
Lexical Attraction for Text Compression
Joscha Bach
Department of Computer Science, Humboldt University of Berlin, Berlin, Germany
email: bach@informatik.hu-berlin.de

Ian H. Witten
Department of Computer Science, University of Waikato, Hamilton, New Zealand
email: ihw@cs.waikato.ac.nz

New methods of acquiring structural information in text documents may support better compres-
sion by identifying an appropriate prediction context for each symbol. The method of “lexical
attraction” infers syntactic dependency structures from statistical analysis of large corpora. We
describe the generation of a lexical attraction model, discuss its application to text compression,
and explore its potential to outperform fixed-context models such as word-level PPM. Perhaps
the most exciting aspect of this work is the prospect of using compression as a metric for structure
discovery in text.

1 Introduction

The most successful methods of text compression work by conditioning each symbol’s probability on
its predecessors. Sequences of symbols establish a context that determines a probability distribution
for the next symbol, and the actual next symbol is encoded with respect to this distribution. For
example, PPM uses the previousk symbols as context, for some small fixed orderk (Cleary and
Witten, 1984). As is well known, the size of the model grows exponentially with order. While
fifth-order models are widely used for character-based PPM, even second-order models are usually
impractical for word-level PPM because their alphabet includes many more symbols.

For textual documents written in natural language, it is obvious that there are dependencies not
only between adjacent symbols, but between more distant words in a sentence. For example, verbs
may depend on nouns, pronouns on names, closing brackets on opening ones, question marks on
“wh”-words. It is the purpose of language grammars to characterize these dependency structures.

Grammars have some important limitations, apart from the practical difficulty of finding natural-
language parsers that work robustly. First, they only describe syntactically correct structures, and
a grammar-based coder might fail to predict many frequently-occurring phrases—even though, in
most writing, grammatically correct sentences are generally more likely than incorrect ones. Second,
although grammars capture syntactic structure, they do not necessarily reflect typical language usage.
Third, it is very difficult to derive grammatical dependency structures for documents written in an
unknown language.

The method of “lexical attraction,” developed by Deniz Yuret (1998), establishes dependency
structures in textual documents based on the co-occurrence of terms in a certain order in the same
sentence, regardless of the distance that separates them. This scheme is able to recognize linguistic
structure in text by organizing it in the form of a low-entropy model. Once identified, the structure
supports a more informed notion of context than simply using the previous few characters or words.
This context can be used for prediction in much the same way as PPM.

Section 2 describes the idea of lexical attraction, particularly the measure of mutual information
on which it is founded, and explains the algorithm used to acquire the dependency structure. Section
3 discusses how to encode textual documents using the context provided by the lexical attraction
model. Section 4 gives experimental results, and Section 5 draws some conclusions and suggests
directions for further improvement.

1

This would serve as an avenue of escape .

2.95

2.04

5.17
4.48 3.06 0.00 0.46 1.18

Figure 1: The lexical attraction model for an example sentence from the Jefferson corpus

2 Lexical attraction

This work is based on “link grammars,” a new formalism for natural language syntax in which
sentences are parsed by connecting their words together with links, or arcs (Sleator and Temperley,
1991; Laffertyet al., 1992). Links may be labeled by grammatical structure relations (subject-verb
and so on); we use an unsupervised learning approach and therefore do not use (or generate) these
labels.

For example, Figure 1 shows the linkage produced by our system for the sentenceThis would
serve as an avenue of escape. The first word,this, links to the main verbserveand objectescape. The
main verb is linked backward to the auxiliarywould, and forward toas. Escapeis linked backward
to of (and ideally,avenueshould have been linked back toan). Escapeis also linked forward to the
period that ends the sentence. Throughout this paper, tokens are words (they may include digits and
non-punctuation printing characters as well as letters) or individual characters of punctuation (period,
comma, semi-colon, colon, question mark, explanation mark, brackets, and quotation marks); all
contiguous white space is mapped into a single space character.

Lexical attraction was developed in a recent Ph.D. thesis by Deniz Yuret (1998) as a particu-
lar, concrete, methodology for discovering these linguistic relations. Yuret suggests an unsuper-
vised learning method for inferring dependency structures from a large corpus of natural language
text. While his work is aimed at natural language understanding, link grammars may have other
applications—such as compression modeling or topic extraction.

