all articles and

determiners into one class, all verb types into another class, all nouns to another

7.1 NATURAL LANGUAGE 165

a

Most Labour sentiment would still favour the abolition of the House of Lords

b

Most Labour sentiment would still favour the abolition of the House of Lords

c

Most Labour sentiment would still favour the abolition of the House of Lords

d

Most Labour sentiment would still favour the abolition of the House of Lords

Figure 7.4 Parses of the sentence from Figure 7.3
(a) Manual parsing
(b) SEQUITUR’s hierarchy based on original tags
(c) SEQUITUR’s hierarchy based on generalised tags
(d) SEQUITUR’s hierarchy based on generalised tags with reparsing

class, and so on. This reduces the number of tags to 18. The new tags for the original

sentence are shown in the third column of Figure 7.3.

The hierarchy for the new sequence is shown in Figure 7.4c. At the top level, the

adjectival phrase of the House of Lords is separated from the rest of the sentence, and

is then broken into of the House and of Lords. The first part of the sentence is split

into the adjectival part Most Labour and the subject-verb-object pattern sentiment

would still favour the abolition. This indicates that this pattern is an important one,

and the adjectival parts at the beginning and end are construed as appendages. Next

the subject is separated from verb-object, and at the next level the auxiliary and

adverb are separated from the rest. With reparsing, shown in Figure 7.4d, the

subject-verb part is separated from the object, then the subject is grouped with the

auxiliary and the adverb with the verb. The object is built up from left to right.

Overall, the parse is different from the manual parse, but maintains some

plausibility, especially the core grouping of the subject-verb-object, with adjectives

at the beginning and end. It is interesting to consider how justified, in the light of

166 CHAPTER 7: APPLICATIONS

this kind of analysis, the manual parse is. However, this is beyond the scope of this

thesis.

It is difficult to determine, without a manual parse for the entire 1.2 million word

corpus, whether it would be more compressive than SEQUITUR’s output. If, as some

believe, human learning entails aspects of data compression, this would provide a

metric with which to compare the manual and automatic parses. Wolff (1980)

proposes:

We should, perhaps, cease to look on language acquisition as a process of
discovering a target grammar and should, instead, view it as a process of
constructing an optimally efficient cognitive system. This revised view fits
more naturally into a biological perspective and allows us to side-step certain
logical problems which arise from the first view (Gold 1967...). [see Section
2.2] ... If there is no target grammar but merely an evolutionary process of
improving the efficiency of a cognitive system then this proof no longer
presents a problem.

This is certainly an interesting proposal, and further reinforces the thrust of the

thesis, that compression and understanding are strongly related.

7.2 Improving rendering performance

Section 4.3 describes the use of domain knowledge to form rules that do not violate

semantics of the source—in particular, to constrain rules to nest brackets correctly

when inferring an L-system. This constituted a useful constraint for ensuring concise

grammars, but it has another important implication: it ensures that every rule has a

computable graphical equivalent. This enables SEQUITUR to be used to reduce the

complexity of rendering graphics based on L-systems.

Rendering realistic computer graphics of natural scenes can be very demanding in

terms of computer time and storage. Each element (e.g. polygon) must be stored in

memory, and must individually take part in calculations such as ray-intersection

queries. One approach to reducing the time and space complexity of rendering is to

find identical parts of a scene, render one of them, and reuse the result in each of

the other cases. This process of processing one instance of a graphical form on

behalf of several other identical forms is called instantiation. (Hart, 1992) For

example, the tree in Figure 4.3c contains multiple instances of the same branch

7.2 IMPROVING RENDERING PERFORMANCE 167

Figure 7.5 Identical parts of a tree

shape, as illustrated in Figure 7.5. Once one instance has been drawn, it can be

translated and rotated to form another part of the tree.

A significant problem with instantiation is the identification of these identical

forms: to efficiently find identical parts of a given scene. Where these natural scenes

are based on the output from an L-system, SEQUITUR performs this task very

effectively. The rules that SEQUITUR produces correspond directly to repeated

graphical forms.

One objection to the use of SEQUITUR for finding phrases in L-system output is that

if the original L-system is available, it should be possible to identify useful phrases by

inspection of the L-system. This is certainly true for context-free L-systems—in fact

we have shown in this case that SEQUITUR’s phrases can be used to reconstruct the

original L-system, demonstrating the equivalence between the L-system and the

derived rules. However, most L-systems used to produce lifelike images are context-

sensitive and stochastic, so the only way to determine what phrases will appear in

the output of an L-system is to evaluate it. The phrases that SEQUITUR identifies

168 CHAPTER 7: APPLICATIONS

will include some of the simple rules from the L-system, but will also include many

phrases whose occurrence is due to the randomness of the stochastic rules, and to

the context-sensitivity of the rules. SEQUITUR’s role, then, is to take a context-

sensitive, stochastic L-system, and by analysis of its output, to produce an

equivalent, context-free L-system that provides a hierarchy of instantiations. The

context-free version will usually be much larger than the original L-system, but

much smaller than the sequence of instructions.

To render a scene, SEQUITUR first produces a grammar from the sequence of

graphical instructions. Next, each of the rules apart from rule S are rendered. Finally

S is rendered, making use of the pre-rendered rules, to produce the entire scene.

This two-stage approach is much more efficient than rendering the sequence itself,

but does not take full advantage of the hierarchical nature of the grammar. Where

several rules make use of a shorter rule, it is useful to render the shorter rule once,

and re-use it in each of the longer rules. The idea is to render small components of

the scene, and then use these pre-calculated components to build up larger

structures. Spatially, the grammar corresponds to a hierarchy of forms, with small,

simple objects combining to form larger, more complex ones. So this instantiation

takes advantage not only of identical forms, but also of hierarchies of forms, to

increase efficiency.

Processing starts with the rules that only contain terminal symbols. After these have

been processed, the non-terminal symbols heading these rules have corresponding

rendered forms, and never need to be reprocessed. Now all rules containing only

terminal symbols and rendered non-terminals can be processed. The process

continues in this way from the bottom of the hierarchy to the top, where rule S itself

can be rendered in terms of all the other rules, producing the final image.

This can be implemented by depth-first recursion through the grammar, using a

table to identify non-terminals which have already been rendered. Figure 7.6 gives

pseudo-code for the recursive function. It is passed a symbol to render, and returns

the rendered form of the symbol. It is invoked with the start symbol S, and examines

each of the symbols in S in turn. If the symbol is terminal, or if it has already been

rendered, it adds the rendered form of the symbol to the rendered form of the rule. If

the symbol has not been rendered, it calls itself recursively. Initially it will recurse to

the bottom of the hierarchy, then work its way up to the top, rendering rules as

necessary.

