

Распознавание и удаление субтитров

Юрий Бердников

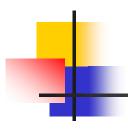
Video Group CS MSU Graphics & Media Lab

Содержание доклада

- Введение. Задача распознавания
- Обзор существующих методов распознавания
 - Сегментация кадра
 - Временная коррекция
- Обзор существующих методов удаления
 - Линейная интерполяция
 - Полиномиальная интерполяция
 - Метод среднего цвета соседей
 - Текущий метод Subtitle Remover
- Свои идеи
- Планы
- Список литературы

Введение

• Свойства субтитров

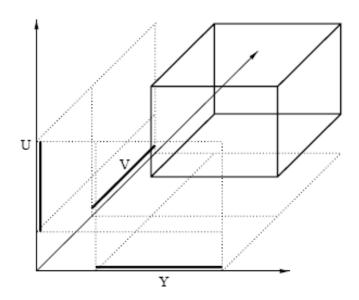

- Наличие контура вокруг букв
- Цвет субтитров, контура
- Горизонтальность
- Положение в кадре
 - Как правило, в нижней половине экрана
 - 1-2, реже 3 строки
 - Возможно, выравнивание по центру
- Неподвижность
- Постоянство высоты шрифта

Введение

Основная идея большинства алгоритмов сегментации видео — сегментация первого кадра с дальнейшим уточнением объектов во времени

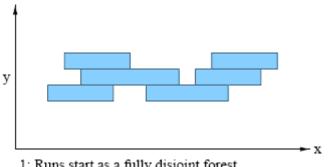
Задача сегментации кадра

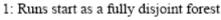
• Типы алгоритмов сегментации

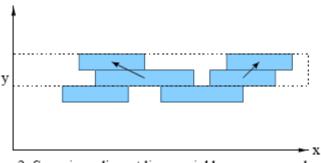

- Использующие только параметры, постоянные для всех субтитров контрастность обводки, горизонтальность надписи, неподвижность.
 - (-)Медленные
 - (-)Больше вероятность ошибки
 - (+)Возможность определения неизвестных параметров субтитров
- Использующие дополнительные данные, полученные после начальной сегментации – цвет, положение, выравнивание, высоту шрифта.
 - (+)Быстрые
 - (+)Более точные
 - (-) Требуют дополнительных данных

Fast and cheap image segmentation for interactive robots

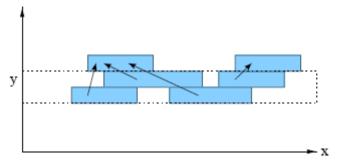
- RGB->YUV
- Разделение цветового пространства на небольшое количество классов
- Разделение пикселей на классы

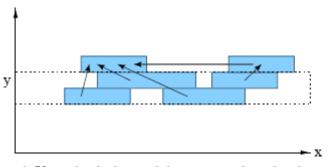

Visualization as Threshold in Full Color Space





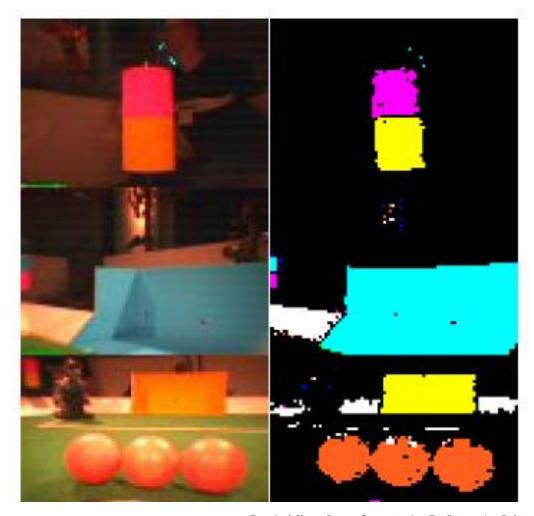
Fast and cheap image segmentation for interactive robots