The lexical attractionof an ordered pair of words is the likelihood that they will appear (in that
order) within a sentence. This can be estimated by counting the co-occurrences of word pairs. The
resulting dependency structure defines an undirected graph with words as vertices and links between
them as edges. The graph is chosen to maximize the lexical attraction between linked items. Graphs
are constructed to be planar—links do not cross—and we capitalize upon this when creating them.
Moreover, they are acyclic, which is a necessary condition for the structure to be acquired.

2.1 Mutual information

When a pair of words is encoded together rather than independently of each other, the coding gain
is calledmutual informationand measures the lexical attraction between the words. The following
example is taken from Yuret (1998).

In a certain corpus, the probability of the wordIreland is 0.0039% and it may therefore be
encoded in 14.65 bits. The probability of the wordNorthern is 0.016%, or 12.60 bits. However,
in 35.8% of all cases, the wordNorthern precedesIreland. This precedingNorthern, based on
knowledge of the occurrence of the wordIreland, can be coded in as little as 1.48 bits, for a gain in
mutual information of����� � ���� � ����� bits. Conversely, the probability of the wordIreland
based on a previous occurrence ofNorthernis 8.5%, leading to an encoding in 3.53 bits and a gain of
11.12 bits. Note that the mutual information is the same irrespective of the direction of the prediction.
(It does, of course, depend on the word order: the probability ofNorthernappearingafter the word
Ireland is entirely different.)

Given the co-occurrence counts, the mutual information gained by encoding wordss� ands�

2

together can be estimated as

MI�s�� s�	 � log�
Pr
�s�� s�	�

Pr
�s�� �	�Pr
��� s�	�
� log�

n�s�� s�	

n�s�� �	n��� s�	N

bits, wheren�s�� s�	 is the number of times the pair has been encountered, * is a wildcard matching
every term, andN is the total number of observations made. For practical purposes, the mutual
information of a pair of words that has been encountered two times or less is taken as zero.

2.2 Linking sentences

The most likely linkage for a sentence can be found by generating all possible acyclic, planar graphs
over it, and choosing the one with the greatest accumulated lexical attraction—that is, the total mutual
information gain for all linked pairs of words. Unfortunately, the computational complexity of this
method isO�n�	 for ann-word sentence. Yuret (1998) proposes an approximate algorithm with a
complexity ofO�n�	:

� for each word, consider linking it to each previous word in the sentence in turn, starting with
the preceding word;

� resolve conflicts created by cycles and crossing links by deleting the weakest link in question.

(In fact, he suggests accepting only links with positive mutual information, but we have not done this
in our implementation because we seek a fully-linked structure.)

For example, when processing Figure 1 word by word,would is first linked tothis. Serveis then
linked tothis andwould; however, this creates a loop, so the weakest link (which happens to bethis–
would) is deleted.As is linked toserve, and then linking towould is attempted. As this would create
a crossing link, and because the link betweenthis andserveis stronger, the latter is retained instead.
Linking as to this creates a cycle, and because all other links in the cycle are at least as strong, the
new link cannot be established. And so the algorithm proceeds on down the sentence. The numbers
shown on each link give the mutual attraction of the word pairs for this example sentence, calculated
as described below.

This algorithm may leave some words disconnected when crossing links are broken, and as a
final pass, every unlinked word is connected to its direct predecessor.

2.3 Adaptive acquisition of mutual information

The mutual information matrix for a corpus of text can be obtained by simply counting the co-
occurrences of all pairs of words in each sentence,n�s�� s�	, and substituting into the formula above.
Although this will produce good results in the (very) long run, for corpora of moderate size it gives
noisy estimates of the probabilities. More reliable estimates can be obtained by making use of previ-
ously identified links, leading to an adaptive scheme which takes advantage of existing links to help
create new ones (Yuret, 1998). As each sentence of the corpus is processed, its dependency struc-
ture is derived from the current set of probabilities. Then, counts are incremented only for certain
word pairs in the sentence, namely (a) adjacent pairs of words, (b) linked pairs of words, and (c)
the word pairs (A,Y) and (X,B) that occur in a sequenceXA ... BY whereA andB have already been
connected. For example, in Figure 1 the counts associated withthis–would, this–serve, andthis–as
will be incremented for reasons (a), (b) and (c) respectively.

An additional advantage of this counting scheme is that it generates much smaller models than
the brute force version, because fewer different pairs are brought to the attention of the processor.