7.2 IMPROVING RENDERING PERFORMANCE 169

scene = RenderSymbol(S)

Function RenderSymbol(symbol a)
Form = {}

For each symbol b in the rule headed by a
if b is not terminal and hasn’t been rendered then

rendered[b] = RenderSymbol(b)
Form := Form ∪ rendered[b]

 return Form

Figure 7.6 Bottom-up rendering of a scene

This function will be called once for every rule in the grammar, and will visit every

symbol in the grammar in the loop. Therefore its time complexity is

O(grammar size), rather than O(sequence size). The storage used by this procedure is

the size of the grammar, plus the space required to store the rendered form for each

rule. So the space complexity is O(grammar size + number of rules). It is therefore

possible to compute the improvement in rendering time based on the amount of

compression achieved on the sequence. For example, returning to the two context-

sensitive, stochastic L-systems in Table 6.3, the 908,670 symbol sequence on the left

is reduced to a 640 symbol grammar: a 1419-fold reduction in work. The 140,872-

symbol sequence on the right is reduced to an 1879 symbol grammar: a 74-fold

improvement.

7.3 Music

Repetition is a fundamental part of musical structure. It occurs at a high level in the

verse-chorus-verse structure of popular music, where repetition is often curtailed

only by ‘fading’ the music out. It also occurs at a micro level in music such as J.S.

Bach’s fugues, where themes or motifs consisting of a few notes are cleverly

interwoven, often slightly modified by transposition or rhythmic changes. This

section investigates whether these repetitions, and hierarchies of repetitions, can be

detected in music. A prerequisite for such an investigation is a suitably large

computer-readable corpus of music. Fortunately, several such corpora exist, and one

consisting of transcriptions of Bach’s chorales (Mainous and Ottman, 1966) was

selected for the experiment. Bach’s prolific output of 371 chorales, of which the

corpus contains 97, makes it an excellent example of a homogeneous single-genre

170 CHAPTER 7: APPLICATIONS

collection. Bach did not compose the melodies, but harmonised contemporary

congregational hymns for performance by choirs in productions such as his cantatas.

The chorales are short works, averaging 47 notes each.

The chorales are in a variety of keys, and it was decided to remove this source of

variability for the purposes of comparing the form of each chorale. Furthermore, to

admit the possibility of similar themes being repeated with transposition, the aspect

of absolute pitch was removed entirely. This was performed by considering the

sequence of intervals between notes rather than the absolute value of the notes

themselves. For example, the sequence of notes C-E-G represents a major triad in

the key of C, while F-A-C is a triad in F. Re-expressing this sequence as a series of

intervals measured in semitones gives the sequences +4, +3 for both triads. That is,

the distance from C to E and from F to A is four semitones, while the distance from

E to G and from A to C is three semitones. Finally, to detect repetition over

different rhythms, rhythmic information was removed. Performing this

transformation and concatenating all 97 chorales resulted in a sequence of 4541

intervals.

From the interval sequence, SEQUITUR produced a grammar with 362 rules, 1253

symbols in rule S, and 2017 symbols in total. The most popular rules in the sequence

were +2, +2 and –2, –2, which both occurred 140 times. These two represent

ascending and descending tone steps respectively. The next most popular rules were

–2, –1 and –1, –2, which representing descending tone/semitone pairs. Within the

grammar, the rule that was most used as part of other rules was 0, 0 which translates

to three identical notes in succession, while the next most popular was 0, –2, which

represents two identical notes followed by a descending tone.

The longest rule contains 50 intervals, and occurs in chorales 66 (Christ unser Herr

zum Jordan kam) and 119 (Was alle weisheit in der Welt). This curiously long

sequence—the chorales are only 65 and 83 intervals long respectively—is explained

by the fact that the chorales are different harmonisations of the same melody, which

was composed by Johann Walther in 1524. The repetition does not cover the whole

chorale, because one score is notated with a repeat sign for one section, whereas the

other simply contains two copies of the section. The existence of multiple versions

of the same chorale, which was not obvious from a cursory examination of the

chorales, is typical of the serendipitous discoveries that techniques such as

SEQUITUR make possible. Examining the other rules in descending length identifies

7.3 MUSIC 171

imperfect perfect

Figure 7.7 Illustration of matches within and between two chorales: for chorales
50 and 63 by J.S. Bach.

seven of the eight such pairs in the collection. The eighth pair was undetected

because both chorales consist partly of a long repetition, which differs slightly

between the chorales. The internal repetition is thus longer than the matching

portion between the chorales, and the inter-chorale relationship is hidden.

Detecting simple repetitions, while conceptually less interesting than detecting a

hierarchy, is nevertheless of practical use. In this case, the provider of the corpus,

who was using it for investigation into musical structure, was unaware of the pairs of

harmonisations, even though the structure was of a very simple nature. Detecting

such repetitions is therefore a useful function, and indeed a fundamental one. The

approach described in Section 3.5, which operates in quadratic time in the size of

the input, guarantees to find the longest internal repetition in a sequence by

exhaustive search. No linear time algorithm for this problem exists. SEQUITUR

represents a compromise. There are no guarantees that it will identify the longest

repetition, and where there are overlapping repetitions it reports only one.

However, it operates in linear time, and will usually, except in pathological cases,

form a rule for most of the longest repetition. This means that the longest repetition

can be identified by extending a long rule in the grammar to incorporate matching

symbols that are covered by a neighbouring rule.

As for hierarchies, Figure 7.7 shows chorales 50 and 63, which are both

harmonisations of the same melody, with slight melodic variations. Figure 7.8 shows

the hierarchy for chorale 50, where the fundamental symbols are intervals measured

in semitones. Slashes denote whether an interval is up or down. The part of rule S

that covers chorale 50 contains four non-terminals, the first and third of which are

identical. This indicates that the chorale has two similar parts with different

endings. These endings correspond to imperfect and perfect cadences respectively,

which signal the continuation or end of a musical form. The two identical rules are

represented by the lines at the top of Figure 7.8, and in Figure 7.7 the repetition is

172 CHAPTER 7: APPLICATIONS

@�>�>�1�>�>�1�/�1�>�/�W�>�>�>�1�@�W�>�>�1�>�>�1�>�>�@�>�>�1�>�>�1�/�1�>�/�W�>�>�>�1�@�W�>�>�>�>�1�1�>�>

;�X�X�X�X�;�;���X�X���;�X�;�;�;�;�X�X�X�X�X�;�;�;�X�;�X�X�X�X�;�;���X�X���;�X�;�;�;�;�X�X�X�;�X�X�;�;�;

Figure 7.8 Hierarchy for O Welt, sie hier dein leben, chorale 50 by J.S. Bach.

marked with the large light grey boxes. This rule also occurs in the second half of

chorale 60. Within this rule, there is a shorter rule which represents the match

between the two chorales in the first half. This is indicated in Figure 7.8 by the first

bar on the second row, and in Figure 7.7 by the darker grey box. An even smaller

rule, the second bar in the third row of Figure 7.8, occurs seven times in five

chorales, and is shown as a white box in Figure 7.7. The two cadences, represented

by the second and fourth hierarchies in Figure 7.8, and labelled in Figure 7.7, occur

ten times each in the 97 chorales, indicating their usefulness as musical phrases.

In total, SEQUITUR has proven capable of detecting simple but significant

repetitions in music, as well as demonstrating hierarchical structure of a group of

chorales. It has identified chorales that share the same original melody, and

repetitions within a chorale where the melody has two parts which are identical

apart from the cadences. It also identifies the cadences by comparison between

chorales.