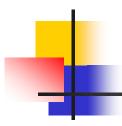

- Объединение контактирующих цепочек в объекты



2: Scanning adjacent lines, neighbors are merged

New parent assignments are to the furthest parent


4: If overlap is detected, latter parent is updated



Обзор существующих методов Fast and cheap image segmentation for interactive robots

Результаты

Fast and cheap image segmentation for interactive robots

Преимущества

Очень высокая скорость (160х120 60кадр/сек на 150МНz процессоре)

Недостатки

- Нужна информация о цвете
- Большое число ошибок 2го
- «Рваные» края сегментов, пропуск пикселей

Вывод

 Годится как второстепенный метод для проверки уже построенной маски

K-means image clustering method

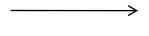
- Идея: разбиение всех пикселей на К кластеров по цвету
- Алгоритм
 - Выбираем произвольно К цветов С1..Ск
 - 2. Для цвета каждого пикселя вычисляем, к какому из С1..Ск он ближе всего и причисляем его к кластеру N_i, соответствующему этому цвету
 - з. цвет Сі меняем на средний из цветов пикселей кластера Ni
 - повторяем 2,3 пока не достигнем заданного числа итераций либо цвета С1..Ск не перестанут меняться

K-means image clustering method

Пример: разбиение изображения на К=6 кластеров

K-means image clustering method

- Достоинства
 - Прост
 - Хорошо распараллеливается
- Недостатки
 - Необходимо задать кол-во кластеров
 - Многопроходность
 - Использует информацию только о цвете
- Вывод
 - Пригоден для начальной сегментации кадра



Edge-detection based algorithms

Edge-detection based algorithms

Идея: Выделение границ на изображении

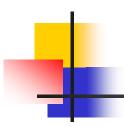
• Выделение объектов

Edge-detection based algorithms: Canny

- Алгоритм выделения границ:
 - Шумоподавление размытие с помощью фильтра Гаусса

	2	4	5	4	2
<u>1</u> 115	4	9	12	9	4
	5	12	15	12	5
	4	9	12	9	4
	2	4	5	4	2

Figure 3 Discrete approximation to Gaussian function with $\sigma=1.4$


Edge-detection based algorithms: Canny

вычисление градиента по X и У

-1	0	+1
-2	0	+2
-1	0	+1

+1	+2	+1
0	0	0
-1	-2	-1

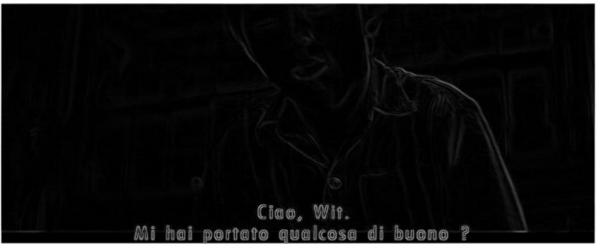
Gy

Edge-detection based algorithms: Canny

• Вычисление суммарного градиента: |G| = |Gx| + |Gy|. Если |G| > Threshold, данный пиксель объявляется границей.

Результаты работы с различным порогом и параметрами размытия Гаусса

Bill Green Canny Edge Detection Tutorial



Edge-detection based algorithms: Canny

Пример работы на реальном видео

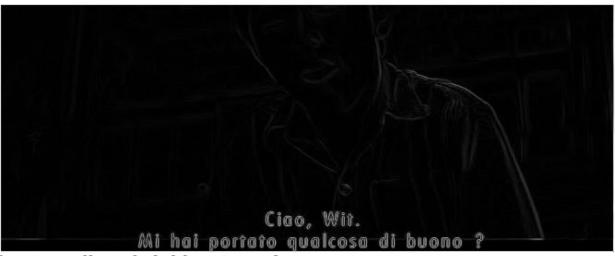
Edge-detection based algorithms: Canny

- Достоинства
 - Скорость
 - Гибкость
- Недостатки
 - Плохо работает на сильном шуме и блочности
- Вывод
 - Пригоден для начальной сегментации