3

2.4 Results

Yuret trained his algorithm his algorithm on a reasonably homogeneous corpus of 100 million words
of Associated Pressmaterial. He hand-parsed an independent test set of 200 sentences, and applied
the lexical attraction algorithm to them. Of the content-word pairs that were linked by hand-parsing,
87.5% showed positive lexical attraction, which gives an upper bound on what can be expected
from this method. He also measured the quality of the dependency structure in terms of recall and
precision, again for links between content-word pairs only. He found that 50% of content-word links
in the human-parsed test set were made by the algorithm (recall); and 60% of content-word links
established by the algorithm were present in the human-parsed version (precision). Furthermore, his
results suggest average mutual information gains of up to 50% per link. It is expected that a smaller
corpus, or a less homogeneous one, will yield weaker links, reducing both precision and recall.

Yuret mentioned examples of the number of bits saved by encoding words based on their links,
and discussed an upper bound to the number of bits required to transmit the linkage structure. How-
ever, he did not build a compression scheme based on the lexical attraction idea, nor evaluate the
linkage in terms of the amount of compression that can be achieved.

3 Encoding based on lexical attraction

We have developed an encoding scheme that takes a series of linked sentences like that of Figure 1
and transmits them in the same manner as first-order word-level PPM. Of course, the decoder needs
additional information to restore the graph structure, and thus establish the contexts for decompres-
sion. Unlike PPM, which performs only forward prediction, a lexical attraction coder also predicts
backwards. (The situation becomes even more complicated with higher-order models, and we have
not considered them.) Indeed, word-level PPM is a special case where links are made only between
adjacent words.

3.1 Linking

Links across sentence boundaries connect the last term of one sentence to the first term of the next.
This makes sense (at least for western languages) because the former is a punctuation mark that
terminates the sentence, while the latter is generally an upper-case word that is attracted to the begin-
ning of sentences. Considering more than one sentence at a time might lead to some improvement,
because more links would be established between nouns and related pronouns, opening and closing
quotation marks, and so on.

In order to prime the lexical attraction linker, the whole document is processed in advance to
acquire the co-occurrence counts, and again in a second pass to re-link the sentences. We have
experimented with the use of multiple passes, so that counts in one pass are based on sentences
linked using the statistics acquired in the previous one, but this does not yield any improvement over
the one-pass adaptive method described earlier.

As already noted, pairs that occur twice or less are not considered to have significant lexical
attraction, and so all terms that occur only once or twice are excluded from the statistics. This
significantly reduces the size of the model, because in most corpora, about half the terms arehapax
legomena.

The final output of the linking stage contains a triple for each word or item of punctuation in
the text: the index of the term, the index of the previous term (the one that prediction is based on),
and a flag indicating the relative order of these terms (that is, whether it is a forward or a backward
prediction). Also, the graph structure of the document is recorded as described below.

4

3.2 Adaptive encoding

To avoid the overhead that would be introduced by the transmitting the complete model, the encoding
stage utilizes an adaptive PPM-style method. For each term acting as a predictor, two probability
distributions are maintained—one for forward and the other for backward predictions. These are
based on previously encoded pairs. For each pair�p� q	 of predicting and actual terms, the coder
performs the following steps.

� Whenp acts as a predictor for the first time,q is encoded according to its zero-order probability
(the number of times it appears in the document divided by the total word count).

� If p does not includeq in its predictions, an escape symbol is sent, followed by the zero-order
probability ofq. The probability of the escape symbol is given by

Pr
esc� �
r

n� r

wheren words have been seen altogether in the context of the termp, andr of them are distinct.

� Otherwise, the probability ofq is estimated as

Pr
q� �
fq

n
��� Pr
esc�	

wherefq is the number of times thatq has appeared in the context ofp.

� Finally, the models are updated. If the current encoding is based on a forward prediction, the
counts offq in the forward context ofp andfp in the backward context ofq are incremented.
Furthermore, the counts for the relevantr andn are incremented in both models. In the case of
a backward prediction, the backward and forward roles are reversed.

This estimate forPr
esc� implements the PPMC scheme (Moffat, 1990). We have tried PPMD
(Howard and Vitter, 1992), but find that it yields no improvement.

3.3 Encoding the links

The baseline method of encoding the graph is to enumerate all planar dependency structures on a
sentence ofn words, and transmit the index of the actual graph. By counting the number of planar
graphs, an upper bound of 2.75 bits per term can be derived for the information necessary to encode
the graph (Yuret, 1998).

