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An increasingly common situation in today’s internet community is the automatic downloading
and local execution of a program obtained from an external source. For example, many web-sites
contain “Java Applets” that are programs transmitted to any user who visits the site. The programs
must pass the user’s security check and then they are executed on his or her machine. The user
never looks at the program; its execution is automatic.

The fact that the program is intended for execution and not for the user’s view provides inter-
esting and novel opportunities for data compression. The compression may be lossy as long as the
reconstructed program’s execution is identical to the original. As a simple example, parts of the
program that are never executed may be discarded. Any decrease in the program’s description size
translates directly into a reduction in transmission time. If the savings in transmission time com-
pensates for the time spent in reconstructing a functionally equivalent executable then performance
improves.

Another degree of flexibility is in the choice of the specification language for the program. In
general, programs are written in some high-level language which may be compiled into a sequence
of intermediate representations leading to a final executable or interpretable form. Any of the
representations in this sequence may be compressed, some more effectively than others, even though
they all describe the same program.

This paper examines the compression of source code, the original high-level language represen-
tation of a program. We discuss the results (both advantages and disadvantages) of this choice in
more detail in later sections, but two intuitive reasons for supposing compressed source code results
in the smallest program representation are worth mentioning at this point.

One reason is that later stages in the compilation process seem to add information. For example,
a high-level language construct may require a complicated pattern of machine instructions. In a
sense, the compiler adds this translation information to the representation. The compiler may also
add information about where to store variables or how to allocate registers. Of course, since the
algorithms that perform the compilation are fixed (and known to both sender and receiver), no
information (in the Shannon sense) is actually added. However, it seems easier for a compression
scheme to recognize and exploit program patterns from source code rather than after compilation
has perhaps obscured these patterns.

A second reason is the highly structured syntax of the source code. The syntax of most high-
level languages can be described by a language specific context-free grammar. Later stages of
representation lack such a rigid overall syntax.

The most important contribution of this paper is the manner in which we exploit the rigid
grammar of the high-level language. We call the general technique guided parsing since it is a
compression scheme based on predicting the behavior of a parser when it parses the source code
and guiding its behavior by encoding its next action based on this prediction. In this paper, we



describe the implementation and results of two very different forms of guided parsing. One is based
on bottom-up parsing while the other is a top-down approach.

Bottom-up parsing constructs a pushdown automata (PDA) that recognizes the same language
as the context-free grammar. The source code is fed, as a sequence of tokens, into the PDA which
transitions from state to state pushing and popping items from its stack. One way to represent the
source is as the sequence of transitions performed by the PDA with the source as input. Bottom-
up guided parsing predicts the next transition based on the current configuration (state and stack
contents) of the PDA.

Top-down parsing starts with the start symbol of a grammar and applies grammar rules to
expand nonterminals until the result is the input source code. At each step, the parser chooses a
grammar rule to expand the leftmost nonterminal in the current derivation. In general, the parser’s
choice is based on the next token in the source code. Alternatively, we could guide the parser by
specifying the actual grammar rule to use. This could result in substantial savings since, typically,
there are many fewer rules to expand a given nonterminal than there are tokens. Top-down guided
parsing predicts the next grammar rule to apply based on the parser’s past performance.

Both methods may be used to compress strings from any language that can be represented with
an appropriate context-free grammar. Our particular application is the compression of computer
programs expressed in source code.

1 Source Code

We use Pascal and Java as test cases for our guided parsing. Pascal is a mature language with a well-
defined syntax. Java is a new language that is popular for specifying programs to be transmitted
between computers. Java source code is not the representation that is typically transmitted. A
compiled version of the original source, a class file, is the transmitted form.! The class file contains
a sequence of Java bytecodes that are interpreted (rather than executed) by the receiving computer.

Our motivation for compressing source files rather than class files comes from a desire to produce
as small a representation of the program as possible. The hope is that over slow transmission lines,
the savings in the transmission time of compressed source compensates for the additional cost of
converting the source to bytecode by the receiver. The relative sizes of compressed source versus
compressed bytecode for our test suite is shown in table 1 and supports our conjecture that source
is more compressible.

One major objection to transmitting compressed source is that the receiver obtains a copy of
the original high-level source code, thus revealing potentially sensitive algorithms or structures.
Class files supposedly obscure this information. However, they are not designed for this purpose
and decompilation of a class file back to a source file is possible [13].

2 Context-Free Grammars

Beyond the evidence provided by general purpose compression, source code appears to be a good
program representation for compression because of its rigid structure. The syntax of the source
code is captured by a context-free grammar that is known to both the sender and receiver.