Edge-detection based algorithms: Robert's cross

- Алгоритм:
 - Схож с алгоритмом Canny, но использует другие матрицы для выделения границ

	O		1
$\lfloor 0$	-1_	_1	0

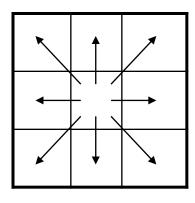



Edge-detection based algorithms: Robert's cross

Пример работы на реальном видео

Edge-detection based algorithms: Robert's cross

- Достоинства
 - Скорость
- Недостатки
 - Неустойчивость к шуму
 - Неудовлетворительная работа на малоразмерных кадрах
- Вывод
 - Может использоваться вместо canny при высоком разрешении

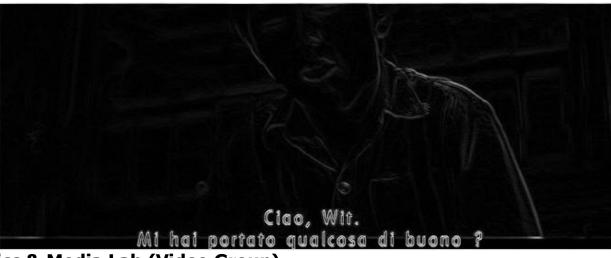

Edge-detection based algorithms: Area variation

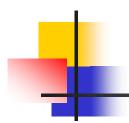
• Алгоритм:

- Шумоподавление
- Оценка соседей
- Поиск Min и Max
- если покомпонентная сумма разностей

$$diff = (R \max - R \min) + (G \max - G \min) + (B \max - B \min)$$

больше порога, то пиксель объявляется границей.

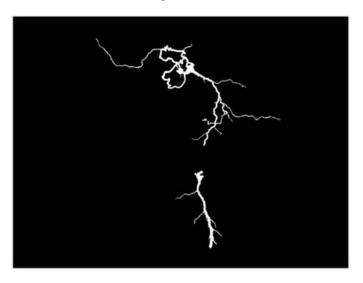



Edge-detection based algorithms: Area Variation

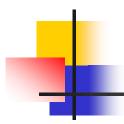
Пример работы на реальном видео

Edge-detection based algorithms: Area variation

- Достоинства
 - Скорость
- Недостатки
 - Неустойчивость к шуму
 - Плохая работа на маленьких изображениях
- Вывод
 - Ограниченно применим для начальной сегментации



Region growing


Алгоритм:

- 1. Выбор точек роста
- 2. Обработка соседей
- Переопределение точек роста
- 4. Повторять 2,3 пока есть хоть одна точка роста

Region growing

Достоинства

 Позволяет быстро выделить однотонный объект, если известна хотя бы одна из принадлежащих ему точек

Недостатки

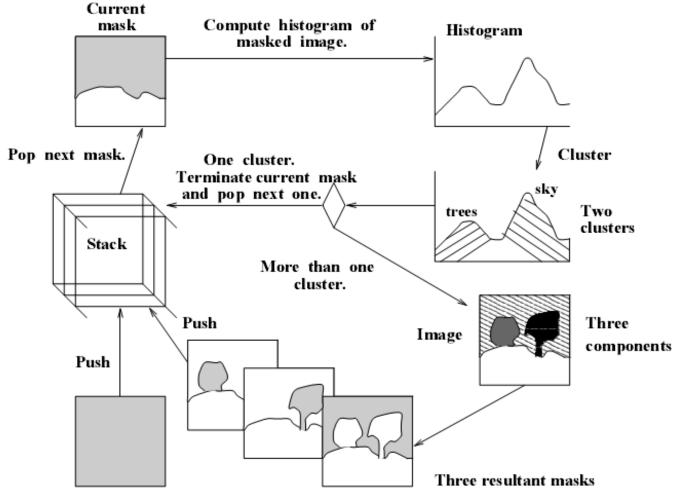
- Медленный в общем случае
- Нуждается в начальном задании точек роста

Вывод

 Можно применить для отслеживания движения объектов, выделенных другим алгоритмом

Histogram-based methods

- Построение гистограммы
- Разделение гистограммы
- Кластеризация пикселей


Достоинства

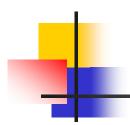
- Скорость
- Недостатки
 - Плохо сегментирует мелкие регионы
- Вывод
 - В чистом виде не годится.