7.4 Phrase identification

It has been observed that in many large full-text retrieval systems, more information

is stored than is ever retrieved (Witten et al., 1994). This is a necessary consequence

of the information explosion, where, as mentioned in Chapter 1, the amount of

information in the world is claimed to double every twenty months. This asymmetry

of storage and retrieval has implications for the kind of technology used for each

process. For example, it makes sense to put greater emphasis on retrieval technology

than storage technology. Rather than formally, manually categorising and cross-

referencing information—much of which will never be accessed—at the time of

storage, effort should be expended on improving retrieval strategies.

This section explores the use of SEQUITUR to form hierarchies automatically from

large corpora and documents, coupled with techniques for making intelligent use of

the hierarchies at retrieval time. The first technique relates to abstracting: rather

7.4 PHRASE IDENTIFICATION 173

than writing abstracts—a time-consuming, knowledge intensive task—prior to

storage, significant terms and conceptual hierarchies can be reconstructed when a

document is retrieved. The second application is to full-text retrieval per se, where

the hierarchy can be used to guide formation of search terms, or even perform the

whole retrieval process, making use of a logarithmic-time tree search through the

hierarchy to specific portions of the text.

7.4.1 Computer-assisted abstracting

Creating abstracts of documents is a time- and knowledge-intensive operation

which has traditionally been performed manually by human abstractors. Numerous

attempts have been made to automate the abstracting process by writing computer

programs that attempt a superficial comprehension of the text in order to produce a

condensed version. While these systems may ultimately produce excellent results,

they are currently unable to match human expertise. Craven (1993) suggests that a

useful intermediate position is to provide automated tools to assist a human

abstractor, in the same way that spelling checkers and thesauri are provided to assist

writers. The TEXNET system developed by Craven analyses a text and makes

frequent words and phrases available to the user for inclusion in the abstract.

Although we do not necessarily subscribe to the view that this is a good way to

produce abstracts, the phrases that SEQUITUR identifies, and the hierarchy in which

they are arranged, at least provide a conceptual taxonomy that is of some use in

identifying the subject of the text.

The idea is to provide the user with a list of common phrases from the text, that is,

rules from SEQUITUR’s hierarchy, and allow the user to traverse the hierarchy

starting from an interesting phrase. When ranked by frequency, phrases such as and

the and to the invariably appear at the top, but provide little insight into the subject

matter of the text. For this reason, the vocabulary is divided into common, frequent

words, referred to as stop words, and less frequent content words. A rule must contain

at least 2 content words to appear in the list.

174 CHAPTER 7: APPLICATIONS

ranked list of rules rules containing
‘speech output’

rules containing
‘speech output systems’

speech output
speech synthesis
as well as
db octave
tone group
reflection coefficients
vocal tract
linear prediction
prosodic features
frequency spectrum
...

~ systems
~ from computers
~ system
~ peripherals
~ technology
~ one
~ is

...most ~ can adopt...

...convenient basis for ~
which use high quality...

Figure 7.9 Phrases discovered by SEQUITUR for automated abstracting

Book2 of the Calgary corpus, which is Principles of computer speech by Witten (1982)

was presented word by word to SEQUITUR. The top 10 rules using a stop-word list of

72 words gives the phrase list in the first column of Figure 7.9. Most of the entries

are descriptive of the content of the book, and are useful phrases to include in an

abstract. If the most frequent phrase, speech output, is of interest, the seven rules that

contain this phrase can be retrieved. Choosing one of these, speech output systems,

results in a list of occurrences of this rule. In this case, there are two occurrences,

both in rule S. As well as finding an efficient way of identifying a useful phrase, this

hierarchy also gives the abstractor a guide to the hierarchy of concepts in the text,

which is useful for understanding.

7.4.2 Query formulation for full-text retrieval systems

Full-text retrieval systems make it possible, in principle, to retrieve relevant

information very efficiently from a huge indexed collection. Whereas the efficiency

of indexing and storage are straightforward to evaluate, and practical techniques

have been developed (Witten et al., 1994), the task of formulating appropriate

queries and retrieving only relevant documents remains problematic. Retrieval of

matching documents involves both precision (not returning irrelevant documents)

and recall (not overlooking any relevant documents) (Salton, 1989). There has been

much research on how to maximise precision and recall given a particular query

(Harman, 1992), but here we suggest a technique for aiding a user to formulate a

query that is easier for the retrieval mechanism to fulfil. The technique allows a user

to become familiar with the content of the database, and to include phrases that

make the query much more specific. Furthermore, the hierarchy formed by

7.4 PHRASE IDENTIFICATION 175

rules containing
‘grammar’

rules containing
‘context-free
grammars’

rules containing
‘probabilistic context-
free grammars’

rules containing
‘probabilistic context-
free grammars
(PCFGs),

context-free ~s
context-free ~
~ procedure
tree ~s
functional ~
systemic ~
systemic ~s
logic ~s
attribute ~s
with a corpus based ~
a context-free ~

probabilistic ~

...the set of ~...

...described by ~...

~ (PCFGs)

...recent interest in ~
for language
modelling...

...language model
used in particular ~
will have to deal
with this problem...

...researchers have
become interested
in ~ for language
modelling the fact
that a PCFG...

...brief aside let us
come back to the ~
that we referred to...

Figure 7.10 Hierarchy of phrases for searching a large text base

SEQUITUR can replace the retrieval system entirely by allowing the user to pinpoint

a useful section in logarithmic time.

SEQUITUR was invoked on a large body of computer science technical reports, part

of the 700 Mb corpus contained in the New Zealand Digital Library (Witten et al.,

1996). The reports were presented as a sequence of words, and all words were case

folded before processing. A 22 Mb sample was chosen, which included 350

technical reports from six sites. The sample represented a sequence of 3.5 million

words with a vocabulary size of 30,000. The resulting grammar had 210,000 rules

and 1.7 million symbols.

The grammar’s role in constructing a query might proceed as follows. Imagine the

user needs some information on grammars. The first column of Figure 7.10 lists the

eleven rules that contain the word grammar. This might allow the user to narrow the

search. Suppose they are not interested in functional grammars, systemic grammars,

logic grammars, attribute grammars, tree grammars or grammar procedures; they

therefore choose context-free grammars. Next, the system displays the places where

this rule occurs: within a longer rule, probabilistic context-free grammars, as well as

two places in rule S, signified by the ellipses surrounding the excerpts in the second

column of Figure 7.10 After choosing the longer rule, because probabilistic

grammars are of interest, the user is presented with places where that rule appears,

shown in the third column of Figure 7.10. This includes a longer rule with the

abbreviation PCFGs in parentheses, and two occurrences in rule S. Choosing the

longer rule leads to the two excerpts from rule S in the fourth column of Figure 7.10.

176 CHAPTER 7: APPLICATIONS

The final rule, which associates the acronym PCFGs with the full phrase, warrants

further discussion. The information that this acronym is used in place of the phrase

is potentially extremely useful: the user may decide to perform another search on

the abbreviation, because it is likely that once it has been defined, the acronym

alone will be used. It is interesting to consider how this information might have

been obscured in a different method of presentation. This hierarchy contrasts with

methods such as keyword-in-context (KWIC) displays, where all occurrences of the

search term are displayed along with the surrounding context. The fact that the

acronym co-occurs with the phrase several times is not significant in a KWIC display,

and would not be given particular prominence. Its embodiment in a rule, however,

ensures that the SEQUITUR-based method puts it at the top of the list of

occurrences.