We reduce this figure by adopting the following strategy. Each sentence is viewed as a tree, the
root being the first word encoded. (More precisely, the whole document is one large tree, because
the last word of each sentence is linked to the first word of the next.) To represent the structure of
this tree, it is sufficient to record the number of forward and backward links for each word (ignoring
the link to the previous word). Once the link counts have been communicated, the words can be
transmitted recursively, from left to right.

Figure 2a shows the link counts, and Figure 2b gives the transmission order for the sentence. The
order is easily derived from the counts. The first word,This, is sent first. It has two forward links, the
first of which,serve, is sent next. Before the second forward link (escape) is sent, however, the word
serveis processed. It has one backward and one forward link. The former,would, is sent first. Its
link counts are zero, so we unwind to continue the processing ofserveby sending its forward link,
as. This term has a backward count of zero and a forward count of one, soan is sent next. Since this
has zero link counts, we unwind to continue the processing ofThisby sending the wordescape.

5

(a)
This would serve as an avenue of escape .
(0,2) (0,0) (1,1) (0,1) (0,0) (0,0) (1,0) (1,1) (0,1)

(b)

This serve would
 as an
 escape of avenue
 .

Figure 2: Encoding the link structure for the example sentence. (a) Successor and predecessor counts;
(b) transmission order.

In order to transmit the link counts, each different pair of numbers for forward and backward
links is treated as a single symbol, and the resulting sequence is compressed using PPMD. For the
texts we have worked with, transmitting the graph structure in this way imposes an overhead of
around 2.3 bits/term.

3.4 Trading graph uniformity for mutual information

The number of bits required by a lexical attraction compressor to encode text is the information
necessary to transmit the dependency graph, plus the actual information content of the terms. Un-
fortunately, encoding the graph imposes significant overhead, and overall performance may be even
worse than zero-order encoding—particularly on small corpora. The overhead can be artificially re-
duced by generating a link structure with greater uniformity. Of course, the price is paid for this is a
reduction in effective mutual information.

The most frequent link combination consists of no backward links and one forward link—that
is, a forward link from one term to the next, recording the standard reading order. The graph can
be simplified to favor adjacent links by deleting links between non-adjacent terms if their mutual
information gain is insignificant. We do this only in the second pass through the document, when the
sentences are linked in final form, not in the first pass which accumulates the probability information.

In the extreme, when only links to adjacent terms are accepted, links reflect the natural word
order and the coder’s output is the same as first-order PPM. In this case, the overhead of transmitting
the graph structure is negligible because only one count pair occurs, (0, 1). Then first-order PPM
becomes a special case of (first-order) lexical attraction encoding.

4 Experimental results

Since most words in English have low frequency counts, the acquisition of mutual information de-
pends heavily on corpus size. Best results for a lexical attraction compressor are obtained using
a homogeneous corpus of very large size. Unfortunately, such corpora are hard to come by. The
largest one we could obtain isJefferson the Virginian(Malone, 1948), which we have available as a
6.3 Mbyte ASCII file. Most experiments were undertaken on this. It contains a total of 1,238,973
words, which we segmented into 50,729 sentences using straightforward methods. Each punctuation
mark was considered to be a term, and all terms are separated by a single space.

Encouraging results have been achieved with this corpus. However, further work with larger
corpora is necessary to explore the limits of compression that are achievable using lexical attraction.

6

5

10

15

20

25

30

words

 lexical attraction

 first order

en
tr

op
y

sa
vi

ng
s

(%
)

 2 2 2 2 2 2 2 2 2 211 12 13 14 15 16 17 18 19 20

Figure 3: First-order entropy expressed as the percentage saved over a zero-order model

4.1 Acquiring mutual information

The acquisition of mutual information depends on two factors: the size of the corpus and its compo-
sition in terms of homogeneity, vocabulary, and sentence length. We investigate these separately.

4.1.1 Size of corpus

We begin by examining how the first-order entropy depends on text size, when the entropy is calcu-
lated based on the appropriate word in the lexical dependency graph, and when it is calculated based
on the preceding word. Figure 1 shows the text size in words along the horizontal axis, for the first
2��� 2��� etc, words ofJefferson the Virginian. The vertical axis expresses the gain in entropy as a
percentage of the entropy of a zero-order model of the same text. In the upper line the first-order en-
tropy is calculated based on the appropriate word of the dependency graph; note that this corresponds
to the mutual information of the text, except that it is calculated adaptively rather than statically. The
lower line uses the preceding word as context, as in ordinary first-order PPM. The horizontal scale is
logarithmic: the size of the text doubles at each step.