Histogram-based methods: улучшение метода

Обзор существующих методов Histogram-based methods



Пример работы

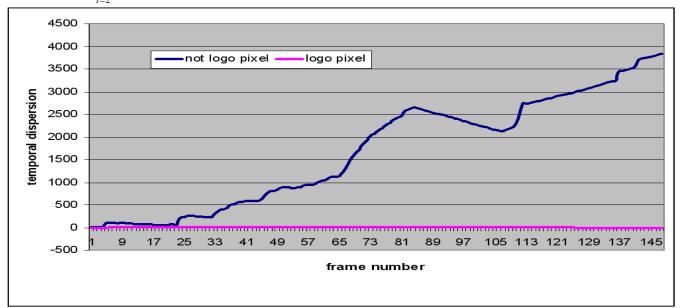


Histogram-based methods

- Достоинства
 - Хорошо сегментирует по цвету
- Недостатки
 - Сегментация только по цвету, без учёта остальных параметров
 - На видео плохого качества много ошибок
- Вывод
 - Ограниченно применим

Временная коррекция

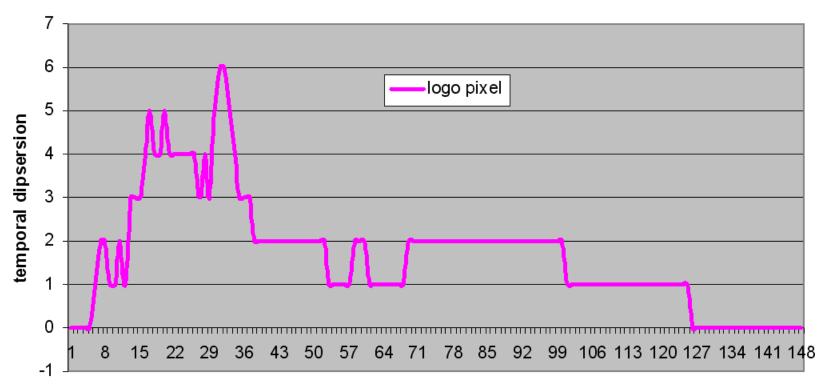
- Уточнение найденных объектов
 - Оценка движения
 - Проверка на появление/исчезновение
 - Проверка на изменение размера



Текущий метод Subtitle Remover

Алгоритм:

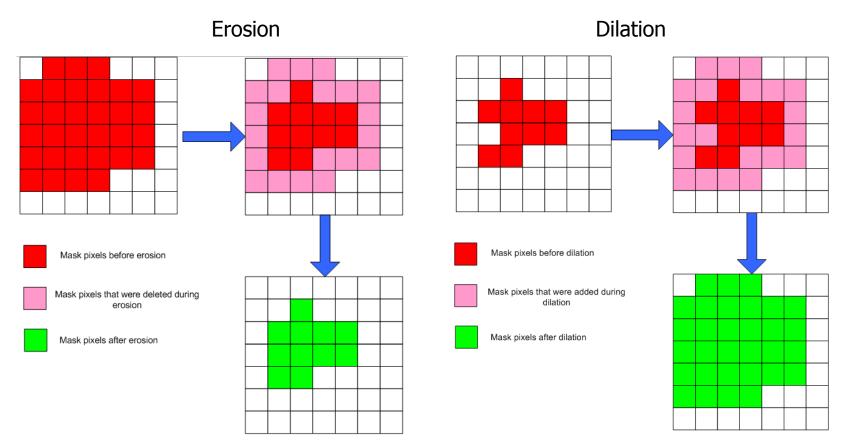
- Идея: вариация во времени Y-компоненты.
- Рассматриваем «дисперсию»:


$$F(x, y, T) = \sum_{t=2}^{t=T} (Y(x, y, t) - AVG(x, y, t-1))^{2}$$

Текущий метод Subtitle Remover

frame number

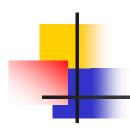
Текущий метод Subtitle Remover


- Распознавание появления субтитров:
 - Обновление буфера кадров
 - Подсчет дисперсии пикселей для всех кадров буфера
 - Для каждого пикселя оценка кол-ва кадров с низкой дисперсией
- Распознавание исчезновения субтитров:
 - Оценка кол-ва изменившихся пикселей в маске субтитров

Текущий метод Subtitle Remover

Дополнительная обработка маски

Обзор существующих методов Текущий метод Subtitle Remover



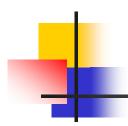
Текущий метод Subtitle Remover

- Достоинства
 - Приемлемая скорость
- Недостатки
 - Недостаточная точность
 - Плохая работа на видео низкого качества
- Вывод
 - Надо дорабатывать

Линейная интерполяция

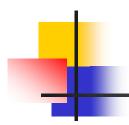
- Изображение рассматривается по столбцам
- Пиксели из маски считаются неизвестными
- Для каждой группы неизвестных рассматривается по известному соседу
- По этим двум соседям строится линейная функция
- Значения неизвестных пикселей определяем как значение этой функции в данной точке

Обзор существующих методов Линейная интерполяция


Пример работы

Линейная интерполяция

- Достоинства
 - Очень быстрый алгоритм
- Недостатки
 - Плохая работа на видео низкого качества и видео с резкими границами
- Вывод
 - Пригоден для обработки HDTV



Полиномиальная интерполяция

- Изображение рассматривается по столбцам
- Пиксели из маски считаются неизвестными
- Для каждой группы неизвестных выделяем N известных соседей с каждой стороны
- По этим соседям строим полином
- Значения неизвестных пикселей определяем из значения полинома в данной точке

Полиномиальная интерполяция

Достоинства

 Хороший результат на хороших изображениях с плавными переходами

Недостатки

 Очень плохая работа на видео низкого качества и зашумлённом видео

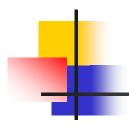
Вывод

Пригоден для обработки HDTV

Метод среднего цвета соседей

- Для каждого неизвестного пикселя рассматриваем 8 соседних
- если среди них более 4 известно, пикселю присваивается средний цвет известных соседей
- повторяем 1,2 пока не заполним всё изображение