In general, the user can traverse the grammar, extending and hence specialising the

query term. The grammar offers a tree structure to go from a single word to a

particular occurrence of that word in the text. In the tree, any occurrence in rule S

is a leaf node, and any occurrence in another rule is an internal node, because the

rule will appear elsewhere in the grammar. It is possible to stop at any internal node

and use that phrase as a term in a query, or continue following the tree to a leaf and

retrieve a document without posing a query to an indexing system.

An advantage of this approach is that it gives the user a good idea of the subject

matter of the text, and presents it in manageable chunks determined by the

branching factor of each rule. This is especially evident at the very top level, where

the list of rules involving the word ‘grammar’ provide a plausible taxonomy of

concepts involving grammars. While this application has only been investigated at a

conceptual level and no doubt requires modification for practical use, it shows

significant promise.

The technique is very efficient. Once the word grammar has been found in the

lexicon, which can be performed quickly using a trie data structure, SEQUITUR’s

internal pointers between different instances of the same symbol can be used to list

the rules in time linear in the number of phrases. When a rule is picked, the places

in which the non-terminal appears can be accessed in the same way. Once the

hierarchy has been formed, all the pointers necessary to traverse the hierarchy are in

place, and there is no need for any search apart from the initial lexicon indexing.

7.5 MACROMOLECULAR SEQUENCES 177

7.5 Macromolecular sequences

This chapter began by asserting that linguistic sequences are those with which we

have the most experience and which we encounter most frequently. There is,

however, a sequence that is much more fundamental to our being, but which is

much less well understood. The sequence of molecules that make up our genes

determine both our individual characteristics and our collective species identity. For

this reason its structure is of great interest to biologists, and to the human

population at large. Its basic structure turns out to be surprisingly similar to the

sequences that computer scientists are accustomed to dealing with in digital

computers. Instead of being based on a binary alphabet, DNA sequences consist of

four unique molecules. These molecules: adenine, cytosine, guanine and thymine,

are known as nucleotides, or bases, and can be represented as the letters A, C, G, and

T to form computer-readable sequences. The kinds of structures that exist in these

sequences are only partly known, but they include repetition, palindromes,

corruption with noise, segments of random ‘junk’ DNA, and substitution of one base

for another.7

SEQUITUR can only capture one of the structures that are known to exist in DNA,

namely repetition, but this nevertheless presents an interesting challenge. The

National Centre for Biotechnology Information (NCBI), part of the National

Institute of Health, maintains a database of nucleotide sequences (GENBANK), and

publishes the sequences both on C D-ROM and over the Internet. A simple

experiment was devised to measure the compression that SEQUITUR could achieve

on a set of sequences relative to other compression techniques. This provides an

indication of whether any structure is being identified. Previous research has shown

that the sequences have an entropy close to the default value of two bits per base, so

that compression is impossible. Williams and Zobel (1996), after much

experimentation with various compression schemes, found that the best encoding

was to pack four bases into an eight-bit byte.

7 An introduction to the subject, along with a discussion of the Human Genome Project, can be
found in Kevles and Hood (1992).

178 CHAPTER 7: APPLICATIONS

a gtgagacccaagggagacctggccgggcccagtcctgggagtgagttgac
ctgtcgtttgcacatgcagggctctgtgcacaatgcgtgacaatggcttttag

b rghwikdcpkrprdqkkpapvltlgedsetlgedseqgcqgsgappeprltls
vgghpttflvdtgaqhsvltkangplssrtswvqgatgrkmhkwtnrrtv

Figure 7.11 Examples of macromolecular sequences
(a) nucleotide sequence
(b) amino acid sequence

a b

encoding size size vs 2 bpb encoding size % of original

original 2 869 960 400% original 1 586 289 100%

2 bits per base 717 490 100%

gzip 734 045 102% gzip 694 871 51%

PPM 709 179 99% PPM 799 179 44%

SEQUITUR 670 760 94% SEQUITUR 638 977 41%

Table 7.4 Compression of macromolecular sequences
(a) nucleotide sequences for homo sapiens
(b) primate amino acid sequence

The sequences for homo sapiens were extracted from the primate file provided by the

NCBI, and put in a file, one per line. This resulted in a file 2,869,960 bytes in size,

consisting of sequences similar to the one shown in Figure 7.11a. Table 7.4a shows

the results of the application of several compression schemes to the data, along with

the compression achieved relative to the straightforward coding scheme of two bits

per base. The gzip compression scheme expands the sequence relative to the simple

coding, resulting in a file 2% larger. P P M compresses the file by 1%, while

SEQUITUR achieves compression to 94%. It appears that SEQUITUR detects

structure that the other techniques do not. A similar experiment was attempted

with sequences of amino acids, which are built from subsequences of nucleotides.

There are twenty different amino acids, and the sequences are similar to the

example shown in Figure 7.11b. The distribution of the acids is somewhat skewed,

so encoding them all in a fixed number of bits does not make sense. For this reason,

the compressed sizes are compared against the original number of acids, and are

summarised in Table 7.4b. gzip achieves compression to 51% of the original, while

PPM achieves 44%. SEQUITUR is again the best, with 41% of the original size.

The grammars for both sequences contain some rules that are very long. On

7.5 MACROMOLECULAR SEQUENCES 179

inspection of the original sequences, it transpires that some of these sequences are

the result of more than one researcher sequencing the same portion of DNA, or the

same sequence being referenced twice. The sequences, however, are not usually

completely identical. It is difficult to produce a set of sequences free of these

spurious repetitions, so it is unclear whether interesting structure is being detected.

SEQUITUR probably excels partly because of its ability to take advantage of

repetitions that are widely separated. Its superior performance nevertheless provides

motivation for further research.

7.6 Summary

This chapter has applied the techniques discussed in previous chapters to a variety

of data that occurs naturally or in other human and scientific contexts: text in three

languages, word-class sequences, music, L-systems for describing complex plants,

word-based analysis of large corpora, and DNA sequences. The success of SEQUITUR

in each domain supports the claim made in Chapter 1 that repetitive structure exists

and can be efficiently detected.

�

8. Conclusions

This thesis makes two claims: that certain kinds of structure appear in sequences

from a variety of sources, and that it is possible to detect such structure

automatically and efficiently. The claims have been addressed in reverse order: first

by constructing an efficient inference technique, and then applying it to a range of

sequences.

We have described a technique that balances elegance and practicality. Elegant

techniques are often general ones—a scheme that is peppered with arbitrary

constants and procedures might succeed in one domain, but will lack applicability

in a wider context. The simplicity of the SEQUITUR algorithm permits a concise

complexity proof, a principled way of employing domain knowledge, and a novel

reparsing mechanism for improving performance. That the scheme is practical has

been demonstrated in a variety of ways, and we will recapitulate them in Section

8.2. First, however, we will summarise the fundamental techniques and how they

relate to the applications discussed, which is summarised in Figure 8.1.