As expected, the entropy savings are larger for the lexical attraction model than for a plain first-
order one. With a text of 2�� words, for example, the ordinary first-order model gains 8% over the
zero-order one, while the lexical attraction model gains 17%. After 1.2 million words have been
encountered, lexical attraction shows an improvement of 24%, and if the corpus were to grow further
even better results would be obtained as more dependency structure is acquired. Of course, the graph
will eventually flatten out with a sufficiently large homogeneous corpus—but it would have to be
astronomically large.

However, this is not the whole story: these figures omit the overhead of transmitting the graph
structure. We will see below that this significantly reduces the overall compression achieved.

4.1.2 Composition of corpus

In order to further investigate the effect of the size and composition of the corpus, we performed
subsidiary experiments on three other bodies of text. One is derived from the Gutenberg project,
which is making public-domain English literature available in machine-readable form. This corpus
contains a wide variety of very different documents, and we used a subset containing 137 books, or
27 million words, of English prose. The second body of text, Thomas Hardy’sFar from the Madding
Crowd, is small but far more homogeneous than Gutenberg. Finally we used a corpus of children’s
language consisting of extremely short and simple sentences.

Table 1 shows the size of these corpora, the number of different words they contain, and the zero-
order entropy. The inhomogeneity of the Gutenberg corpus can be seen from its disproportionately

7

corpus size vocabulary zero-order lexical attraction savings over

(words) (words) (bits/word) (bits/word) zero-order model

Gutenberg (extracts) 26,636,000 264,000 9.97 8.15 18.2%

Far from the madding crowd 168,000 14,000 9.22 7.51 18.5%

Jefferson the Virginian 1,239,000 29,000 9.47 7.24 23.6%

Children’s language 184,000 4,700 7.87 5.84 25.8%

Table 1: Results of experiments on different corpora

corpus average graph encoding lexical attraction

sentence length (bits/term) (bits/term)

Gutenberg (extracts) 15.3 2.38 10.53

Far from the madding crowd 13.8 2.31 9.82

Jefferson the Virginian 24.4 2.35 9.59

Children’s language 6.2 1.61 7.45

Table 2: Information required to encode the dependency graph

large vocabulary, although this does not result in a significantly increased zero-order entropy.Far
from the madding crowdis both much smaller, and more homogeneous. The children’s language
corpus exhibits a tiny vocabulary and a correspondingly low zero-order entropy.

The last two columns of Table 1 give the results of our experiments on these corpora, in terms
of the first-order entropy of the lexical attraction model, and the percentage savings it yields over the
zero-order entropy.Far from the madding crowdgives the same percentage savings as Gutenberg,
despite being a tiny fraction of the size. Clearly quality—homogeneity—makes up for quantity, and
the savings are about the same as Figure 1 shows for a similarly-sized extract fromJefferson the
Virginian. The third row illustrates how better linkage structures are discovered as the text grows,
while the result for children’s language demonstrates that comparable savings can be achieved from
a far smaller corpus if the linguistic structure is simple enough.

4.2 Encoding the graph

We now turn to the information content of the dependency graph. For a naive enumerative encod-
ing, this depends heavily on the average sentence length. However, our coding method (described
above, using third-order PPMD) greatly reduces this effect. Table 2 shows the results, which range
from 2.38 bits/term for the Gutenberg corpus to 1.61 bits/term for the children’s language corpus.
The per-term entropy of the graph is reasonably independent of the size of the document and its
vocabulary—although it will be lower if the document is too small to establish a complex depen-
dency structure. Table 2 also shows the total entropy per term, taking into account both the encoding
of the dependency graph and the first-order entropy based on its predictions.

4.3 Results of lexical attraction encoding

Next we look at how overall compression for the lexical attraction method depends on text size,
and compare it with zero- and first-order coders. Figure 4 plots the compression rate for these three
methods against text size forJefferson the Virginian, along with (at the bottom) the rate for lexical
attraction without taking the graph structure into account. Because of the overhead of transmitting
the dependency graph, lexical attraction gives worse compression than a zero-order model right up
to texts of a million or so words. At that point it overtakes zero-order modeling. Unfortunately for
lexical attraction, it is beaten hands down by first-order compression up to a million words—although

8

7

8

9

10

11

words

 lexical attraction (words only)

 lexical attraction

 zero-order

first-order

bi
ts

 p
er

 w
or

d

 2 2 2 2 2 2 2 2 2 211 12 13 14 15 16 17 18 19 20

Figure 4: Compression by lexical attraction , compared with zero- and first-order coding

7

7.5

8

8.5

9

9.5

10

0 0.5 1 1.5 2 2.5 3 3.5 4.5 6 9

penalty on non-adjacent links (bits)

lexical attraction

zero-order

first-order

bi
ts

 p
er

 w
or

d

Figure 5: The effect on compression of penalizing non-adjacent links

a generous eye can discern a more favorable trend for larger text sizes.