Обзор существующих методов Линейная интерполяция


Пример работы

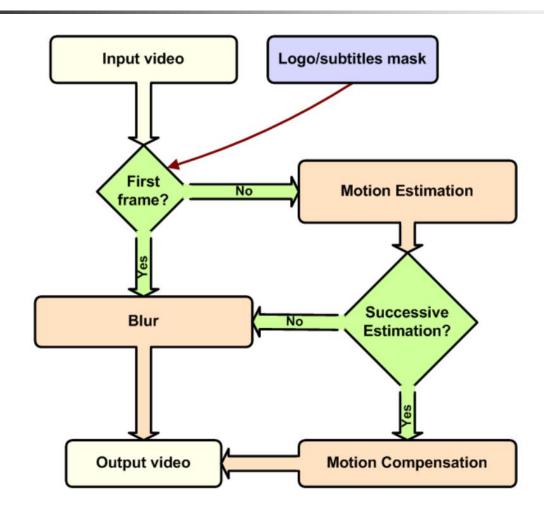
Метод среднего цвета соседей

Достоинства

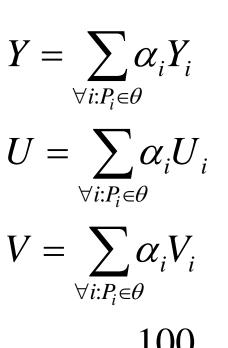
• Мало чувствителен к шуму

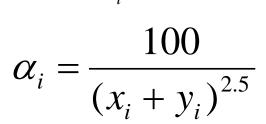
Недостатки

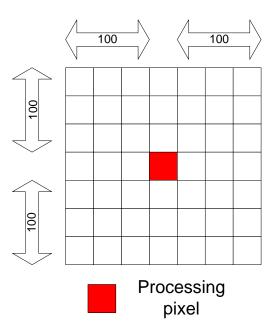
 Характерные артефакты, неудовлетворительная работа на резких границах

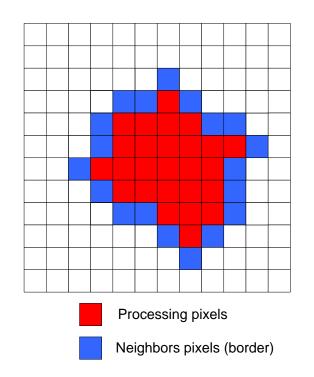

Вывод

 Применим при небольших размерах заполняемой области


Текущий метод subtitle remover

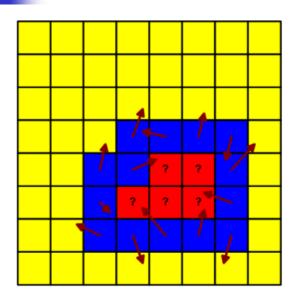


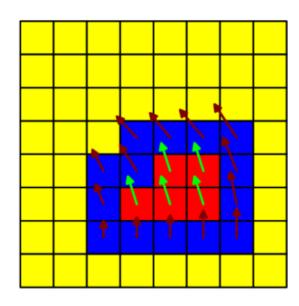




Текущий метод subtitle remover: Quality blur







Обзор существующих методов Текущий метод subtitle remover: Motion compensation

Regular blocks

Blocks with logo/subtitles presence

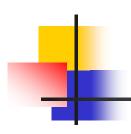


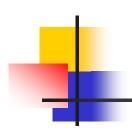
Regular blocks

Blocks with logo/subtitles presence

 Found motion vector Propagated motion vector

• Свойства субтитров


- Наличие контура вокруг букв
- Цвет субтитров, контура
- Горизонтальность
- Положение в кадре
 - Как правило, в нижней половине экрана
 - 1-2, реже 3 строки
 - Возможно, выравнивание по центру
- Неподвижность
- Постоянство высоты шрифта


- 1) Совершенствование текущего алгоритма
 - Добавление вероятностных коэффициентов для пикселей.
 - Кол-во других пикселей-кандидатов в строке
 - Расположение в нижней части кадра
 - Похожесть цвета на заданный
 - «Мягкая» оценка дисперсии
 - Автоматическое определение параметров субтитров
 - Цель снижение ошибок, улучшение работы на видео низкого качества, более полная автоматизация

- 2) Применение статической сегментации кадра
 - Разделение кадра на объекты
 - Фильтрация объектов по положению, цвету
 - Проверка объектов на неподвижность в последующих кадрах
- Цель улучшение работы с нестандартными субтитрами, работа на сильном шуме низком качестве
- Потенциальные проблемы низкая скорость работы

- 3) Оценка уровня качества/шума и адаптивная подстройка
 - Использование с идеями 1) и 2)
- Цель-уменьшение ошибок 2 рода (невключение в маску пикселей субтитров)

Планы на ближайшее будущее

- Детальное исследование работы имеющегося алгоритма и попытка его улучшить добавлением вероятностных характеристик
- В случае невозможности улучшения реализация другого алгоритма