8.1 The techniques

The hierarchical modelling technique developed in this thesis has its roots in work

by David Maulsby. While visiting from the University of Calgary in 1992, he

described a hierarchical representation for action sequences of computer users. His

belief was that such tasks are hierarchically organised—that small sub-tasks combine

to produce larger-scale behaviours. The hierarchy, if it could be inferred, would

provide a basis for automating the task. The idea, of course, is much more general

than the task structure domain, and formed the germ of this thesis. The key problem

was to produce an efficient algorithm to infer a hierarchy from a sequence. Even

though the SEQUITUR algorithm is simple to describe, it was certainly not

immediately obvious. One principle seemed paramount: the concept was simple, so

the algorithm should be similarly uncomplicated.

182 CHAPTER 8: CONCLUSIONS

the
SEQUITUR

algorithm

domain knowledge

retrospective reparsing

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

L-systems—
well-formed

rules

L-systems—
inference of non-
recursive version

L-systems—
inference of recursive

version

Inference of
branching and

looping structure

Inference of
procedure calls
and recursion

Inference of
program structure

Inference of
textual database

structure

Compression of
benchmark corpus

Compression of
textual database

Rendering of
L-system output

Language: inference of
morphology,

segmentation, and
grammarMusic

Phrase hierarchies in corpora

DNA structure

Compression
of L-system

output

Encoding
scheme

recognising
self-similarity

Figure 8.1 Relationships between techniques (in grey boxes) and applications
described in the thesis

The simplicity of the algorithm, as expressed in terms of the maintenance of two

constraints described in Chapter 3, permits a concise proof of its computational

complexity. We have shown the time and space complexity to be linear in the

8.1 THE TECHNIQUES 183

sequence size by relating the amount of processing to the number of symbols saved

by transforming the sequence into a hierarchical grammar. Figure 8.1 shows the

basic algorithm as a grey column, and it forms the basis for all the techniques and

applications in the thesis, except for the inference of branching and looping

structure in Chapter 5.

When information about the structure of a sequence is available, it should be

possible to improve structural inference. However, it is important that in modifying

the algorithm, the generality and simplicity of the original is not lost. We have

shown that because of the simplicity of the original algorithm, it is sufficient to

introduce a simple test in a fundamental part of the algorithm to bias the inference

mechanism towards well-formed rules. We have shown examples of domain

knowledge for L-systems, where brackets must be correctly nested, natural language,

where word boundaries are significant, and word-class sequences, where sentence

boundaries must be observed. This technique appears at the top right of Figure 8.1,

labelled ‘domain knowledge,’ and contributes to four applications.

Where domain knowledge is not available—for example in an L-system that does

not contain brackets—it is still possible to improve the grammars produced by the

basic algorithm. The way in which this is performed is counter-intuitive.

Throughout processing, rules at the end of rule S are extended to the left or right,

even if the transformation increases the size of the grammar. Over an entire

sequence, this reparsing can markedly improve the grammar size and quality. The

way in which the individual transformations interact over a long sequence is not

well understood at present, and we leave a rigorous explanation for further work.

Intuitively, in structured sequences, rules are given several opportunities to regain

symbols that they lose to neighbouring rules, and in the long term, the rules that

exhibit the greatest consistency retain ownership of neighbouring symbols. This is

retrospective reparsing, shown in the grey box at the top left of Figure 8.1.

In addition to the algorithm for forming hierarchical grammars, we have applied and

extended a simple technique by Gaines (1976) for inferring automata (‘inference of

branching and looping structure’ in Figure 8.1). It is extremely effective in situations

where the sequence is expressed in terms of symbols at the correct level of

granularity. However, if each symbol has little significance—individual characters

in program source, for example—the inferred automaton fails to capture the

sequential structure. The solution to this problem is to apply the SEQUITUR

184 CHAPTER 8: CONCLUSIONS

algorithm to the sequence first, and then produce an automaton from the higher-

level non-terminals. This is a compelling symbiosis: SEQUITUR identifies the

significant segments of the sequences, and the automaton captures the branching

and looping relationships between them. The combination is analogous to the

lexical analyser and parsing passes of a compiler, where the first pass groups

individual characters into meaningful tokens for the second pass. The main problem

with this approach is the ease with which SEQUITUR can be misled to recognise

segments that include more than a single token. Investigating solutions to this

problem is also a direction for future work.

Another technique for generalising grammars involves recognising self-similarity in

the hierarchical structure of a sequence (‘recognising self-similarity’ in Figure 8.1).

Recursive grammars such as the fractal L-system grammars for producing snowflake

and tree-like figures give rise to similar patterns at different levels of detail. With

the improved inference achieved by retrospective reparsing, this self-similarity is

clearly exhibited in SEQUITUR’s hierarchies. Automatically recognising this

recursive structure consists of finding a unification of two rules that produces a

concise recursive grammar capable of reproducing the original sequence. Again, the

algorithm is simple: it consists of only six Prolog clauses.

The final major technique introduced is a way of encoding a grammar to achieve

data compression (‘encoding scheme’ in Figure 8.1). This transforms the SEQUITUR

algorithm into a compression scheme that can be evaluated alongside a large cohort

of similar schemes. It outperforms all other techniques in its class, and in several

instances achieves results better than any current compressor. Simply recoding the

final grammar for the sequence does not result in the best performance. Instead,

SEQUITUR operates at both the encoding and decoding ends, and enough

information is transmitted to trigger the two constraints operating at the decoder.

8.2 The applications

The problem of inferring concise and correct grammars from sequences precludes

optimal solutions. It is known from data compression that the problem of finding

the smallest hierarchy for a sequence is NP-complete (Storer, 1982). It is also

known from grammatical inference that no algorithm can guarantee to infer a

grammar from the sequences that it produces (Gold, 1967). Furthermore, in many

8.2 THE APPLICATIONS 185

domains, the sequence does not necessarily emanate from a member of a known

class of grammars. These results mean that evaluation of the techniques that we

have developed must be empirical, and consequently we have described many

applications in a variety of domains.

a � → �
� → �� �!��"�!�

b switch (c) {
 case 1: value = 2
 case 2: value = 3
 case 3: value = 4
 case 4: value = 5
}

switch (c)

↵case

: value =

1 2 3 4

52 3 4

↵}

c
����������(
����)�*
��������������
��+

��
��(��,,�/)�*
������������������
��+
����������+
��6
�������*
�����������������
��+
�����������(��#�1)+
�������U����������
��+
�����������(��#�1)+
����������������
��+
����������+
��6
6

enter
recursion

before
recursion

if (n == 0)

f

no more
recursion

t

after
recursion

between
recursion

enter
recursion

before recursion
call procedure

if (n == 0)

f

no more
recursion

t

after
recursion

between recursion
call procedure

return return

call procedure

procedure

Figure 8.2 Review of results
(a) L-system hierarchy inference
(b) textual structure inference
(c) program inference from an execution trace

186 CHAPTER 8: CONCLUSIONS

d 0 @26DS-KX@ INDI
1 AFN 26DS-KX
1 NAME Dan Reed /OLSEN/
1 SEX M
1 BIRT
2 DATE 22 JUN 1953
2 PLAC Idaho Falls,Bonneville,Idaho
1 FAMC @00206642@
0 @00206642@ FAM
1 HUSB @NO48-3F@
1 WIFE @93GB-DD@
1 CHIL @26DS-KX@
1 CHIL @21B7-WR@
0 @26DN-7N@ INDI
1 NAME Mary Ann /BERNARD

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Calgary
corpus

Bible L-systems GEDCOM amino
acids

gzip

PPM
SEQUITUR

(440%)

f

������������������	��������������������������
�������
�������������������
������������

g imperfect perfect

h

Most Labour sentiment would still favour the abolition of the House of Lords

i rules containing
‘grammar’

rules containing
‘context-free
grammars’

rules containing
‘probabilistic context-
free grammars’

rules containing ‘probabilistic
context-free grammars
(PCFGs)'

context-free ~s
context-free ~
~ procedure
tree ~s
functional ~
systemic ~
systemic ~s
logic ~s
attribute ~s

probabilistic ~

...the set of ~...