A context-free grammar is a list of rules. Each rule, denoted X — «, consists of a left-hand
symbol X and a right-hand string of symbols a. The set of symbols is partitioned into nonterminals

! Archived and compressed collections of class files and support files called JAR (Java ARchive) files are also used.



and terminals, and only nonterminals may appear as left-hand symbols. There is a special nonter-
minal S called the start symbol. The grammar specifies a language that consists of all strings of
terminals that can be derived from the start symbol. A string w is a single-step derivation of a string
v (written y= w) if there is a nonterminal X in -y and a rule X— « such that replacing the symbol
X in v with the string of symbols « results in the string w. A string w is a derivation of v (written
y=w) if there is a finite sequence of single step derivations v = = y1=> ---= v, = w. Aho,
Sethi, and Ullman [1] provide a more detailed explanation of context-free grammars and parsing in
general.

The grammar we use to represent Java syntax is from the Java Language Specification [8]. It
contains 103 terminal symbols, 135 nonterminal symbols, and 350 grammar rules. The Pascal gram-
mar? is based on the standard Pascal grammar. It contains 68 terminal symbols, 135 nonterminal
symbols, and 257 grammar rules.

3 Lexical Analysis

Our source code encoder is based on the first two stages of compilation: lezical analysis and parsing.
Lexical analysis takes as input a string of characters and outputs a sequence of tokens that are used
by the parser. A token is a label for a set of character strings. For example in Java, the token
for represents the single string for (a reserved word in Java), while the token intlit represents any
integer literal such as 12 or 8. The character strings that are labeled by a token are called lezemes.

Tokens are the terminal symbols of the grammar for the high-level language. So the language
specified by the grammar contains sequences of tokens, rather than actual source code. To recon-
struct the source code from a token sequence, each token must be replaced by the lexeme that
inspired it. If a token represents only a single lexeme then this replacement requires no further
information, but for those tokens representing multiple lexemes, enough information to reconstruct
the lexeme must be provided.

The current system handles multiple-lexeme tokens by creating a file for each such token. When
the lexical analyzer encounters a lexeme for such a token in the source file, it writes the lexeme
into the token’s file. These token files can be compressed individually using any general purpose
compression technique. In section 6.1, we show results for two different compression schemes:
Move-To-Front [3, 5] followed by Huffman coding [9], and Gzip (a variant of LZ77 [16] distributed
by the Gnu Free Software Foundation). Move-To-Front performs somewhat better than Gzip on
sequences of lexemes that exhibit locality of reference, such as identifier names and integer literals.

The lexical analysis phase discards comments and formatting information from the file. Thus,
the compression that is performed is technically lossy. Decompression will only result in an equiv-
alent sequence of lexemes; it will not reconstruct the original source. However, this sequence is
sufficient for the purpose of compilation into an executable or interpretable form.

4 Parser

Lexical analysis provides the parser with a sequence of tokens. The parser takes these tokens and
produces a parse tree according to the grammar. A parse tree shows how a token sequence is derived
from the start symbol of a grammar. The root node represents the start symbol, and, in general,
internal nodes of the parse tree represent nonterminals in the grammar. The children of an internal
node representing nonterminal X represent the symbols on the right-hand side of a rule X — «. In

http://wuarchive.wustl.edu/languages/c/unix-c/languages,/pascal /iso-pascal.tar.Z



particular, if @ = aqag -+ - af (where ¢; is a terminal or nonterminal symbol) then X has children
representing «q through ay (from left to right). Leaf nodes represent tokens (terminal symbols),
and the tokens at the leaf nodes of a parse tree, reading from left to right, form the input token
sequence.

There are two basic methods of creating the parse tree for a given token sequence: bottom-
up and top-down parsing. As their names imply, one constructs the parse tree in a bottom-up
fashion while the other constructs it top-down. We consider both methods as a means of succinctly
representing the token sequence.

5 Guided Parsing

The basic technique to compress a token sequence, using either a bottom-up or top-down parser,
is to run the parser without input, but provide information to guide its execution so that its
execution, in the absence of input, is identical to its execution with the token sequence as input.
Thus the parser produces a parse tree (from which the token sequence can be extracted) without
knowledge of the token sequence. The only information that is needed is that which guides the
parser’s execution.

5.1 Bottom-up

The type of bottom-up parsing we use is called LR (1) parsing. The “L” indicates that the input is
scanned from left to right. The “R” indicates that the result is a parse tree representing a rightmost
derivation of the token sequence. An LR-parser is a pushdown automata and can be automatically
generated from any LR-grammar (a restricted class of context-free grammars). See Aho, Sethi, and
Ullman for details [1].

Once the pushdown automata is generated, we need only guide its operation in order to produce
the token sequence. In particular, we need only specify what transition the PDA should take given
that it is in a particular configuration (state and stack contents).

In order to provide this information, we treat the PDA as a context-based model. The context
is a configuration or a partial configuration — perhaps the state of the PDA and the top k£ symbols
on its stack. The number of transitions from a state is finite, and which transition is taken is
determined by the next input token. Rather than providing the PDA with this token, we specify
the transition. As in other context-based methods, the transition may be specified explicitly or
encoded. In our case, we encode using context-based adaptive arithmetic coding.