4.4 Simplifying the graph

Results for lexical attraction can be improved by penalizing links between non-adjacent words as
mentioned above. Varying the penalty yields a smooth transition from lexical attraction to a first-
order model, illustrated in Figure 5. If the encoder is prevented from linking non-adjacent words, the
gain from mutual information drops, but the number of bits necessary to encode the graph structure
decreases too. When only adjacent pairs are linked, the graph can be encoded using no bits at all, but
the mutual information is the same as for first-order PPM. Another way of reducing the entropy of
the graph is to artificially limit the number of links per word.

5 Conclusions

The best predictors for individual words of text are not necessarily their immediate predecessors.
Measuring the lexical attraction between terms is a way of identifying dependency structures that
define a low-entropy representation of the text. This paper has investigated this phenomenon and
shown how lexical attraction can be applied for the purposes of text compression. Our experimental
results are somewhat disappointing, for they show that first-order lexical attraction is out-performed
by first-order PPM even on fairly large texts, rendering it useless for most practical purposes. How-
ever, it can be extended to subsume PPM, and thereby perform at the same level with an appropriate
parameter setting.

The disappointing performance can be traced to the need to encode the dependency graph and

9

transmit it to the decoder. In the current implementation, little attempt has been made to refine the
encoding of the graph structure. But there are many opportunities for improvement. It is likely, for
example, that many words have significant correlation with their position and link structure. The
graph could be broken at points where the lexical attraction between two words is negative, and a
zero-order encoding of the term in question used instead. Links over sentence boundaries could be
introduced, improving the gains that can be achieved by linking between words.

Work with larger corpora will be necessary to explore the limits to the gains achievable by mutual
attraction, a completely open question at present. Performance enhancements could be made simply
by priming the compressor with standard corpora, and introducing ways to counter inhomogeneity by
priming sub-contexts for structurally different passages of the text—for instance poems, formulas or
entirely alien documents. Finally, a higher-order compression scheme could be developed to capture
relations between groups of words.

We feel that lexical attraction is a promising new method for text compression, and expect that
ultimately, lexical attraction coders will consistently out-perform standard prior-context models. Per-
haps the most exciting aspect is the prospect of uncovering more and more structure in text as it is
compressed, and the use of compression to measure the success of structure discovery.

Acknowledgments

We gratefully acknowledge stimulating discussions with Tony Smith on lexical attraction. Thanks to
Deniz Yuret for writing the thesis that started the whole thing off, and helping us to understand some
of the details; to Bill Teahan for making available the Jefferson text; and to Stuart Inglis for technical
help.

References

[1] Cleary, J.G. and Witten, I.H. (1984) “Data compression using adaptive coding and partial string
matching.”IEEE Trans Communications, Vol. COM-32, No. 4, pp. 396-402.

[2] Howard, P.G. and Vitter, J.S. (1992) “Practical implementations of arithmetic coding.” InImage
and Text Compression, edited by J.A. Storer. Kluwer Academic Publishers, pp. 113-144.

[3] Lafferty, J.D., Sleator, D. and Temperley, D. (1992) “Grammatical trigrams: A probabilistic
model of link grammar.”Proc AAAI Fall Symposium on Probabilistic Approaches to Natural
Language, Cambridge, MA, pp. 89-97.

[4] Malone, D. (1948)Jefferson the Virginian. Little Brown and Co., Boston.

[5] Moffat, A. (1990) “Implementing the PPM data compression scheme.”IEEE Transactions on
Communications, Vol. 38, No. 11, pp. 1917-1921.

[6] Sleator, D. and Temperley, D. (1991) “Parsing English with a link grammar.” Technical Report
CMU-CS-91-196, Department of Computer Science, Carnegie Mellon University.

[7] Yuret, D. (1998) Discovery of linguistic relations using lexical attraction.” PhD Thesis, Depart-
ment of Computer Science and Electrical Engineering, MIT; May.

10