...described by ~...

~ (PCFGs)

...recent interest in ~
for language
modelling...

...language model
used in particular ~
will have to deal...

...researchers have become
interested in ~ for language
modelling the fact that a
PCFG...

...brief aside let us come back
to the ~ that we referred
to...

Figure 8.2 Review of results (continued)
(d) inference of textual database structure
(e) compression performance
(f) inference of language structure
(g) inference of musical structure
(h) inference of grammatical structure
(i) word hierarchies from a large corpus

8.2 THE APPLICATIONS 187

Working from top to bottom in Figure 8.1, we begin with the inference of grammars

from L-system output. The L-system domain has been a fruitful one: it straddles the

gap between artificial and natural sequences, because L-systems are formal grammars

that provide realistic representations of natural phenomena. Thus they are of

interest in formal languages, computational biology, and computer graphics.

With reparsing, a non-recursive equivalent of the original L-system can be inferred.

Adding the unification process for recognising self-similarity allows the original to

be reconstructed exactly. This represents a novel approach to grammatical inference

that is interesting from a theoretical perspective in computer science, and from a

practical perspective in computational biology. The process represents another step

towards the biological grail of recognising plant structure directly from a graphical

description.

Bracketed L-systems enable the use of domain knowledge to guide rule formation.

The resulting grammar represents a hierarchy of graphical objects that can be used

to expedite rendering. SEQUITUR can reduce both time and space complexity by

several orders of magnitudes, making it possible to render much more complex

scenes. Figure 8.2 is a gallery of results from the thesis. Figure 8.2a shows an L-

system that draws the tree shape shown below.

Forming an automaton from a sequence allows a fundamentally different kind of

structure to be recognised. For example, a program can be inferred from a trace of its

execution, suitably expressed. We have extended this ability in two directions. First,

we have described an algorithm for recognising the effects of procedure calls and

recursion in the trace. The left-hand side of Figure 8.2c shows a recursive program

and, in the centre of the figure, the automaton inferred from its execution trace.

The inferred automaton is non-deterministic, but the deterministic, recursive

version can be inferred from it automatically, and is shown on the right-hand side.

Second, the automaton technique can be combined with SEQUITUR to form a

powerful system that infers the structure at the bottom of Figure 8.3b from the text

at the top. Each state in the automaton corresponds to a non-terminal in the top-

level rule of the inferred grammar.

As Figure 8.1 shows, no further use is made of the inference of procedure calls and

recursion, but the inference of program structure is adapted to deal with a textual

database. Extending the idea of using SEQUITUR’s grammar as the basis for

188 CHAPTER 8: CONCLUSIONS

recognising branching structure, Figure 8.2d shows an excerpt from a large textual

database containing genealogical information. Analysis of phrases that predict each

other allows the fixed template structure of the database from the variable content:

the structure is shown in black, and the content in gray.

All of these techniques compress the sequence as a by-product of inference, and

Figure 8.2e shows a histogram of compression results for various sequences. Figures

are expressed relative to gzip’s performance: smaller is better. With the addition of

an encoding scheme, shown in the grey box near the bottom of Figure 8.1,

SEQUITUR outperforms other dictionary compression schemes such as gzip on a large

benchmark corpus, and does nearly as well as the current best scheme, PPM. On

other sequences, such as the Bible, amino acid sequences, the genealogical database

and L-systems, SEQUITUR outperforms any other system. In the case of one L-

system, SEQUITUR performs an order of magnitude better than its nearest rival.

SEQUITUR performs just as well on French and German sequences as it does on

English. Figure 8.2f shows the hierarchy formed from a German version of the Bible,

which corresponds closely with morphological intuition about the structure of

German words and phrases. Figure 8.2g continues the germanic theme, this time

with the music of Bach. Analysing a corpus of Bach’s chorales results in the

identification of a hierarchy of musical phrases, including long repetitions, and

imperfect and perfect cadences. Figure 8.2h shows a kind of parse tree inferred from

a sequence of word class tags. The structure is similar to the ideal manual parse.

Finally, Figure 8.2i shows a hierarchy of phrases inferred from a large corpus of

computer science technical reports. The hierarchy allows rapid traversal of the

phrases from general to specific, and, if necessary, to a particular document in the

collection.

8.3 Future work

The thesis is certainly not the last word on the subject of detection of sequential

structure. In fact, it feels more like a Genesis than a Revelation. The main avenue

for future exploration is the inference of branching and looping structure, discussed

in Chapter 5. This is where the MDL principle, background knowledge, and

sophisticated searching and backtracking techniques must be harnessed to corral the

vast problem space that such inference entails. The thesis has helped to define the

8.3 FUTURE WORK 189

problem and elucidate the difficulties. It has also contributed simple, effective

techniques that can be used as building blocks in forming a solution.

The success of the simple, blind algorithm for retrospective reparsing that we finally

settled on in Section 4.4 remains inexplicable. While I have expressed some

intuitions about its operation, it still requires a formal explanation. Such an

explanation would need to account for the global effect of the algorithm, which

improves the grammar, as opposed to the local effect, which may temporarily

degrade it.

What originally motivated the hierarchical representation was programming by

demonstration, which involves the automation of a computer user’s task by inferring

the structure of their actions (Nevill-Manning, 1993). Unfortunately it is hard to

apply the new techniques to this task because it is hard to gather traces: interaction

is paramount, and has a significant effect on the ability of a system to learn. Building

a system in which to embed inference techniques is an ambitious task involving

skills ranging from interface design to discourse management.

Many of the sequences discussed in the thesis have a structure that is currently

understood. One exception is DNA, and the real test of these techniques is their

ability to help people discover such structure. The tantalising results in

macromolecular sequences must be analysed and explained in terms of the

underlying biochemistry, a task that requires interdisciplinary collaboration. Other

examples might include previously unencountered languages, or communication

between other animals such as enigmatic dolphin clicks and whale songs. One day

we may even receive an extraterrestrial message whose understanding requires this

kind of lexical and grammatical inference.

In any realistic situation, sequential inference techniques will form part of a larger

system, a system that will likely include human judgement and interpretation. For

this reason, the mechanism developed in this thesis is simple and generic,

performing a single task well, without bias towards a particular source. It is

explanatory, complementing the natural abilities that people possess. It is dynamite

with which to quarry knowledge from mountains of data.

�

References

Abelson, H., and deSessa, A.A. (1982) Turtle geometry. Cambridge, Mass.: MIT
Press.

Andreae, J.H. (1977) Thinking with the teachable machine. London: Academic Press.

