Archon-3 final structure.

Dmitry Malyshev (kvarkus@tut.by)
18 August 2006, Version 1.0

Chapter I – General information

Preface.

There might be a lot of unknown definitions for you. I’ll give you only a few links.

“Archon” itself hasn’t any homepage. It’s discussed and the links to executables can be found on the [1]. But Archon3 became a part of my universal BWT-DC compressor “Dark“ that has a project homepage [2].

[1] ArchonX2-X3 discussion: http://forum.compression.ru:8080/viewtopic.php?t=352
[2] Dark Archon project homepage: http://darchiver.narod.ru/
[3] Yuta Mori SA benchmarks results: http://homepage3.nifty.com/wpage/software/results.html
Everything else here can be easily found with Google.

What is Archon-3 for?

Archon-3 is an advanced algorithm for suffix array (SA) construction. It has a set of applications but my goal was to compute the Burrows-Wheeler Transform (BWT). There are lots of existing methods of BWT. If to exclude those that work only with little blocks (N is less than 1Mb, where N = block size) they mostly require not less then 8*N bytes of memory. My primary goal was to perform the fastest and stable SA construction with only 5*N bytes of memory, this is a practical lower bound for such algorithms.

Years of developing had passed and “Archon” transformed into the complex system of modules. Archon3r2 achieved the best results on 9 of 13 test-corpuses in [3], the world’s single “true” benchmark. The main competitors were “divsufsort”(by Yuta Mori) and “msufsort”(by Michael Maniscalco).

Module structure.

Chapter II – Modules description

Radix-2

At the start point we have a single char buffer of length N byte. I sad before, we are constructing SA, so we allocate additional 4*N bytes for it. That’s almost all.

Radix sort is a very common start for BWT computing. All strings are divided into 2^16 buckets according to their first 2 bytes. This is performed in linear time (O(N)) with 256Kb of additional memory. This distribution is performed along with IT-2 group division.

Itoh-Tanaka, modified (IT-2)

Originally according to IT-1 method all suffixes are divided into 2 groups (A and B). Group A consists of suffixes that are sorted directly by some string-sorting procedure. According to given suffixes in A, all group B is sorted in linear time. For example suffix [s1s2s3...] belongs to A if only s1<=s2. So using this method we need to sort directly only 1/2 strings on average, but there can be also a very bad case.

The modification of this method called IT-2 creates an additional group C that is also can be sorted in linear time after A. For example we have a suffix [s1s2s3...].

Then we choose: case ‘A’: s1<s2>=s3, case ‘C’: s1<s2<s3,
case ‘B’: s1>=s2.

Using this method allows us to sort directly 1/3 of strings on average.

First of all I had developed this IT-2 modification. But then I went farther and made a lower possibility for the bad case by choosing: case ‘A’ if s1<s2 && [s2s3...]>[s3...].

Group division requires additional 256k of memory.

Bentley-Sedgewick sort of 32bit units (BeSe 32bit)

This is the entry point of direct string-sorting procedure. On the each recursive iteration all given strings are divided into 3 groups (lower, equal, higher) according to their 32 bits on the current depth. Then ‘lower’ and ‘higher’ parts are separated and sorted by the recursive call with the same depth. The ‘equal’ strings are sorted within increased to 32bits depth. On that stage if depth exceeds DLIMIT than this group of strings is passed to the Analyzer module.

This is one of my tricks: 32bit units. Usually BeSe operates with 8bit units. To perform 32bit comparisons reversing of the input must be done. And after that the depth offset will decrease instead of increase. But Archon3 originally doesn’t do this reverse procedure and outputs “the reversed input of the reversed input”. It doesn’t affect on the decoding speed but is a little unfair on SA tests. Archon3-final will have special switch to pre-reverse input.

If the number of strings is lower than INSNUM, the Smart Insertions module is called.

Smart Insertions

The simple insertion sort is well known. My sorting is ‘smart’ because it has a depth limit DLIMIT2. The groups of ‘equal’ strings that achieved this limit are passed to the Analyzer module. So this is the end of an ‘Easy’ part. You can disable DLIMIT* and your sorting will be quite fast and almost ideal variant even for large texts.

Analyzer module.

It’s function is much easier to describe than realize in practice. It’s the bridge from ‘Easy’ to ‘Hard’ category. Analyzer searches for a suitable anchor and, if found, passes strings to the Anchors module. If not found, Analyzer calls the Deep BeSe module.

Anchors technique.

This sorting trick (but it’s too complex for a trick) was used by Manzini and Ferragina in their “DeepShallow” program. Generally it can be used when you know exactly that your sub-strings at equal depths are already sorted. There are 4 types of anchors: ‘before’, ‘after’ in the other prefix and same two in the current. Analyzer module performs a hard work when choosing the best suitable anchor. Special anchors structures use additional 1% - 5% of block memory.

Deep BeSe sort of 64bit units.

It’s the same BeSe after all. But there are some tricks. Here you can catch the out of boundary exceptions if your buffer is pre-zeroed for at least 8 + DLIMIT + DLIMIT2 bytes.

First, the simple 32bit comparison is performed. Only if the result is ‘equal’ (the most probability case anyway), the next 32 bits are compared. Strings are still divided into 3 groups, but going through the ‘equal’ group is almost 2 times faster.

If on some division the number of non-equal strings is too small, the Tandem Repeats module is called. It may return the strings unsorted so must not be called very often to save some speed.

If the number of string is lower than INSNUM2, the second Insertions sort is used. It’ is quite simple if not count the string comparing function from Couples module.

Tandem Repeats module.

Designed to sort many times repeated fragments (other modules will help a little). First, the check is performed and the strings are returned if the result is negative. Otherwise all strings are divided into groups relatively to their positions. Next they are sorted with ‘qsort’ according to their groups and offsets within the groups. The ‘equal’ on this stage strings are compared by Couples module. Groups container use in addition 1% - 5% of block memory.

Couples module.

It’s my original technique for comparing strings that have a very long common part. Two strings are passed to the function. Couples module has a buffer of couples with longest common parts that were compared before. So this strings are compared with each couple from the buffer. Then the most suitable couple is found. Next, the result may be known at that time relatively of the depths of strings. If not, then the comparison depth limit is known. So strings may be compared in a very short time. After that the buffer is updated if necessary.

This technique was firstly realized in ArchonX2 and showed very good results on the ‘bad’ inputs. From that time I’ve tried different combinations of modules and now they all come back into Archon3!

RADIX-2

BeSe 32bit

Smart Insertions

IT-2

Analyzer

Deep BeSe

64* bit

Anchors

Tandem

Repeats

Couples

Insertions

Hard-Sorting Part

Easy-Sorting Part