Initially, all transitions from a context (based on the state of the PDA specified in the context)
are assumed equally likely and given frequency count 1. The frequency count distribution is used
by an arithmetic encoder to encode the transition from the context. When the parser takes the
transition, it increments that transition count, thus modifying the distribution for further encoding.
See Bell, Cleary, and Witten [2] for a more detailed description of context based arithmetic encoding.

We have created a system that, given a grammar, automatically constructs the encoder and
corresponding decoder. The system operates in a manner similar to the way in which Yacc [10]
automatically creates a parser (pushdown automata) from a given grammar.

Our system, like Yacc only produces parsers from LALR-grammars (lookahead LR-grammars).
In practice, this is not a restriction since most programming languages have LALR-grammars
(perhaps because using Yacc is so much easier than constructing parsers by hand).

The system can produce either LALR-parsers or LR-parsers. LALR-parsers have traditionally
been preferred to LR-parsers since the number of states in an LALR-parser is considerably fewer



than the number of states in an LR-parser. For example, Java’s grammar which has 350 rules
produces a 624 state LALR-parser, while the same grammar produces a 2,953 state LR-parser. This
means that the memory requirements of an LALR-parser are more modest than the corresponding
LR-parser. On the other hand, the increased number of states in an LR-parser may provide much
better context for prediction. Results for both LALR and LR-parsers are shown in tables 3 and 4.

5.2 Top-Down

Top-down parsing expands nonterminals starting with the start symbol in an attempt to construct
a parse tree for the given input. The choice made by the parser at each step is which rule to apply
to expand the leftmost nonterminal in the current derivation. Top-down parsing works efficiently
(without backtracking) when the rule to apply can be determined by looking at very few tokens of
the input (preferably one).

Actually, the manner in which the parse tree is constructed is immaterial to top-down com-
pression. Given a parse tree, a top-down encoding first specifies the rule used to expand the root
node (start symbol) in the parse tree. At every subsequent step, it specifies the rule to expand
the leftmost nonterminal in the current derivation, that is the leftmost unexpanded nonterminal
in the parse tree. The resulting sequence of rules, rather than the sequence of tokens, guides the
performance of the top-down parser.

In order to specify the sequence of rules, we again use a context-based approach. The context, in
this case, is the nonterminal to be expanded and, perhaps, the first £ nonterminals on the path from
that nonterminal to the root in the parse tree. Other contexts are possible and may provide good
compression, but the nonterminal to be expanded provides very good context by itself. Since each
nonterminal is the right-hand side of only a few rules, we need to provide very little information
to specify the rule. As in the bottom-up case, we encode this sequence of conditional rule numbers
using context-based adaptive arithmetic coding.

Our implementation encodes the parse tree produced by the bottom-up parser. As in the
bottom-up case, the encoder and decoder are produced automatically from the grammar.

The results are shown in tables 3 and 4.

6 Results

The Java programs used to test the compression methods discussed in this paper come from four
packages. The first is the Java Development Kit 1.1.23. We use 41 Java source files from the JDK
written in Java version 1.0.2. (The version 1.1 source files do not conform to the published version
1.0 grammar.) The second is JavaCup?, a collection of 30 Java files implementing an LALR parser
generator. The third is JLex®, a single Java file implementing a lexer. The fourth is Toba®, a
collection of 41 Java files that translate Java into C.

The Pascal programs in the test suite are: TEX" a typesetting program, Ecp® an error correcting
parser, and Pcom? a portable pascal compiler.

®http://java.sun.com/

*http://www.cs.princeton.edu/ appel/modern/java/CUP/
®http://www.cs.princeton.edu/ appel/modern/java/JLex/
®http://www.cs.arizona.edu/sumatra/toba/
"http://tug2.cs.umb.edu/ctan/

®http://www.cs.wisc.edu/ fischer /ftp/tools/
http://www.cwi.nl/ftp/pascal/pcom.p



raw Gzip

source | 291860 | 59454 (20%)

lexemes | 175153 | 37225 (21%)

class 169792 | 74502  (44%)

Table 1: General (Gzip) compression of 41 concatenated source files from JDK, the lexeme sequence,
and class files. Numbers are in bytes.

lexemes raw  Gzip Move-To-Front

ident 13730 87089 25371 24511
29% 28%

strlit 577 6584 4248 4574
65% 69%

intlit 1579 3769 2197 2180
58% 58%

Table 2: Compression of lexemes. Numbers are totals over all 41 source files in JDK. The first
column is number of lexemes. The last three columns are number of characters.