Angluin, D. (1982) “Inference of reversible languages,” Journal of the Association for
Computing Machinery, 29, 741-765.

Bell, T.C., Cleary, J.G., and Witten, I.H. (1990) Text compression. Englewood Cliffs,
NJ: Prentice-Hall.

Berwick, R.C., and Pilato, S. (1987) “Learning syntax by automata induction,”
Machine Learning, 2, 9-38.

Biermann, A.W., and Feldman, J.A. (1972) “A survey of results in grammatical
inference,” in Frontiers of Pattern Recognition, edited by S. Watanabe, New
York: Academic Press.

Brown, R.W. (1973) A first language: the early stages. Cambridge, Massachusetts:
Harvard University Press.

Chomsky, N. (1957b) Syntactic structures. Gravenhage: Mouton.

Chomsky, N., and Miller, G.A. (1957a) “Pattern conception,” AFCRC-TN-57-57.

Cleary, J.G. (1980) “An associative and impressible computer,” Ph.D. thesis,
Department of Electrical and Electronic Engineering, University of
Canterbury, Christchurch.

Cleary, J.G., and Witten, I.H. (1984) “Data compression using adaptive coding and
partial string matching,” IEEE Transactions on Communications, COM-32(4),
396-402.

Cohen, A., Ivry, R.I., and Keele, S.W. (1990) “Attention and structure in sequence
learning,” Journal of Experimental Psychology, 16(1), 17-30.

Craven, T.C. (1993) “A computer-aided abstracting tool kit,” Canadian Journal of
Information and Library Science, 18(2), 19-31.

Darragh, J.J., and Witten, I.H. (1992) The reactive keyboard. Cambridge, England:
Cambridge University Press.

Dietterich, T.G., and Michalski, R.S. (1986) “Learning to predict sequences,” in
Machine learning: an artificial intelligence approach II, edited by R.S. Michalski,
J.G. Carbonell and T.M. Mitchell, Los Altos, CA: Morgan Kaufmann, 63-
106.

Francis, W.N., and Kucera, H. (1979) “Manual of Information to Accompany a
Standard Corpus of Present-Day Edited American English, for Use with
Digital Computers,” Providence, Rhode Island: Department of Linguistics,
Brown University.

192 REFERENCES

Frijters, D., and Lindenmayer, A. (1974) “A model for the growth and flowering of
Ater novae-angliae on the basis of table (1, 0) L-systems,” in L-systems,
edited by G. Rozenberg and A. Salomaa, Berlin: Springer-Verlag, 24-52.

Gaines, B.R. (1976) “Behaviour/structure transformations under uncertainty,”
International Journal of Man-Machine Studies, 8, 337-365.

GEDCOM Standard: Draft release 5.4, Salt Lake City, Utah: Family History
Department, The Church of Jesus Christ of Latter-day Saints.

Gold, M. (1967) “Language identification in the limit,” Information and Control, 10,
447-474.

Gottlieb, D., Hagerth, S.A., Lehot, P.G.H., and Rabinowitz, H.S. (1975) “A
classification of compression methods and their usefulness for a large data
processing center,” Proc. National Computer Conference, 453-458.

Guazzo, M. (1980) “A general minimum-redundancy source-coding algorithm,”
IEEE Trans. Information Theory, IT-26(1), 15-25.

Harman, D.K.E. (1992) "Proc. TREC Text Retrieval Conference," Gaithersburg,
MD: National Institute of Standards Special Publication, 500-207.

Hayes, J.R., and Clark, H.H. (1970) “Experiments on the segmentation of an
artificial speech analogue,” in Cognition and the Development of Language,
edited by J.R. Hayes, New York: John Wiley & Sons, Inc., 221-234.

Hogeweg, P., and Hesper, B. (1974) “A model study on biomorphological
description,” pattern Recognition, 6, 165-179.

Johansson, S., Leech, G., and Goodluck, H. (1978) “Manual of Information to
Accompany the Lancaster-Oslo/Bergen Corpus of British English, for Use
with Digital Computers,” Oslo: Department of English, University of Oslo.

Kevles, D.J., and Hood, L. (Eds.) (1992) The code of codes: Scientific and social issues
in the human genome project. Cambridge, Massachusetts: Harvard University
Press.

Knuth, D.E. (1968) The art of computer programming 1: fundamental algorithms.
Addison-Wesley.

Laird, P., and Saul, R. (1994) “Discrete sequence prediction and its applications,”
Machine Learning, 15, 43-68.

Langley, P. (1996) Elements of Machine Learning. San Francisco: Morgan Kaufmann.

Lashley, K.S. (1951) “The problem of serial order in behavior,” in Cerebral
mechanisms in behavior, edited by L.A. Jeffress, New York: Wiley.

Li, M., and Vitanyi, P. (1993) An introduction to Kolmogorov complexity and its
applications. New York: Springer-Verlag.

Lindenmayer, A. (1968) “Mathematical models for cellular interaction in
development, Parts I and II,” Journal of Theoretical Biology, 18, 280-315.

Mainous, F.D., and Ottman, R.W. (1966) The 371 chorales of Johann Sebastian Bach.
New York: Holt, Rinehart and Winston, Inc.

REFERENCES 193

Mandelbrot, B.B. (1982) The fractal geometry of nature. San Francisco: W.H.
Freeman.

Maulsby, D.L., Witten, I.H., and Kittlitz, K.A. (1989) “Metamouse: specifying
graphical procedures by example,” Computer Graphics, 23(3), 127-136.

Miller, V.S., and Wegman, M.N. (1984) “Variations on a theme by Ziv and
Lempel,” in Combinatorial algorithms on words, edited by A. Apostolico and Z.
Galil, Berlin: Springer-Verlag, 131–140.

Moffat, A. (1987) "Word based text compression," Parkville, Victoria, Australia:
Department of Computer Science, University of Melbourne.

Moffat, A., Neal, R., and Witten, I.H. (1995) “Arithmetic coding revisited,” Proc.
Data Compression Conference, Snowbird, Utah, 202-211.

Nevill-Manning, C.G. (1993) “Programming by demonstration,” New Zealand
Journal of Computing, 4(2), 15-24.

Nevill-Manning, C.G., Witten, I.H., and Maulsby, D.L. (1994a) “Modelling
sequences using grammars and automata,” Proc. Canadian Machine Learning
Workshop, Banff, Canada, xv-15–18.

Nevill-Manning, C.G., Witten, I.H., and Maulsby, D.L. (1994b) “Compression by
induction of hierarchical grammars,” Proc. Data Compression Conference,
Snowbird, Utah, 244-253.

Nevill-Manning, C.G. (1995) “Learning from experience,” Proc. New Zealand
Computer Science Research Students’ Conference, Hamilton, New Zealand.

Nevill-Manning, C.G., and Witten, I.H. (1995) “Detecting sequential structure,”
Proc. Workshop on Programming by Demonstration, ML’95, Tahoe City, CA.

Nevill-Manning, C.G., Witten, I.H., and Olsen, D.R. (1996) “Compressing semi-
structured text using hierarchical phrase identification,” Proc. Data
Compression Conference, Snowbird, Utah, 53–72.

Nissen, M.F., and Bullemer, P. (1987) “Attentional requirements of learning:
evidence from performance measures,” Cognitive Psychology, 19, 1-32.