Список литературы

- 1) Demin Wang Unsupervised Video Segmentation Based on Watersheds and Temporal Tracking http://compression.ru/download/articles/video/1998_unsupervised_video_segmentation_based_on_watersheds_pdf.rar
- 2) Chee Sun Won A Block-Based MAP Segmentation for Image Compressions
 http://compression.ru/download/articles/video/1998_a_block-based_map_segmentation_for_image_compressions_pdf.rar
- 3) Joo-Hee Moon, Gwang-Hoon Park, Sung-Moon Chun, and Seok-Rim Choi

Shape-Adaptive Region Partitioning Method for Shape-Assisted Block-Based Texture Coding http://compression.ru/download/articles/video/1997_shape-adaptive_region_partitioning_method_for_shape-assisted_block-based_texture_coding_pdf.rar

4) P. Salembier, and F. Marqui'es

Region-Based Representations of Image and Video: Segmentation Tools for Multimedia Services http://compression.ru/download/articles/video/1999_region-based_representations_of_image_and_video_pdf.rar

5) David R. Martin Charless C. Fowlkes Jitendra Malik

Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues 2004 http://www.cs.berkeley.edu/~fowlkes/papers/mfm-pami-boundary.pdf

- 6) *Mohammad Al-aqrabawi* **Human Skin Detection Using Color Segmentation 2000** https://courseware.vt.edu/users/abbott/5554/SkinReport.pdf
- 7) Ahmed Elgammal Ramani Duraiswami Larry S.Davis

Efficient Non-parametric Adaptive Color Modeling Using Fast Gauss Transform 2001 http://www.cs.umd.edu/users/elgammal/docs/colormodeling-cvpr01-postfinal.pdf

- 8) Ульд Ахмед Талеб Махфуд Комбинированные алгоритмы сегментации цветных изображений http://neuroface.narod.ru/files/mahfoudh_autoref.pdf
- 9) Wladyslaw Skarbek Color Image Segmentation -- A Survey http://imaging.utk.edu/~koschan/paper/coseg.pdf
- 10) Junqing Chen Thrasyvoulos N. Pappas

Adaptive perceptual color-texture image segmentation http://www.research.ibm.com/people/a/aleksand/pdf/ip04.pdf

Список литературы

- 11) Zhuowen Tu Song-Chun Zhu Parsing Images into Regions, Curves, and Curve Groups http://www.stat.ucla.edu/~ztu/publication/ijcv_curve.pdf
- 12) James Bruce Tucker Balch Manuela Veloso Fast and cheap color image segmentation for interactive robots http://www.cs.cmu.edu/~trb/papers/wirevision00.pdf
- 13) Вадим Конушин Владимир Вежневец

Методы сегментации изображений: автоматическая сегментация http://cgm.computergraphics.ru/content/view/147

14) Byung-Gyu Kim Jae-Ick Shim Dong-Jo Park

Fast image segmentation based on multi-resolution analysis and wavelets http://www.loni.ucla.edu/twiki/pub/CCB/CcbBiologicalProjects/sdarticle.pdf

- 15) Eitan Sharon Achi Brandt Ronen Basri Fast Multiscale Image Segmentation http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.8656&rep=rep1&type=pdf
- 16) Nicolas Forcadel Carole Le Guyader Christian Gout

Generalized fast marching method: Applications to image segmentation http://cermics.enpc.fr/~forcadel/Publi/FGL.pdf

- 17) Antonio Criminisi Toby Sharp Andrew Blake Geodesic image segmentation http://research.microsoft.com/users/antcrim/papers/Criminisi_eccv2008.pdf
- 18) Tapas Kanungo Byron Dom Wayne Niblack David Steele

A fast algorithm for MDL-based multi-band image segmentation https://eprints.kfupm.edu.sa/17619/1/17619.pdf

- 19) *Leo Grady* **Random walks for image segmentation** http://cns-web.bu.edu/~lgrady/grady2006random.pdf
- 20) Peter I. Corke Helen I. Anderson Fast image segmentation http://repository.upenn.edu/cqi/viewcontent.cqi?article=1883&context=cis reports

Спасибо за внимание!

Вопросы?