Table 1 justifies our interest in source code as a potentially compressible representation of a
program. After removing comments and redundant whitespace, the source files are approximately
the same size as the class files. However, the source files are much more compressible using the
general purpose compression tool Gzip.

6.1 Compressing Lexemes

Table 2 compares the Move-To-Front strategy versus Gzip for compressing sequences of lexemes
that have been grouped according to token type.

The table does not include Boolean literal (boollit), character literal (charlit), or floating point
literal (floatlit) tokens. The average number of such tokens per file in the test suite was less than 8.

Identifier names (ident tokens) are by far the most numerous. Gzip manages to compress these
files to, on average, 29% of their original size. Move-To-Front followed by Huffman coding improves
this to about 28% presumably because it exploits some locality of reference of identifiers.

The number of string literal (strlit) and integer literal (intlit) tokens per source file is so small
that compression of these lexemes is rather poor. Again, locality of reference of integer literals
gives Move-To-Front a slight edge over Gzip.

The Move-To-Front (MTF) compression scheme keeps a list of lexemes it has seen so far. On
reading the next lexeme from the file, MTF outputs its index in the list and moves it to the top of
the list. If the lexeme is not in the list, MTF outputs 0 and the lexeme itself. Thus MTF outputs
a sequence of indices and a sequence of lexemes. We Gzip the sequence of lexemes and Huffman
encode the sequence of indices. These two files, along with a description of the Huffman code,
constitutes the Move-To-Front representation.
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Table 3: Compression of Pascal using bottom-up (LR and LALR) and top-down guided parsing.
The bars are grouped by parsing method. From left to right in each group, the context increases.
Context is the number of stack symbols (bottom-up) or previous nonterminals (top-down) used
to predict. The graph shows percentage of lexeme sequence size (the number below the program
name).

6.2 Varying Context Size

Tables 3 and 4 illustrate the small improvement afforded by increased context size. The performance
of both the top-down and LALR bottom-up methods improve slightly by increasing the context.
The performance of the LR bottom-up method degrades. The problem is that increasing the
context size, and thus the number of contexts, decreases the number of times a context arises
during parsing. This results in poor prediction on the part of the arithmetic encoder, leading to a
decrease in compression.

7 Related and Future Work

We chose to work on source code compression after experimenting with the compression of other
program representations [6]. Source code seems to provide a better starting point for compression
than the intermediate representations treated in our earlier work. The source code for those repre-
sentations is in the language C rather than Java, so a direct comparison is still a matter of future
work. In the earlier work, we compressed bytecode-like program representations to 20% of their
original size.

The compression of an abstract syntax tree representation of a program has been studied in
some detail by Michael Franz [7]. This representation is similar to a parse tree representation
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Table 4: Compression of Java using bottom-up (LR and LALR) and top-down guided parsing.
The bars are grouped by parsing method. From left to right in each group, the context increases.
Context is the number of stack symbols (bottom-up) or previous nonterminals (top-down) used
to predict. The graph shows percentage of lexeme sequence size (the number below the program
name).



but excludes some syntactic superficialities. Franz compresses these trees using a dictionary based
scheme that is similar to LZW [15]. He achieves a compressed size that is 41% of Java bytecode.
Our methods yield approximately 18% of Java bytecode (15-17% of the lexeme sequence).

The top-down compression scheme, for single nonterminal context, is similar to a technique used
by Robert Cameron to compress Pascal source code [4]. His method relies on the user to annotate
the grammar rules with probabilities, rather than having the compression method “learn” these
probabilities.

Cameron also touches on the possibility of changing the grammar to make it more effective as
a model for compressing source code. He mentions splitting rules to gain more detailed contextual
information. These modifications would appear to be subsumed by the use of larger contexts
from the parse tree. The general idea, however, seems promising: If one views the purpose of the
grammar as a model for compression, what is the best grammar for a given language?

Andreas Stolcke addresses a somewhat related question in his PhD thesis [14]: What is the
best grammar for a set of sample strings where best is according to a minimum description length
criteria? The description length includes both the description of the grammar and the description
of the sample strings given the grammar.

In our case, we know a valid grammar. However, the general idea still applies. We may, given
a set of sample strings, search for modifications to the grammar so that the description of the
modifications and the description of the sample strings given the modified grammar is minimal.
Notice that the modified grammar need not describe the same language as the original. This is an
area for future research.

The case when one is given a single string and asked to produce a grammar (with certain
properties) for that string with no prior knowledge of a grammar, is discussed by Craig Nevill-
Manning [11, 12]. The description length, in this case, is simply the size of the grammar, since the
grammar produces only one string.

8 Conclusions

The use of a grammar to exploit syntactic regularity in source code leads to better compression
than can be obtained by general purpose compression schemes. The method is made practical by
the use of an automatic system to construct the encoder/decoder for a given grammar. This makes
the process of designing syntax sensitive compression schemes practical.
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