Olivier, D.C. (1968) “Stochastic grammars and language acquisition devices,” Ph.D.
thesis, Harvard University,

Pasco, R. (1976) “Source coding algorithms for fast data compression,” Ph.D. thesis,
Department of Electrical Engineering, Stanford University, Palo Alto, CA.

Piatetsky-Shapiro, G., and Frawley, W.J.E. (1991) Knowledge discovery in databases.
Cambridge, Mass.: MIT Press.

Prusinkiewicz, P. (1986) “Graphical Applications of L-systems to computer
imagery,” Proc. Graphics Interface ‘86—Vision Interface ‘86, 247-253.

Prusinkiewicz, P., and Hanan, J. (1989) Lindenmayer systems, fractals, and plants.
New York: Springer-Verlag.

Prusinkiewicz, P., and Lindenmayer, A. (1989) The algorithmic beauty of plants. New
York: Springer-Verlag.

Quinlan, J.R. (1986) “Induction of decision trees,” Machine Learning, 1, 81-106.

194 REFERENCES

Quinlan, J.R., and Rivest, R.L. (1989) “Inferring decision trees using the minimum
description length principle,” Information and Computation, 80, 227-248.

Restle, F. (1970) “Theory of serial pattern learning: structural trees,” Psychological
Review, 77(6), 481-495.

Restle, F., and Brown, E.R. (1970) “Serial pattern learning,” Journal of Experimental
Psychology, 83(1), 120-125.

Rissanen, J. (1978) “Modeling by shortest data description,” Automatica, 14, 465-
471.

Rissanen, J.J. (1976) “Generalized Kraft inequality and arithmetic coding,” IBM
Journal of Research and Development, 20, 198-203.

Rissanen, J.J., and Langdon, G.G. (1979) “Arithmetic coding,” IBM Journal of
Research and Development, 23(2), 149-162.

Rosenbaum, D.A., Kenny, S.B., and Derr, M.A. (1983) “Hierarchical control of
rapid movement sequences,” Journal of experimental psychology: Human
perception and performance, 9(1), 86-102.

Rubin, F. (1979) “Arithmetic stream coding using fixed precision registers,” IEEE
Transactions on Information Theory, IT-25(6), 672-675.

Salton, G. (1989) Automatic Text Processing: the transformation, analysis and retrieval
of information by computer. Reading, Mass.: Addison Wesley.

Sapir, E. (1921) Language. New York: Harcourt, Brace & World.

Schlimmer, J.C., and Hermens, L.A. (1993) “Software agents: completing patterns
and constructing user interfaces,” Journal of Artificial Intelligence Research, 1,
61-89.

Shannon, C.E. (1948) “A mathematical theory of communication,” Bell System
Technical Journal, 27, 398-403.

Smith, A.R. (1978) “About the cover: reconfigurable machines,” Computer, 11(7),
3-4.

Smith, A.R. (1984) “Plants, fractals, and formal languages,” Computer Graphics,
18(3), 1-10.

Solomonoff, R. (1959) “A new method for discovering the grammars of phrase
structure languages,” Information Processing, 258-290.

Storer, J.A. (1977) “NP-completeness results concerning data compression,” 234.

Storer, J.A. (1982) “Data compression via textual substitution,” Journal of the
Association for Computing Machinery, 29(4), 928-951.

Szilard, A.L., and Quinton, R.E. (1979) “An interpretation for D0L systems by
computer graphics,” The Science Terrapin, 4, 8-13.

Tarjan, R.E. (1975) “Efficiency of a good but not linear set union algorithm,”
Journal of the Association for Computing Machinery, 22(2), 215-225.

Teahan, W.J., and Cleary, J.G. (1996) “The entropy of English using PPM-based
models,” Proc. Data Compression Conference, Snowbird, Utah, 53–62.

REFERENCES 195

Thomas, S.W., McKie, J., Davies, S., Turkowski, K., Woods, J.A., and Orost, J.W.
(1985) “Compress (version 4.0) program and documentation,” available from
joe@petsd.uucp.

von Koch, H. (1905) “Une méthode géométrique élémentaire pour l’étude de
certaines questions de la théorie des courbes planes,” Acta Mathematica, 30,
145-174.

Wallace, C.S., and Freeman, P.R. (1987) “Estimation and inference by compact
coding,” Journal of the Royal Statistical Society (B), 49, 240-265.

Wallace, C.S., and Patrick, J.D. (1993) “Coding decision trees,” Machine Learning,
11, 7-22.

Williams, H., and Zobel, J. (1996) “Practical compression of nucleotide databases,”
Proc. Proceedings of the Australian Computer Science Conference, Melbourne,
Australia.

Witten, I.H. (1979) “Approximate, non-deterministic modelling of behaviour
sequences,” International Journal of General Systems, 5, 1-12.

Witten, I.H. (1981a) “Programming by example for the casual user: a case study,”
Proc. Canadian Man-Computer Communication Conference, Waterloo,
Ontario, 105-113.

Witten, I.H. (1981b) “Some recent results on non-deterministic modelling of
behaviour sequences,” Proc. Proc. Society for General Systems Research,
Toronto, Ontario, 265-274.

Witten, I.H. (1982) Principles of computer speech. London, England: Academic Press.

Witten, I.H., and Maulsby, D.L. (1991) “Evaluating programs formed by example:
an informational heuristic,” in New results and new trends in computer science,
edited by H. Maurer, Berlin: Springer-Verlag, 388–402.

Witten, I.H., and Mo, D. (1993) “TELS: Learning text editing tasks from
examples,” in Watch what I do: programming by demonstration, edited by A.
Cypher, Cambridge, Massachusetts: MIT Press, 182-203.

Witten, I.H., Moffat, A., and Bell, T.C. (1994) Managing Gigabytes: compressing and
indexing documents and images. New York: Van Nostrand Reinhold.

Witten, I.H., Neal, R., and Cleary, J.G. (1987) “Arithmetic coding for data
compression,” Communications of the Association for Computing Machinery,
30(6), 520-540.

Witten, I.H., Nevill-Manning, C.G., and Cunningham, S.J. (1996) “Building a
digital library for computer science research: technical issues,” Proc.
Australasian Computer Science Conference, Melbourne, Australia, 534-542.

Wolff, J.G. (1975) “An algorithm for the segmentation of an artificial language
analogue,” British Journal of Psychology, 66(1), 79-90.

Wolff, J.G. (1977) “The discovery of segments in natural language,” British Journal of
Psychology, 68, 97-106.

Wolff, J.G. (1980) “Language acquisition and the discovery of phrase structure,”
Language and Speech, 23(3), 255-269.

196 REFERENCES

Wolff, J.G. (1982) “Language acquisition, data compression and generalization,”
Language and Communication, 2(1), 57-89.

Ziv, J., and Lempel, A. (1977) “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, IT-23(3), 337-343.

Ziv, J., and Lempel, A. (1978) “Compression of individual sequences via variable-
rate coding,” IEEE Transactions on Information Theory, IT-24(5), 530-536.

Zobel, J., Moffat, A., Wilkinson, R., and Sacks-Davis, R. (1995) “Efficient retrieval
of partial documents,” Information Processing and Management, 31(3), 361-
377.

